
Design and Verification of an Image Processing CPU
using UVM

Milos Becvar
EM Microelectronic-US, Inc.

Colorado Springs, CO
milos.becvar@emmicro-us.com

Greg Tumbush
Tumbush Enterprises
Colorado Springs, CO
greg@tumbush.com

Abstract— This paper presents the design and verification of
a custom image processing CPU and associated hardware
accelerator using UVM. The CPU and accelerator are targeting
an ASIC. This work was performed at EM Microelectronics-US.

Keywords—SystemVerilog, UVM, CPU, Image Processing

I. INTRODUCTION

This paper presents the design and verification of a custom
image processing CPU and associated hardware accelerator
using UVM. The CPU and accelerator are targeting an ASIC.
This work was performed at EM Microelectronics-US.

The ASICs that EM Microelectronics-US develops are
typically very lower power with standby current in the uA
range and operating current in the 100’s of uA range. Low
power modes are used extensively. Their ASICs are optimized
for area, hence, memory is to be kept to a minimum. The
ASICs are typically dominated by analog, and the design teams
are small, 1 or 2 designers and a similar number of verification
engineers. Their design cycles are short, concept to tapeout in
less than 12 months. Their ASICs must sell in a market that is
typified by low cost and high volume.

For this project Mr. Becvar, a co-author, was the architect,
designer, and firmware engineer. Dr. Tumbush was brought in
as a consultant to verify the ASIC and to lead the small
verification team. This ASIC was a major enhancement from a
previous ASIC, the new blocks being the custom CPU and
hardware accelerator. It was decided that the new blocks
would be best verified in a block level verification
environment. An existing verification environment written in
VHDL would be leveraged to test the system.

The contributions this paper will make are:

1. Determining when a custom CPU design is
appropriate.

2. How to choose when block level or system level
verification is appropriate.

3. When using UVM at the block level is appropriate.
4. Special considerations when verifying a CPU.
5. A real world complete example of using UVM for

verification with results.
6. A UVM verification environment is not just for huge

ASICs. It can be appropriate for small ASICs and
even block level verification.

7. Selling UVM to hesitant clients. Bring them kicking
and screaming into the 21st century.

II. DESIGN OF A CUSTOM IMAGE PROCESSING CPU

A. CPU Requirements

The design and verification effort of a custom CPU core is
significant and its benefits over using an off-the-shelf CPU
core must be justified. A detailed analysis of the application
requirements and currently available CPU cores is a prudent
step before committing to the design of a custom CPU core.
Table 1 outlines the requirements driving the CPU core design
in the author’s application.

Table 1: CPU Requirements
Requirement CPU Feature

Legacy software and HLL
support not required

Minimal CPU core tailored to
application

Efficient execution of target
application

CPU word size and
operations designed to
minimize number of
execution cycles

Small silicon area footprint CPU complexity 8K gates,
1K of instructions required

Sufficient timing-closure
design margin in targeted
process

Pipelining of operations,
avoiding complex logic
before and after memories

Limited routing complexity
in target process

Avoiding barrel shifter and
bypassing networks

The requirement to support legacy software and/or a high-

level language is a driving factor when selecting a CPU core
for many applications. This requirement typically limits
designer flexibility to a set of binary compatible cores with
available software tools. In the author’s application this
requirement was not present, simplifying the task and
allowing development of a very efficient CPU specific to the
image processing algorithm but still allowing flexibility for
algorithm exploration.

Unlike a general purpose CPU which has to support many
different and sometimes unknown applications, the application
for the CPU was known at design time. Consequently, a
minimalist CPU which would efficiently support the
algorithm’s execution could be designed. Efficiency can be

measured as the number of execution cycles required to
calculate a given algorithm. Minimization of execution cycles
allows a reduction in clock frequency and operating voltage
and consequently, lower power consumption.

B. Algorithm Requirements

A CPU that meets the hardware requirements but cannot
execute the required algorithm is not useful. The CPU
designed must not only meet the hardware requirements,
speed, power consumption, etc. but also the following
algorithm requirements.

1. 12-bit data words for core calculation with some
limited use of 24-bit words

2. Limited code and data size – requiring only 10-bits
for memory addressing

3. Support of multiplication and division
4. At least 16 word-size registers for core calculation to

avoid frequent memory accesses (minimizing power
consumption)

5. Efficient support for a hardware accelerator for
pattern matching.

The required data word size and supported operations were
one of the factors leading to a custom CPU core design. The
algorithm requires data widths of greater than 8-bits and
multiplication and division operations. This eliminates the
possibility of using an off-the-shelf 8-bit CPU core. Porting
the image processing application to a standard 8-bit core is
possible, but very inefficient in terms of execution cycles and
instruction count.

A standard 32-bit CPU core would be sufficient to
efficiently support the algorithm. Unfortunately, it would have
a significant silicon area footprint (>10,000 gates) and would
require additional investment and payment of royalties over
the lifetime of the project.

For the above reasons, the decision was made to build a
custom 16-bit CPU core for an image processing application.
In order to extend the usability of the core and match available
memory modules, the CPU word was extended from a
minimally required 12-bit to a more practical 16-bit. The
implementation of a pipelined CPU with multi-word
arithmetic support was based on the Mr. Becvar’s previous
work in [4] and [5].

C. CPU Overview

After taking the hardware and algorithms requirements
into account it was determined that the CPU must have the
characteristics listed in Table 2.

Table 2: Custom CPU Core Overview
CPU Characteristic Implementation
Instruction Set Architecture

16-bit Load/Store Harvard
Architecture RISC

Data word supported by
ISA

16 bit, 32bit result of
multiplication in register pairs

Number of registers 16 x 16bit
Instruction encoding Fixed , 16bit instruction word

Clock frequency (0.18 um)

50 MHz implemented (scalable
up to 100 MHz)

Number of operands in
instruction

2 (1 destination/source, 1
source)

Addressable code space 1 K instructions used (up to 64
K possible)

Addressable data space 512 words used (up to 64 K
possible)

Peripherals connection Memory mapped
Memory addressing modes

Immediate, register-indirect,
direct addressing of peripherals.
R14 behaves as stack-pointer,
R15 supports post-increment
memory addressing

Special features in ISA Multi-word operation support
(flags), fused addition and shift
operation, fractional division,
support of saturation arithmetic,
synchronization with
accelerator by WAIT
instruction

Features not supported Interrupts, byte operations

D. CPU Architecture

The CPU architecture can be seen in Figure 1. A single
instruction is fetched every cycle and subsequently executed
in 3 to 4 pipeline stages. The number of stages was
conservatively selected to avoid timing closure problems
during implementation. Most operations are completed within
a single cycle with the exception of multiplication which is
calculated in two stages. The pipeline supports independent
execution of division instruction while contining to execute
other integer instructions.

Instruction pipelining introduces the well-known issues of
data, control and structural hazards [6]. These problems have
well-documented HW solutions but they generally increase
CPU complexity and some of them might introduce routability
and time closure issues (notably bypassing the network for
Read After Write (RAW hazards)). An alternative to HW
solutions to the hazard problem is to push the responsibility
for execution correctness to the programmer and/or compiler.
In this approach, the latencies of the pipeline are fully exposed
to the software. This approach dates back to early RISC
architectures [7] (branch and load delay slots) and it is
exploited by compiler scheduled VLIW processors [8] and [9].

As an example, consider the assembly code in Code
Snippet 1. General purpose register R1 is the destination for
the ADD instruction and a source for the SUB instruction. The
result of the ADD instruction is still in the execute pipeline
when the operands for the SUB instruction are fetched.
Therefore the SUB instruction will use the “old” value of R1,
not the value calculated by the ADD. A typical CPU
controller would stall the SUB instruction to eliminate this
RAW hazard. For the author’s custom CPU, the controller is
not checking for this type of hazard and allows the SUB
instruction to read the “old” value of register R1.

Figure 1: CPU Architecture

It is up to the programmer to ensure correctness and utilize
each execution slot.

ADD R1, R0 ;;; R1=R1+R0
SUB R2, R1 ;;; R2=R2-R1

Code Snippet 1: Data Hazard

Analysis of the algorithm indicates that there is enough
parallelism to assume that the programmer would be able to
efficiently utilize available instruction slots. Examples of
constraints when developing software for this CPU are
described in Table 3.

Table 3: Software hazards
Type of Hazard Programmer constraint
Data Hazard

Result of instruction is available with one
cycle latency (multiplication has two
cycles latency).
Flags are available with 0-cycle latency,
allowing chaining of multi-word
operations.
Division latency depends on result
precision.

Control Hazard

Instruction after branch is always
executed (1 cycle delay slot)

Structural Hazard Instruction after multiplication cannot

write into register

Most common instructions in the Instruction Set
Architecture (ISA) have a short latency (1-2 cycles) which
could be overlapped by independent instructions. However,
external pattern-matching acceleration and division take much
longer and requires special ISA support.

Pattern matching is a very data intensive calculation which
is supported by an independent HW accelerator which has
direct connection to memory. Execution is performed in
multiple sweeps which compares two spatially shifted
bitstreams (internal forms of images). The HW accelerator is
controlled through memory mapped control registers. Since
each sweep takes around 30 cycles, there is a special need to
inform the CPU when the sweep is completed. This
synchronization is performed by WAIT instruction which
selects one out of 16 possible synchronization signals.
Fetching of instructions is stalled until a given synchronization
signal is asserted by the accelerator. The CPU clock is gated to
save power during waiting on external synchronization. This
synchronization mechanism can be utilized to connect other
external accelerators with variable latency.

Similar to the accelerator interface, the division operation
is broken into two parts (see Code Snippet 2). The DIV
instruction reads source operands from a register file and starts
a multi-cycle division operation. Result of division is

transferred by separate MOVDRES instruction into register
file.

The author’s custom CPU implements a fractional division
(result a/b<1) as required by the application. In order to
produce an n-bit fractional result, n+1 cycles are required. 17
cycles is required to produce a full 16-bit fractional result.
Depending on the required precision of the result, the
programmer can insert independent instructions between DIV
and MOVDRES. These instructions are executed in parallel
with division. If no more independent instructions are
available, the WAIT instruction can be used to synchronize for
the end of division. A special control register defines the
required number of cycles for the divider synchronization
signal. This reduces need to include NOPs while waiting for
the division result.

DIV R1 R0 ;;; calculate R1 / R0
Independent instructions
…
WAIT divider
MOVDRES R2 ;;; store division result to R2

Code Snippet 2: Division

Statistics of the implementation indicate that only 6% of
executed instructions are NOPs demonstrating high efficiency
of the custom CPU when executing a given application. Not
implementing hazard resolution logic simplifies the CPU
controller design and moves the burden up to the programmer.
However, it also introduces unique challenges for creating a
transaction accurate reference CPU model for verification.

III. VERIFICATION OF A CUSTOM IMAGE PROCESSING CPU

A CPU presents a unique verification challenge,
particularly one with a pipeline, jumps, branches, multi-cycle
instructions, and hazards. The chosen verification methodology
needs to:

1. have a quick ramp up time
2. randomly generate instructions
3. steer the randomly generated instructions into

interesting corner cases
4. use functional coverage to stop the testbench once

functional coverage is obtained

UVM was chosen as the verification methodology because
it is a proven methodology, fully supports randomization, and
fully supports a coverage driven testbench. It has been Dr.
Tumbush’s experience that selling a UVM based testbench to
clients is difficult. They see UVM as only for huge ASICs and
have been burned by employees and consultants blowing the
schedule by creating a much more complex testbench than is
necessary. To allay these fears the client must be educated in
how a functional coverage driven testbench results in quicker
verification closure and less bugs which means an earlier
tapeout and less chance of a re-spin. The verification
environment used that meets the above requirements is
depicted in Figure 2 and will be explained in the following
subsections.

Firmware
Agent

Firmware
RAM I/F

Instructions

Image Agent

Image I/F

Image

slave

Scoreboard

Golden CPU Flags

Golden CPU Regs

Hardware Accelerator
Transaction Level Model,

and checkers

CPU Transaction Level
Model and checkers

Data RAM RAM I/F DUV (CPU+Hardware Accelerator)

RAM Agent

Golden RAM

ram_trans firmware_results

Image File

image_transinstruction

Figure 2: Verification Environment

A. Agents

The verification environment created uses 3 agents to
observe and possibly drive the 3 main interfaces, the Data
RAM, Firmware, and Image. A generic UVM agent is
depicted in Figure 3. A decision that a verification engineer
needs to make is whether to create separate transaction and
results classes for each agent or create a single class for each
agent that encompasses both the transaction and results. For
this verification environment it was decided to create separate
classes for the transaction and the results. The authors felt that
this makes the Sequencer, Driver, and Monitor simpler because
they have less functionality and operate more autonomously.

Agent

Driver

Sequencer

transactions

pin level

Monitor

pin level

*_trans

to subscriber

uvm_analysis_port (1 or more)

Figure 3: UVM Agent

The Sequencer simply creates transaction objects. The

Driver is responsible for deconstructing the transaction objects
into the necessary pin level interface to drive the DUV. The
Monitor observes the pin level interface to 1) collect the result
of a transaction and 2) collect any necessary information about
the transaction to predict the result. The collected information
is packaged into an object and passed to 1 or more
uvm_analysis_ports that the Scoreboard can subscribe to.

When researching UVM Dr. Tumbush was perplexed by
the recommendation to not pass transaction objects from the
sequencer directly up to the scoreboard. Why reconstruct
portions, or all, of a transaction at the monitor interface? It is
known what the transaction is why not just pass it directly to
the subscriber? By collecting coverage at the interface of the
DUV, coverage is truly being collected on what the DUV sees,
not what one thinks the DUV sees. In one situation Dr.
Tumbush thought that the sequencer/driver was correct but it
turned out that it was not driving the DUV with the
transactions intended. It is very easy to think the test is driving
the DUV as expected since a non-intended transaction will be
collected and the golden and RTL will match even though the
transaction was not as expected. An object oriented
verification environment does not obviate the need to continue
to look at simulation waveforms.

1) RAM Agent

The RAM Agent monitors the RAM I/F bus for memory
transactions and creates ram_trans objects from the bus traffic
as seen in Code Snippet 3. Since any errant read transactions
will be caught when the destination register (PC, General
Purpose registers, etc) is compared, the RAM I/F is only
watching for write transactions. The RAM Agent is a passive

agent meaning it only collects data, never driving the Device
Under Verification (DUV) as an active agent would do so it
does not have a Sequencer or Driver.

class ram_trans extends uvm_sequence_item;
 `uvm_object_utils(ram_trans)
 function new(string name="");
 super.new(name);
 endfunction
 logic [RAM_ADDR_WIDTH-1:0] write_addr;
 logic [RAM_DATA_SIZE-1:0] data_write;
endclass

Code Snippet 3: class ram_trans

2) Firmware Agent

The Firmware Agent is an active agent because it supplies
randomized instructions to the DUV. The Sequencer in the
Firmware Agent creates instruction objects as seen in Code
Snippet 4. An object of class instruction is randomized so any
variable denoted as rand such as the opcode, source operand,
destination operand, etc, is randomized. The instruction class
has a static variable of type string called instruction_str which
holds the current instruction. Since instruction_str is static it
can be viewed in a simulation waveform which is
indispensible for debug. Function get_instruction() acts as a
disassembler, converting machine code into an instruction
string.

The Driver in the Firmware Agent then decomposes
instruction objects into a firmware RAM interface, acting as
an assembler. The Monitor in the Firmware Agent collects the
state of the CPU, stores this information in a firmware_results
object (see Code Snippet 5) and passes the object to a
subscriber. The Monitor also collects the machine code
actually fetched by the DUV, stores this information in an
instruction object, and passes the object to a subscriber.

Note that class firmware_results also has fields for any
predicted ram write transactions. These fields will be filled out
in the scoreboard and compared to ram_trans objects from the
RAM Agent.

class instruction extends uvm_sequence_item;
 `uvm_object_utils(instruction)
 function new(string name="");
 super.new(name);
 endfunction
 rand opcode_e opcode;
 rand src_dest_e Rb, Ra;
 rand bit [15:0] read_data;
 static string instruction_str;
 rand bit [7:0] Imm8;
 rand bit [9:0] Addr;
 bit [3:0] sig;
 function string get_instruction();
 …
 endfunction
endclass

Code Snippet 4: class instruction

class firmware_results extends
uvm_sequence_item;
 `uvm_object_utils(firmware_results)
 logic signed [15:0] gp_reg[16];
 logic SF, OF, ZF, CF;
 logic [FIRMWARE_RAM_ADDR_WIDTH-1:0] PC,

RAR;
 logic [15:0] instr_code;
 bit ram_write;
 bit [RAM_ADDR_WIDTH-1:0] write_addr;
 bit [RAM_DATA_SIZE-1:0] data_write;
 …
endclass

Code Snippet 5: class firmware_results

3) Image Agent

The Image Agent collects results from the hardware
accelerator that processes the image, records the image, and
packages this data into an image_trans object. The image is
supplied to the DUV via the Image interface from an image
file. The Image Agent is a passive agent because its only
function is to create image_trans objects and pass them to the
Scoreboard.

B. Scoreboard

The Scoreboard in Figure 2 calculates golden results from
firmware_results or image_trans objects. The calculated

golden results are compared to the actual results from the
ram_trans, firmware_results, or image_trans objects. The
Hardware Accelerator transaction level model accepts
image_trans objects and processes the image to create golden
results. The CPU transaction level model accepts
firmware_results objects, and from that, calculates the golden
“State of the CPU”.

Due to the proprietary nature of the hardware accelerator
this paper will not go into detail on this portion of the
scoreboard. In the next sections the paper will go over a
detailed explanation of the CPU transaction level model and
checkers. This should have wider interest.

The CPU transaction level model and checker blocks of
the Scoreboard will perform the following functions:

1. Collect instruction objects from the Firmware
Agent’s Monitor block

2. From the instruction objects predict the expected
results

3. Collect firmware_results objects from the Firmware
Agent’s Monitor block

4. Compare expected results to actual results

A block diagram of this portion of the verification
environment is in Figure 4.

CPU portion of Scoreboard

Firmware Agent

uvm_analysis_port #(instruction) instruction_aport uvm_analysis_port #(firmware_results) firmware_results_aport

gold_subscriber

implicit analysis_export

rtl_subscriber

implicit analysis_export

uvm_analysis_export #(instruction) gold_aexport uvm_analysis_export #(firmware_results) rtl_aexport

instruction objects

firmware_results objects

uvm_analysis_port #(firmware_results)
rtl_firmware_results_aport;

uvm_analysis_port #(firmware_results)
gold_firmware_results_aport;

firmware_results objects

firmware_comparator

uvm_analysis_export #(firmware_results)
gold_firmware_results_export;

uvm_analysis_export #(firmware_results)
rtl_firmware_results_export;

firmware_results objects

instruction objects firmware_results objects

Figure 4: CPU Portion of Scoreboard

1) gold_subscriber

The gold_subscriber accepts instruction objects through its
implicit analysis export. From the instruction objects the
expected state of the CPU is calculated, packaged into a
firmware_results object, and sent to the
gold_firmware_results_aport with a write() function. A subset
of the gold_subscriber class is in Code Snippet 6. This code
shows an ADD instruction being calculated at the transaction
level. The un-shown val() function determines the current 16-
bit value of a general purpose register from its enumerated
name. The golden model or predictor is the white elephant in

the room very few people talk about. To create a golden model
or predictor requires a designer’s level of knowledge about the
DUV and can take a very long time to create. It is critical to
think in terms of transactions. In this case, it was important to
match the state of the CPU at every clock cycle due to the
pipeline and jumps. Since the firmware engineer is using the
structural and control hazards to his advantage these must be
modeled in the golden model as well. This is not always the
case. Only model as low a level as absolutely necessary.

class gold_subscriber extends uvm_subscriber #(instruction);
 `uvm_component_utils(gold_subscriber)
 firmware_results firmware_results_h;
 uvm_analysis_port #(firmware_results) gold_firmware_results_aport;
 function void build_phase (uvm_phase phase);
 gold_firmware_results_aport = new("gold_firmware_results_aport", this);
 endfunction
 function void write(instruction t);

 case (t.opcode)
 ADD: firmware_results_h.gp_reg[t.Rb] = val(t.Ra) + (t.Rb);

 endcase

 gold_firmware_results_aport.write(firmware_results_h);
 endfunction
endclass

Code Snippet 6: class gold_subscriber

2) rtl_subscriber

The rtl_subscriber accepts firmware_results objects
through its implicit analysis export. It then sends the objects

to the rtl_firmware_results_aport with a write() function. At
this point the rtl_subscriber performs no functionality, it is
included for symmetry with the gold_subscriber and for future
expansion. The rtl_subscriber class is in Code Snippet 7.

class rtl_subscriber extends uvm_subscriber #(firmware_results);
 `uvm_component_utils(rtl_subscriber) // Register class subscriber
 uvm_analysis_port #(firmware_results) rtl_firmware_results_aport;
 firmware_results firmware_results_h;
 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction
 function void build_phase (uvm_phase phase);
 rtl_firmware_results_aport = new("rtl_firmware_results_aport", this);
 endfunction
 function void write(firmware_results t);
 firmware_results_h = t;
 rtl_firmware_results_aport.write(firmware_results_h);
 endfunction
endclass

Code Snippet 7: class rtl_subscriber

3) firmware_comparator
The firmware_comparator class has two

uvm_analysis_export ports, both accepting firmware_results
objects. One port is the golden firmware results and the other
is the rtl firmware results. A uvm_tlm_analysis_fifo is used to
hold the golden and rtl results for comparison. Each
uvm_tlm_analysis_fifo is connected to the

uvm_analysis_export port through the connect() function.
Using the get() function, firmware_results objects are
removed from the fifos and pushed onto the appropriate
queue. Due to the pipelined nature of the CPU a gold and rtl
queue of depth 3 were maintained. This queue was examined
for pipeline dependencies and the gold results possibly

modified. A subset of the firmware_comparator class is in Code Snippet 8.

class firmware_comparator extends uvm_component;
 `uvm_component_utils(firmware_comparator)
 uvm_analysis_export #(firmware_results) gold_firmware_results_export;
 uvm_analysis_export #(firmware_results) rtl_firmware_results_export;
 uvm_tlm_analysis_fifo #(firmware_results) gold_fifo, rtl_fifo;
 firmware_results gold_firmware_results, rtl_firmware_results;
 firmware_results gold_queue[$], rtl_queue[$];
 function new(string name, uvm_component parent);
 super.new(name, parent);
 gold_firmware_results = new();
 rtl_firmware_results = new();
 endfunction
 function void build_phase(uvm_phase phase);
 gold_firmware_results_export = new(

.name("gold_firmware_results_export"), .parent(this));
 rtl_firmware_results_export = new(.name("rtl_firmware_results_export"),

.parent(this));
 gold_fifo = new("gold_fifo", this);
 rtl_fifo = new("rtl_fifo", this);
 endfunction: build_phase
 function void connect_phase(uvm_phase phase);
 gold_firmware_results_export.connect(gold_fifo.analysis_export);
 rtl_firmware_results_export.connect(rtl_fifo.analysis_export);
 endfunction: connect_phase
 task run_phase (uvm_phase phase);
 forever begin
 gold_fifo.get(gold_firmware_results);
 gold_queue.push_front(gold_firmware_results);
 rtl_fifo.get(rtl_firmware_results);
 rtl_queue.push_front(rtl_firmware_results);
 end
 endtask
endclass

Code Snippet 8: class firmware_comparator

4) scoreboard connections

The Scoreboard also connects all the ports of type
uvm_analysis_port to ports of type uvm_analysis_exports in

the connect() phase. In the interest of space only those
connections pertaining to the verification of the CPU are
included. The connect() phase of the Scoreboard class is seen
in Code Snippet 9.

function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 gold_aexport.connect(gold_subscriber.analysis_export);
 rtl_aexport.connect(rtl_subscriber.analysis_export);
 gold_subscriber.gold_firmware_results_aport.connect(firmware_comparator.gold_firmwa

re_results_export);
 rtl_subscriber.rtl_firmware_results_aport.connect(firmware_comparator.rtl_firmware_

results_export);
endfunction: connect_phase

Code Snippet 9: Scoreboard class connect() phase

C. Environment

The Environment class, which extends from uvm_env,
creates all the blocks in Figure 2 in the build_phase and then
connects them in the connect_phase. For the CPU portion of

the verification environment the code in Code Snippet 10
connects the instruction_aport of the Firmware Agent to the
gold_aexport of the scoreboard and the
firmware_results_aport of the Firmware Agent to the
rtl_aexport of the scoreboard.

firmware_agent_h.instruction_aport.connect(scoreboard_h.gold_aexport);
firmware_agent_h.firmware_results_aport.connect(scoreboard_h.rtl_aexport);

Code Snippet 10: environment class connections

IV. FUNCTIONAL COVERAGE

The CPU’s instructions can be grouped according to their
type and number of operands. For example, an ADD
instruction has two 16-bit operands, Ra, and Rb. Other
instructions such as NOT have 1 operand, Ra. Cross coverage
was used extensively to fully verify that each opcode was
executed with all possible operands. As an example, consider
the group of instructions having as operands, Ra, and an 8-bit
immediate such as a load immediate (LDR) or store immediate
(STR). Coverpoints for the opcode, operand Ra, and operand
immediate were created. These 3 coverpoints were then
crossed. The weight on each individual coverpoint was set to 0
to not include it in the coverage results, just the cross is
included. To reduce the number of cross coverage bins on
instructions using an immediate, 3 bin were created, 0, max,
and 1 to max-1. See Code Snippet 11 for the relevant code.

all_opcodes_Ra_Imm8: coverpoint
instr.opcode {
 bins opcodes[] = {…, LDR, STR, …};
 option.weight = 0; }
all_Ra: coverpoint instr.Ra{
 option.weight = 0;}
Imm8_range: coverpoint instr.Imm8 {
 bins maximum = {(2**8)-1};
 bins mid = {[1:(2**8)-1]};
 bins minimum = {0};
 option.weight = 0; }
all_opcodes_Ra_Imm8_x_Ra_x_Imm8_range:
cross all_opcodes_Ra_Imm8, all_Ra,
Imm8_range;

Code Snippet 11: coverpoints for LDR instruction

As one would expect, obtaining functional coverage on an
instruction with only one operand is simpler than an
instruction having more operands. As the simulation
progressed, coverage was monitored and the weight reduced
on an instruction if the coverage was 100%. In this way, if
100% cross coverage was obtained on an instruction having
only one operand, the likelihood of that instruction being
randomly generated again was reduced. This will tend to steer
the random generation of instructions into uncovered areas.

V. RESULTS

Total verification time for the image processing CPU and
hardware accelerator was 12 weeks. The verification
environment described herein was developed completely from

scratch. Mr. Becvar had created his own directed testbench so
the bugs that were found with the UVM block level testbench
tended to be corner case bugs. These finds delighted the
customer. The UVM block level testbench typically required
between 350,000 and 450,000 random instructions to achieve
functional coverage. Approximately 14,000 functional
coverage bins were created. Code coverage was 100% after
100% functional coverage was obtained indicating that the
functional coverage was sufficient to declare verification
complete. No additional bugs in the CPU or hardware
accelerator were found by the system level testbench. Silicon
has been evaluated and is considered to be a first pass success.

In addition to verifying the CPU and hardware accelerator,
the UVM block level testbench was able to verify the
assembler tool. This is because the testbench generates
instructions, not machine code. It must “assemble” the
instructions before the Firmware Agent’s Driver block passes
the 16-bit code to the Firmware RAM I/F. The testbench was
instructed to write the approximately 350,000 instructions to a
file as well as the machine code to other file. The assembler
was then executed on the file containing the 350,000 assembly
level instructions. The result was then compared with the file
containing the 350,000 machine code level instructions. This
additional check revealed a number of bugs.

[1] Mentor Graphics Inc., “UVM Cookbook”,
http://verificationacademy.com/uvm-ovm"

[2] G. Tumbush, Class slides for Advanced Verification Methodology,
http://www.uccs.edu/~gtumbush/4280/4280.html

[3] G. Tumbush, C. Spear, “SystemVerilog for Verification: A Guide to
Learning the Testbench Language Features”, 3rd Edition, 2012

[4] M. Becvar, A. Pluhacek, and J. Danecek, “DOP- A CPU Core for
Teaching Basics of Computer Architecture”, Proceedings of the 2003
Workshop on Computer Architecture Education.

[5] M. Becvar, “Teaching Basics of Instruction Pipelining with HDLDLX”,
Proceedings of the 2004 Workshop on Computer Architecture
Education.

[6] J.Hennessy, D.A. Patterson, Computer Architecture: A Quantitative
Approach, 5th edition, September 30, 2011, Morgan Kaufman
Publishers.

[7] J.Hennessy, J.L., Jouppi, N., Baskett, F., Gill, J, “MIPS: A VLSI
Processor Architecture”, Proceedings CMU Conference on VLSI
Systems and Computations, Computer Science Press, October 1981.

[8] J. A. Fisher, “Very Long Instruction Word architectures and the ELI-
512”, Proceedings of the 10th annual international symposium on
Computer architecture, June 13-17, 1983, Stockholm, Sweden, pp.140-
150

[9] M. Becvar, S. Kahanek, “VLIW-DLX Simulator for Educational
Purposes”, Proceedings of the 2007Workshop on Computer Architecture
Education.

