
Design and Verification of an Image Processing CPU 
using UVM 

Milos Becvar 
EM Microelectronic-US, Inc. 

Colorado Springs, CO 
milos.becvar@emmicro-us.com 

Greg Tumbush 
Tumbush Enterprises 
Colorado Springs, CO 
greg@tumbush.com

 
 

Abstract— This paper presents the design and verification of 
a custom image processing CPU and associated hardware 
accelerator using UVM.  The CPU and accelerator are targeting 
an ASIC. This work was performed at EM Microelectronics-US. 

Keywords—SystemVerilog, UVM, CPU, Image Processing 

I. INTRODUCTION  

This paper presents the design and verification of a custom 
image processing CPU and associated hardware accelerator 
using UVM.  The CPU and accelerator are targeting an ASIC. 
This work was performed at EM Microelectronics-US. 

The ASICs that EM Microelectronics-US develops are 
typically very lower power with standby current in the uA 
range and operating current in the 100’s of uA range.  Low 
power modes are used extensively. Their ASICs are optimized 
for area, hence, memory is to be kept to a minimum. The 
ASICs are typically dominated by analog, and the design teams 
are small, 1 or 2 designers and a similar number of verification 
engineers. Their design cycles are short, concept to tapeout in 
less than 12 months. Their ASICs must sell in a market that is 
typified by low cost and high volume. 

For this project Mr. Becvar, a co-author, was the architect, 
designer, and firmware engineer. Dr. Tumbush was brought in 
as a consultant to verify the ASIC and to lead the small 
verification team.  This ASIC was a major enhancement from a 
previous ASIC, the new blocks being the custom CPU and 
hardware accelerator.  It was decided that the new blocks 
would be best verified in a block level verification 
environment. An existing verification environment written in 
VHDL would be leveraged to test the system. 

The contributions this paper will make are: 

1. Determining when a custom CPU design is 
appropriate. 

2. How to choose when block level or system level 
verification is appropriate. 

3. When using UVM at the block level is appropriate. 
4. Special considerations when verifying a CPU. 
5. A real world complete example of using UVM for 

verification with results. 
6. A UVM verification environment is not just for huge 

ASICs. It can be appropriate for small ASICs and 
even block level verification. 

7. Selling UVM to hesitant clients. Bring them kicking 
and screaming into the 21st century.  

II. DESIGN OF A CUSTOM IMAGE PROCESSING CPU 

A. CPU Requirements 

The design and verification effort of a custom CPU core is 
significant and its benefits over using an off-the-shelf CPU 
core must be justified. A detailed analysis of the application 
requirements and currently available CPU cores is a prudent 
step before committing to the design of a custom CPU core. 
Table 1 outlines the requirements driving the CPU core design 
in the author’s application. 

Table 1: CPU Requirements 
Requirement CPU Feature 

Legacy software and HLL 
support not required 

Minimal CPU core tailored to 
application 

Efficient execution of target 
application 

CPU word size and 
operations designed to 
minimize number of 
execution cycles 

Small silicon area footprint CPU complexity 8K gates, 
1K of instructions required 

Sufficient timing-closure 
design margin in targeted 
process 

Pipelining of operations, 
avoiding complex logic 
before and after memories 

Limited routing complexity 
in target process 

Avoiding barrel shifter and 
bypassing networks 

 
The requirement to support legacy software and/or a high-

level language is a driving factor when selecting a CPU core 
for many applications. This requirement typically limits 
designer flexibility to a set of binary compatible cores with 
available software tools. In the author’s application this 
requirement was not present, simplifying the task and 
allowing development of a very efficient CPU specific to the 
image processing algorithm but still allowing flexibility for 
algorithm exploration. 

Unlike a general purpose CPU which has to support many 
different and sometimes unknown applications, the application 
for the CPU was known at design time. Consequently, a 
minimalist CPU which would efficiently support the 
algorithm’s execution could be designed. Efficiency can be 



measured as the number of execution cycles required to 
calculate a given algorithm. Minimization of execution cycles 
allows a reduction in clock frequency and operating voltage 
and consequently, lower power consumption. 

B. Algorithm Requirements 

A CPU that meets the hardware requirements but cannot 
execute the required algorithm is not useful. The CPU 
designed must not only meet the hardware requirements, 
speed, power consumption, etc. but also the following 
algorithm requirements.  

1. 12-bit data words for core calculation with some 
limited use of 24-bit words 

2. Limited code and data size – requiring only 10-bits 
for memory addressing 

3. Support of multiplication and division 
4. At least 16 word-size registers for core calculation  to 

avoid frequent memory accesses (minimizing power 
consumption) 

5. Efficient support for a hardware accelerator for 
pattern matching. 

The required data word size and supported operations were 
one of the factors leading to a custom CPU core design. The 
algorithm requires data widths of greater than 8-bits and 
multiplication and division operations. This eliminates the 
possibility of using an off-the-shelf 8-bit CPU core. Porting 
the image processing application to a standard 8-bit core is 
possible, but very inefficient in terms of execution cycles and 
instruction count. 

A standard 32-bit CPU core would be sufficient to 
efficiently support the algorithm. Unfortunately, it would have 
a significant silicon area footprint (>10,000 gates) and would 
require additional investment and payment of royalties over 
the lifetime of the project. 

For the above reasons, the decision was made to build a 
custom 16-bit CPU core for an image processing application.  
In order to extend the usability of the core and match available 
memory modules, the CPU word was extended from a 
minimally required 12-bit to a more practical 16-bit. The 
implementation of a pipelined CPU with multi-word 
arithmetic support was based on the Mr. Becvar’s previous 
work in [4] and [5]. 

C. CPU Overview 

After taking the hardware and algorithms requirements 
into account it was determined that the CPU must have the 
characteristics listed in Table 2. 
 

Table 2: Custom CPU Core Overview 
CPU Characteristic Implementation 
Instruction Set Architecture
  

16-bit Load/Store Harvard 
Architecture RISC 

Data word supported by 
ISA  

16 bit, 32bit result of 
multiplication in register pairs 

Number of registers  16 x 16bit 
Instruction encoding  Fixed , 16bit instruction word 

Clock frequency (0.18 um)
  

50 MHz implemented (scalable 
up to 100 MHz) 

Number of operands in 
instruction  

2  (1 destination/source, 1 
source) 

Addressable code space  1 K  instructions used (up to 64 
K possible) 

Addressable data space  512  words used (up to 64 K 
possible) 

Peripherals connection  Memory mapped 
Memory addressing modes
  

Immediate, register-indirect, 
direct addressing of peripherals. 
R14 behaves as stack-pointer, 
R15 supports post-increment 
memory addressing 

Special features in ISA Multi-word operation support 
(flags), fused addition and shift 
operation, fractional division, 
support of saturation arithmetic, 
synchronization with 
accelerator by WAIT 
instruction 

Features not supported Interrupts, byte operations 
 

D. CPU Architecture 

The CPU architecture can be seen in Figure 1.  A single 
instruction is fetched every cycle and subsequently executed 
in 3 to 4 pipeline stages. The number of stages was 
conservatively selected to avoid timing closure problems 
during implementation. Most operations are completed within 
a single cycle with the exception of multiplication which is 
calculated in two stages. The pipeline supports independent 
execution of division instruction while contining to execute 
other integer instructions. 

Instruction pipelining introduces the well-known issues of 
data, control and structural hazards [6]. These problems have 
well-documented HW solutions but they generally increase 
CPU complexity and some of them might introduce routability 
and time closure issues (notably bypassing the network for 
Read After Write (RAW hazards)). An alternative to HW 
solutions to the hazard problem is to push the responsibility 
for execution correctness to the programmer and/or compiler. 
In this approach, the latencies of the pipeline are fully exposed 
to the software. This approach dates back to early RISC 
architectures [7] (branch and load delay slots) and it is 
exploited by compiler scheduled VLIW processors [8] and [9].  

As an example, consider the assembly code in Code 
Snippet 1.  General purpose register R1 is the destination for 
the ADD instruction and a source for the SUB instruction. The 
result of the ADD instruction is still in the execute pipeline 
when the operands for the SUB instruction are fetched. 
Therefore the SUB instruction will use the “old” value of R1, 
not the value calculated by the ADD.    A typical CPU 
controller would stall the SUB instruction to eliminate this 
RAW hazard. For the author’s custom CPU, the controller is 
not checking for this type of hazard and allows the SUB 
instruction to read the “old” value of register R1.



 
Figure 1: CPU Architecture 

 
It is up to the programmer to ensure correctness and utilize 
each execution slot. 

 
ADD R1, R0  ;;; R1=R1+R0 
SUB R2, R1   ;;; R2=R2-R1 

Code Snippet 1: Data Hazard 
 

Analysis of the algorithm indicates that there is enough 
parallelism to assume that the programmer would be able to 
efficiently utilize available instruction slots. Examples of 
constraints when developing software for this CPU are 
described in Table 3. 

Table 3: Software hazards 
Type of Hazard Programmer constraint 
Data Hazard
  

Result of instruction is available with one 
cycle latency (multiplication has two 
cycles latency).  
Flags are available with 0-cycle latency, 
allowing chaining of multi-word 
operations. 
Division latency depends on result 
precision. 

Control Hazard
  

Instruction after branch is always 
executed (1 cycle delay slot) 

Structural Hazard Instruction after multiplication cannot 

write into register 
 

Most common instructions in the Instruction Set 
Architecture (ISA) have a short latency (1-2 cycles) which 
could be overlapped by independent instructions. However, 
external pattern-matching acceleration and division take much 
longer and requires special ISA support. 

Pattern matching is a very data intensive calculation which 
is supported by an independent HW accelerator which has 
direct connection to memory. Execution is performed in 
multiple sweeps which compares two spatially shifted 
bitstreams (internal forms of images). The HW accelerator is 
controlled through memory mapped control registers. Since 
each sweep takes around 30 cycles, there is a special need to 
inform the CPU when the sweep is completed. This 
synchronization is performed by WAIT instruction which 
selects one out of 16 possible synchronization signals. 
Fetching of instructions is stalled until a given synchronization 
signal is asserted by the accelerator. The CPU clock is gated to 
save power during waiting on external synchronization. This 
synchronization mechanism can be utilized to connect other 
external accelerators with variable latency. 

Similar to the accelerator interface, the division operation 
is broken into two parts (see Code Snippet 2). The DIV 
instruction reads source operands from a register file and starts 
a multi-cycle division operation. Result of division is 



transferred by separate MOVDRES instruction into register 
file. 

The author’s custom CPU implements a fractional division 
(result a/b<1) as required by the application. In order to 
produce an n-bit fractional result, n+1 cycles are required. 17 
cycles is required to produce a full 16-bit fractional result. 
Depending on the required precision of the result, the 
programmer can insert independent instructions between DIV 
and MOVDRES. These instructions are executed in parallel 
with division. If no more independent instructions are 
available, the WAIT instruction can be used to synchronize for 
the end of division. A special control register defines the 
required number of cycles for the divider synchronization 
signal. This reduces need to include NOPs while waiting for 
the division result.  

DIV R1 R0  ;;; calculate R1 /  R0 
Independent instructions 
… 
WAIT divider 
MOVDRES R2 ;;; store division result to R2 

Code Snippet 2: Division 
 

Statistics of the implementation indicate that only 6% of 
executed instructions are NOPs demonstrating high efficiency 
of the custom CPU when executing a given application. Not 
implementing hazard resolution logic simplifies the CPU 
controller design and moves the burden up to the programmer. 
However, it also introduces unique challenges for creating a 
transaction accurate reference CPU model for verification. 

III. VERIFICATION OF A CUSTOM IMAGE PROCESSING CPU 

A CPU presents a unique verification challenge, 
particularly one with a pipeline, jumps, branches, multi-cycle 
instructions, and hazards. The chosen verification methodology 
needs to: 

1. have a quick ramp up time  
2. randomly generate instructions 
3. steer the randomly generated instructions into 

interesting corner cases 
4. use functional coverage to stop the testbench once 

functional coverage is obtained 
 

UVM was chosen as the verification methodology because 
it is a proven methodology, fully supports randomization, and 
fully supports a coverage driven testbench.   It has been Dr. 
Tumbush’s experience that selling a UVM based testbench to 
clients is difficult. They see UVM as only for huge ASICs and 
have been burned by employees and consultants blowing the 
schedule by creating a much more complex testbench than is 
necessary.  To allay these fears the client must be educated in 
how a functional coverage driven testbench results in quicker 
verification closure and less bugs which means an earlier 
tapeout and less chance of a re-spin.  The verification 
environment used that meets the above requirements is 
depicted in Figure 2 and will be explained in the following 
subsections.
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RAM I/F

Instructions

Image Agent

Image I/F

Image
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Figure 2: Verification Environment 



A. Agents 

The verification environment created uses 3 agents to 
observe and possibly drive the 3 main interfaces, the Data 
RAM, Firmware, and Image.  A generic UVM agent is 
depicted in Figure 3.  A decision that a verification engineer 
needs to make is whether to create separate transaction and 
results classes for each agent or create a single class for each 
agent that encompasses both the transaction and results. For 
this verification environment it was decided to create separate 
classes for the transaction and the results. The authors felt that 
this makes the Sequencer, Driver, and Monitor simpler because 
they have less functionality and operate more autonomously. 
 

Agent

Driver

Sequencer

transactions

pin level

Monitor

pin level

*_trans

to subscriber

uvm_analysis_port (1 or more)

 
Figure 3: UVM Agent 

 
The Sequencer simply creates transaction objects.  The 

Driver is responsible for deconstructing the transaction objects 
into the necessary pin level interface to drive the DUV.  The 
Monitor observes the pin level interface to 1) collect the result 
of a transaction and 2) collect any necessary information about 
the transaction to predict the result. The collected information 
is packaged into an object and passed to 1 or more 
uvm_analysis_ports that the Scoreboard can subscribe to. 

When researching UVM Dr. Tumbush was perplexed by 
the recommendation to not pass transaction objects from the 
sequencer directly up to the scoreboard.  Why reconstruct 
portions, or all, of a transaction at the monitor interface? It is 
known what the transaction is why not just pass it directly to 
the subscriber?  By collecting coverage at the interface of the 
DUV, coverage is truly being collected on what the DUV sees, 
not what one thinks the DUV sees. In one situation Dr. 
Tumbush thought that the sequencer/driver was correct but it 
turned out that it was not driving the DUV with the 
transactions intended.  It is very easy to think the test is driving 
the DUV as expected since a non-intended transaction will be 
collected and the golden and RTL will match even though the 
transaction was not as expected.  An object oriented 
verification environment does not obviate the need to continue 
to look at simulation waveforms. 

1) RAM Agent 

The RAM Agent monitors the RAM I/F bus for memory 
transactions and creates ram_trans objects from the bus traffic 
as seen in Code Snippet 3. Since any errant read transactions 
will be caught when the destination register (PC, General 
Purpose registers, etc) is compared, the RAM I/F is only 
watching for write transactions.  The RAM Agent is a passive 

agent meaning it only collects data, never driving the Device 
Under Verification (DUV) as an active agent would do so it 
does not have a Sequencer or Driver. 

class ram_trans extends uvm_sequence_item;
 `uvm_object_utils(ram_trans)
 function new(string name="");
  super.new(name); 
 endfunction
 logic [RAM_ADDR_WIDTH-1:0] write_addr;
 logic [RAM_DATA_SIZE-1:0]  data_write;
endclass

Code Snippet 3: class ram_trans 
 

2) Firmware Agent 

The Firmware Agent is an active agent because it supplies 
randomized instructions to the DUV. The Sequencer in the 
Firmware Agent creates instruction objects as seen in Code 
Snippet 4.  An object of class instruction is randomized so any 
variable denoted as rand such as the opcode, source operand, 
destination operand, etc, is randomized. The instruction class 
has a static variable of type string called instruction_str which 
holds the current instruction. Since instruction_str is static it 
can be viewed in a simulation waveform which is 
indispensible for debug. Function get_instruction() acts as a 
disassembler, converting machine code into an instruction 
string. 

The Driver in the Firmware Agent then decomposes 
instruction objects into a firmware RAM interface, acting as 
an assembler. The Monitor in the Firmware Agent collects the 
state of the CPU, stores this information in a firmware_results 
object (see Code Snippet 5) and passes the object to a 
subscriber. The Monitor also collects the machine code 
actually fetched by the DUV, stores this information in an 
instruction object, and passes the object to a subscriber.  

Note that class firmware_results also has fields for any 
predicted ram write transactions. These fields will be filled out 
in the scoreboard and compared to ram_trans objects from the 
RAM Agent. 

class instruction extends uvm_sequence_item;
 `uvm_object_utils(instruction)
 function new(string name="");
  super.new(name); 
 endfunction
 rand opcode_e opcode; 
 rand src_dest_e Rb, Ra; 
 rand bit [15:0] read_data; 
 static string instruction_str;
 rand bit [7:0] Imm8; 
 rand bit [9:0] Addr; 
 bit [3:0] sig;  
 function string get_instruction();
   …
 endfunction
endclass

Code Snippet 4: class instruction 
 



class firmware_results extends  
uvm_sequence_item; 
 `uvm_object_utils(firmware_results)
 logic signed [15:0] gp_reg[16]; 
 logic SF, OF, ZF, CF; 
 logic [FIRMWARE_RAM_ADDR_WIDTH-1:0] PC, 

RAR; 
 logic [15:0] instr_code; 
 bit ram_write; 
 bit [RAM_ADDR_WIDTH-1:0] write_addr;
 bit [RAM_DATA_SIZE-1:0] data_write;
 … 
endclass 

Code Snippet 5: class firmware_results 

3) Image Agent 

The Image Agent collects results from the hardware 
accelerator that processes the image, records the image, and 
packages this data into an image_trans object.  The image is 
supplied to the DUV via the Image interface from an image 
file. The Image Agent is a passive agent because its only 
function is to create image_trans objects and pass them to the 
Scoreboard. 

B.  Scoreboard 

The Scoreboard in Figure 2 calculates golden results from 
firmware_results or image_trans objects. The calculated 

golden results are compared to the actual results from the 
ram_trans, firmware_results, or image_trans objects.  The 
Hardware Accelerator transaction level model accepts 
image_trans objects and processes the image to create golden 
results.  The CPU transaction level model accepts 
firmware_results objects, and from that, calculates the golden 
“State of the CPU”. 

Due to the proprietary nature of the hardware accelerator 
this paper will not go into detail on this portion of the 
scoreboard.  In the next sections the paper will go over a 
detailed explanation of the CPU transaction level model and 
checkers. This should have wider interest. 

The CPU transaction level model and checker blocks of 
the Scoreboard will perform the following functions: 

1. Collect instruction objects from the Firmware 
Agent’s Monitor block 

2. From the instruction objects predict the expected 
results 

3. Collect firmware_results objects from the Firmware 
Agent’s Monitor block 

4. Compare expected results to actual results 

A block diagram of this portion of the verification 
environment is in Figure 4. 
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Figure 4: CPU Portion of Scoreboard 
 

1)  gold_subscriber 



The gold_subscriber accepts instruction objects through its 
implicit analysis export.  From the instruction objects the 
expected state of the CPU is calculated, packaged into a 
firmware_results object, and sent to the 
gold_firmware_results_aport with a write() function. A subset 
of the gold_subscriber class is in Code Snippet 6.  This code 
shows an ADD instruction being calculated at the transaction 
level. The un-shown val() function determines the current 16-
bit value of a general purpose register from its enumerated 
name. The golden model or predictor is the white elephant in 

the room very few people talk about. To create a golden model 
or predictor requires a designer’s level of knowledge about the 
DUV and can take a very long time to create.  It is critical to 
think in terms of transactions.  In this case, it was important to 
match the state of the CPU at every clock cycle due to the 
pipeline and jumps. Since the firmware engineer is using the 
structural and control hazards to his advantage these must be 
modeled in the golden model as well. This is not always the 
case.  Only model as low a level as absolutely necessary. 

 

class gold_subscriber extends uvm_subscriber #(instruction); 
 `uvm_component_utils(gold_subscriber)
 firmware_results firmware_results_h; 
 uvm_analysis_port #(firmware_results) gold_firmware_results_aport; 
 function void build_phase (uvm_phase phase);
  gold_firmware_results_aport = new("gold_firmware_results_aport", this);
 endfunction  
 function void write(instruction t); 

   case (t.opcode) 
      ADD: firmware_results_h.gp_reg[t.Rb] = val(t.Ra) + (t.Rb); 
      .... 
   endcase 

  gold_firmware_results_aport.write(firmware_results_h); 
 endfunction 
endclass 

Code Snippet 6: class gold_subscriber 
 

2) rtl_subscriber 

The rtl_subscriber accepts firmware_results objects 
through its implicit analysis export.  It then sends the objects 

to the rtl_firmware_results_aport with a write() function. At 
this point the rtl_subscriber performs no functionality, it is 
included for symmetry with the gold_subscriber and for future 
expansion. The rtl_subscriber class is in Code Snippet 7.

 
class rtl_subscriber extends uvm_subscriber #(firmware_results); 
 `uvm_component_utils(rtl_subscriber) // Register class subscriber 
 uvm_analysis_port #(firmware_results) rtl_firmware_results_aport; 
 firmware_results firmware_results_h;
 function new(string name, uvm_component parent);
  super.new(name, parent); 
 endfunction 
 function void build_phase (uvm_phase phase);
  rtl_firmware_results_aport = new("rtl_firmware_results_aport", this); 
 endfunction 
 function void write(firmware_results t);
  firmware_results_h = t; 
  rtl_firmware_results_aport.write(firmware_results_h);
 endfunction 
endclass 

Code Snippet 7: class rtl_subscriber 
 

3) firmware_comparator 
The firmware_comparator class has two 

uvm_analysis_export ports, both accepting firmware_results 
objects. One port is the golden firmware results and the other 
is the rtl firmware results.  A uvm_tlm_analysis_fifo is used to 
hold the golden and rtl results for comparison. Each 
uvm_tlm_analysis_fifo is connected to the 

uvm_analysis_export port through the connect() function. 
Using the get() function, firmware_results objects are 
removed from the fifos and pushed onto the appropriate 
queue.  Due to the pipelined nature of the CPU a gold and rtl 
queue of depth 3 were maintained. This queue was examined 
for pipeline dependencies and the gold results possibly 



modified. A subset of the firmware_comparator class is in Code Snippet 8. 

 
class firmware_comparator extends uvm_component; 
 `uvm_component_utils(firmware_comparator) 
 uvm_analysis_export #(firmware_results) gold_firmware_results_export; 
 uvm_analysis_export #(firmware_results) rtl_firmware_results_export; 
 uvm_tlm_analysis_fifo #(firmware_results) gold_fifo, rtl_fifo; 
 firmware_results gold_firmware_results, rtl_firmware_results;
 firmware_results gold_queue[$], rtl_queue[$];
 function new(string name, uvm_component parent);
  super.new(name, parent); 
  gold_firmware_results = new();
  rtl_firmware_results = new();
 endfunction 
 function void build_phase(uvm_phase phase);
  gold_firmware_results_export = new( 

.name("gold_firmware_results_export"), .parent(this)); 
  rtl_firmware_results_export = new( .name("rtl_firmware_results_export"), 

.parent(this)); 
  gold_fifo = new("gold_fifo", this);
  rtl_fifo = new("rtl_fifo", this);
 endfunction: build_phase 
 function void connect_phase(uvm_phase phase);       
  gold_firmware_results_export.connect(gold_fifo.analysis_export); 
  rtl_firmware_results_export.connect(rtl_fifo.analysis_export); 
 endfunction: connect_phase 
 task run_phase (uvm_phase phase);
  forever begin 
   gold_fifo.get(gold_firmware_results);
   gold_queue.push_front(gold_firmware_results);
   rtl_fifo.get(rtl_firmware_results);
   rtl_queue.push_front(rtl_firmware_results);
  end 
 endtask  
endclass 

Code Snippet 8: class firmware_comparator 
 

4) scoreboard connections 

The Scoreboard also connects all the ports of type 
uvm_analysis_port to ports of type uvm_analysis_exports in 

the connect() phase. In the interest of space only those 
connections pertaining to the verification of the CPU are 
included. The connect() phase of the Scoreboard class is seen 
in Code Snippet 9. 

 
function void connect_phase(uvm_phase phase);
 super.connect_phase(phase); 
 gold_aexport.connect(gold_subscriber.analysis_export);
 rtl_aexport.connect(rtl_subscriber.analysis_export);
 gold_subscriber.gold_firmware_results_aport.connect(firmware_comparator.gold_firmwa

re_results_export); 
 rtl_subscriber.rtl_firmware_results_aport.connect(firmware_comparator.rtl_firmware_

results_export); 
endfunction: connect_phase 

Code Snippet 9: Scoreboard class connect() phase 
 

C. Environment 

The Environment class, which extends from uvm_env, 
creates all the blocks in Figure 2 in the build_phase and then 
connects them in the connect_phase. For the CPU portion of 

the verification environment the code in Code Snippet 10 
connects the instruction_aport of the Firmware Agent to the 
gold_aexport of the scoreboard and the 
firmware_results_aport of the Firmware Agent to the 
rtl_aexport of the scoreboard.



 
firmware_agent_h.instruction_aport.connect(scoreboard_h.gold_aexport); 
firmware_agent_h.firmware_results_aport.connect(scoreboard_h.rtl_aexport); 

Code Snippet 10: environment class connections 
 

IV. FUNCTIONAL COVERAGE 

The CPU’s instructions can be grouped according to their 
type and number of operands. For example, an ADD 
instruction has two 16-bit operands, Ra, and Rb. Other 
instructions such as NOT have 1 operand, Ra. Cross coverage 
was used extensively to fully verify that each opcode was 
executed with all possible operands.    As an example, consider 
the group of instructions having as operands, Ra, and an 8-bit 
immediate such as a load immediate (LDR) or store immediate 
(STR).  Coverpoints for the opcode, operand Ra, and operand 
immediate were created. These 3 coverpoints were then 
crossed. The weight on each individual coverpoint was set to 0 
to not include it in the coverage results, just the cross is 
included. To reduce the number of cross coverage bins on 
instructions using an immediate, 3 bin were created, 0, max, 
and 1 to max-1. See Code Snippet 11 for the relevant code. 

all_opcodes_Ra_Imm8: coverpoint 
instr.opcode { 
 bins opcodes[] = {…, LDR, STR, …}; 
 option.weight = 0; } 
all_Ra: coverpoint instr.Ra{ 
 option.weight = 0;} 
Imm8_range: coverpoint instr.Imm8 {
 bins maximum = {(2**8)-1}; 
 bins mid     = {[1:(2**8)-1]}; 
 bins minimum = {0}; 
 option.weight = 0; } 
all_opcodes_Ra_Imm8_x_Ra_x_Imm8_range: 
cross all_opcodes_Ra_Imm8, all_Ra, 
Imm8_range; 

Code Snippet 11: coverpoints for LDR instruction 
 

As one would expect, obtaining functional coverage on an 
instruction with only one operand is simpler than an 
instruction having more operands. As the simulation 
progressed, coverage was monitored and the weight reduced 
on an instruction if the coverage was 100%. In this way, if 
100% cross coverage was obtained on an instruction having 
only one operand, the likelihood of that instruction being 
randomly generated again was reduced. This will tend to steer 
the random generation of instructions into uncovered areas. 

V. RESULTS 

Total verification time for the image processing CPU and 
hardware accelerator was 12 weeks. The verification 
environment described herein was developed completely from 

scratch.  Mr. Becvar had created his own directed testbench so 
the bugs that were found with the UVM block level testbench 
tended to be corner case bugs. These finds delighted the 
customer. The UVM block level testbench typically required 
between 350,000 and 450,000 random instructions to achieve 
functional coverage.  Approximately 14,000 functional 
coverage bins were created.  Code coverage was 100% after 
100% functional coverage was obtained indicating that the 
functional coverage was sufficient to declare verification 
complete. No additional bugs in the CPU or hardware 
accelerator were found by the system level testbench. Silicon 
has been evaluated and is considered to be a first pass success. 

In addition to verifying the CPU and hardware accelerator, 
the UVM block level testbench was able to verify the 
assembler tool. This is because the testbench generates 
instructions, not machine code. It must “assemble” the 
instructions before the Firmware Agent’s Driver block passes 
the 16-bit code to the Firmware RAM I/F.  The testbench was 
instructed to write the approximately 350,000 instructions to a 
file as well as the machine code to other file.  The assembler 
was then executed on the file containing the 350,000 assembly 
level instructions. The result was then compared with the file 
containing the 350,000 machine code level instructions. This 
additional check revealed a number of bugs. 
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