—_— d

w 073 | February 25-28, 2013 (accellera r

Daublelree, San Jose semummman

Design and Verification of an Image
Processing CPU Using UVM

by Co-author
Greg Tumbush Milos Becvar
Tumbush Enterprises EM Microelectronic-US

A s

Agenda:

Introduction

*Design of CPU
*Verification of CPU
*Functional Coverage
*Results

eSummary

2 of 24

Sponsored By :

accellera

w99

Agenda:

eIntroduction
*Design of CPU
*Verification of CPU
Functional Coverage
eResults

eSummary

3of 24

— R
2073 %
|

e ——

Sponsored By:

accellera

~a¥l

oY
Introduction: accellrd)
*\Work performed at EM Microelectronic-US

«Co-author, Milos Becvar, did design and software

EM’s ASICs
*Mixed signal
*Very low power
*Optimized for area
Small design teams
*Short development times
Low cost, high volume

*Not satisfied with previous verification results

4 of 24 y
= o

Agenda:

e|ntroduction

*Design of CPU
Verification of CPU
Functional Coverage
eResults

eSummary

50f 24

— R
2073 %
|

e ——

Sponsored By:

accellera

~a¥l

2005

Sponsore d By:

Design of CPU: overview atcellerd)
Why a CPU?

*Not a trivial effort, need to justify

*CPU requirements for our application
*No support for C/C++ or legacy SW
«Efficient execution of application
eSmall silicon area

*Algorithm requirements
 12-bit data words
Multiplication and division
eSupport of hardware accelerator

6 of 24 y
= o

Sponsored By:

Design of CPU: architecture (ile)

Fetch

Register Read

Instruction Instruction Decode &

Imm8

Rb ,

Ve g -
Ra

l Branch
Addr.

PC(9:0) QH

7 of 24

Execute / Multl

Control Signals

SYSTEMS INITIATIVE

MultWB

l WB/Mult2
Control Signals

Control Signals——» T4 >
> Data
Data_Read
Memory
RegB = » " (512x16b)
Registers
16 x16b | RegA >
) Multiplier Multiplier
A \ Stagel Stage2
> DS
—
Result
ALU
» | Flags
i Result
e
DIVIDE l
YYVY VVY
OperandA
—
Reg WB_lo
Reg WB_Hi

w99

v oit®

Sponsore d By:

Design of CPU: hazards accellrd)

SYSTEMS INITIATIVE

eData hazards

ADD R1, RO ;; R1=R1+RO L
' r 7 Old value of R1 used
SUB R2, R1l ;; R2=R2-RI(///-

*Control hazards Always taken

<branch instruction> ,//'
<instruction after branch>

eStructural hazards

<multiply instruction>
<cannot write into register>

8 of 24 “
- o

Agenda:

eIntroduction

*Design of CPU
*Verification of CPU
Functional Coverage
*Results

eSummary

9 of 24

——

I ol
t t.

-
L —

Sponsored By:

accellera

v oit®

Verification of CPU: overviewl)

*Unique verification challenges

*Chosen methodology must:
*have a quick development time UVM
srandomly generate instructions

steer the randomly generated instructions into
Interesting corner cases

suse functional coverage to stop the testbench
once functional coverage is obtained

*UVM is a tough sell to the uninitiated

10 of 24 “
= o

Verif. of CPU: architecture

v o

Sponsored By:

Golden CPU Regs

Scoreboard

AS INITIATIVE

Golden CPU Flags CPU Transaction Level

Model and checkers

Hardware Accelerator
Transaction Level Model,
and checkers

11 of 24

Golden RAM
Tram_tra-"-s ?nstruction Tfirmware_resuits Timage trans
Firmware Image Agent
RAM Agent A
Agent
slave .
i _ Image File
Firmware
RAM I/F Image I/F
Instructions Image
Data RAM [«-RAMIF DUV (CPU+Hardware Accelerator)

i B4

20ny

Sponsore d By:

Verif. of CPU: UVM Agent accellerd)

uvm_analysis_port (1 or more)

A

to subscriber

Agent

* ftrans

Monitor

pin IeveIT

Seqguencer

itransactions

Driver

pin level ¢

12 of 24

i B4

v oit®

Verif. of CPU: Firmware Agentics)

*An active agent
eSequencer creates instruction objects
Driver “assembles” instruction objects

*Monitor:
*Collects state of CPU
«Stores information in a firmware_results object
*Passes firmware_results object to subscriber
*Collects machine code fetched by DUV
«Stores machine code In instruction object
*Passes instruction object to subscriber

13 of 24 “
= o

v o

Sponsore d By:

Verif. of CPU: Instruction atcelerd)

SYSTEMS INITIATIVE

class instruction extends uvm_sequence_item;
‘uvm_object_utils(instruction)
function new(string name=""),
super.new(name);
endfunction
rand opcode e opcode;
rand src_dest_e RDb, Ra;
rand bit [9:0] Addr;
""" — See in waveform!

static string instruction_str;

Disassembler

function string get_instruction();
endfunction

14 endclass

v oit®

Verif. of CPU: firmware_resulisis)

SSSSS MS INITIATIVE

class firmware_results extends uvm_sequence_item;
‘uvm object utils(firmware results)
logic signed [15:0] gp_reg[16]; State of CPU
fagle 5 OF 2F R
logic [FIRMWARE_RAM_ADDR_WIDTH-1:0] PC, RAR;
logic [15:0] instr_code;

bit ram_write; Write transaction

bit [RAM_ADDR_WIDTH-1:0] write_addr;
bit [RAM_DATA_ SIZE-1:0] data write;

endclass

15 of 24 ”
= o

v o

Sponsored By:

Verif. of CPU: scoreboard

, ““”era
Scoreboard (CPU portion only)
TIATIVE
firmware comparator
uvm_analysis_export #(firmware_results) uvm_analysis_export #(firmware_results)
gold_firmware_results_export; rtl_firmware_results_export;
A
firmware_results objects Tfirmware_results objects
ym_/analysis_port #(fi rmware_resﬁl’t&)\ uvm_analysis_port #(firmware_results)
/ gold_firmware_results_aport; N rtl_firmware_results_aport;
(gold subscriber rtl_subscriber
\\ implicit analysis_export P implicit analysis_export
A . T
\ objects firmware_results objects
uvm_analysis_export #(instruction) uvm_analysis_export #(firmware_results)
gold_aexport rtl_aexport
A A
instruction objects firmware_results objects
uvm_analysis_port #(instruction) uvm_analysis_port #(firmware_results)
instruction_aport firmware_results_aport
Firmware Agent

16 of 24 ’1
adh I

Verif. of CPU: gold_subscriber, @

class gold_subscriber extends uvm_subscriber #(instruction);
‘uvm_component_utils(gold_subscriber)
firmware_results firmware_results h;
uvm_analysis_port #(firmware_results) gold firmware_results_aport;
function void build_phase (uvm_phase phase);
/l create gold_firmware results_aport object
endfunction
function void write(instruction t);

case (t.opcode) — Golden model
ADD: firmware_results_h.gp_reg[t.Rb] = val(t.Ra) + (t.Rb);

endcase / Send to gold_firmware_results_aport

gold_firmware results _aport.write(firmware_results_h);
endfunction
endclass

17 of 24 ’1
ndh P

Agenda:

e|ntroduction

*Design of CPU
Verification of CPU
Functional Coverage
*Results

eSummary

18 of 24

Do

Sponsored By:

accellera

w94

Functional Coverage seceler)
Instructions can be grouped
*Two 16-bit operands
*One 16-bit operand
*One 16-bit operand and 8-bit immediate
eetc.
«Create coverpoints for each operand, immediate,etc
*Cross coverpoints for each instruction group

Monitor cross coverage, reduce probability if
coverage=100%

19 of 24 y
= o

v o

Sponsore d By:

Functional Coverage: LDR sccellrs)

all_opcodes Ra Imm8: coverpoint instr.opcode {

bins opcodes[] ={..., LDR, STR, ...}; option.weight = 0; }
all_Ra: coverpoint instr.Ra{ option.weight = 0;}
Imm8_range: coverpoint instr.Imms§ {

bins maximum = {(2**8)-1};

bins mid = {[1:(2**8)-1]};

bins minimum = {0},

option.weight = 0; }
all_ opcodes Ra Imm8 x Ra x Imm8 range: cross

/_ all_ opcodes Ra Imm8, all Ra, Imm8_range;

/

Monitored during simulation

20 of 24 ’q
ndh B

Agenda:

e|ntroduction

*Design of CPU
Verification of CPU
Functional Coverage
*Results

eSummary

21 of 24

Sponsored By:

accellera

~a¥l

v oit®

Sponsore d By:

Results a@

*Design spec to verification closure: 12 weeks “™"™™
*~14,000 coverage bins

«350,000-450,000 random instructions required
*100% statement coverage with no extra tests.

*No additional bugs found during system level
verification

*Verifled assembler as well
Silicon evaluation revealed no new bugs

First Pass
Success!

22 of 24 “
= o

Agenda:

e|ntroduction

*Design of CPU
Verification of CPU
Functional Coverage
eResults

eSummary

23 of 24

— R
2073 %
|

e ——

Sponsored By:

accellera

~a¥l

Do
" Sponsore d By:

Summary accellers)

*A custom cpu Is warranted in some situations """
Don’t forget the software task

*Verifying a CPU is hard!

Don’t try to test everything at the block level

*UVM appropriate for small ASICs/FPGAs

*UVM appropriate for block level verification

*Thanks to EM Microelectronic-US

24 of 24 y
= o

