
TUMBUSH
ENTERPRISES

Design and Verification of an Image
Processing CPU Using UVM

by Co authorby
Greg Tumbush

Tumbush Enterprises

Co-author
Milos Becvar

EM Microelectronic-US

Sponsored By:

Agenda:Agenda:

Introd ction•Introduction
•Design of CPU
V ifi ti f CPU•Verification of CPU

•Functional Coverage
•Results
•Summary

2 of 24

Sponsored By:

Agenda:Agenda:

Introd ction•Introduction
•Design of CPU
V ifi ti f CPU•Verification of CPU

•Functional Coverage
•Results
•Summary

3 of 24

Sponsored By:

Introduction:Introduction:
•Work performed at EM Microelectronic-US
•Co-author, Milos Becvar, did design and software
•EM’s ASICs

•Mixed signal
•Very low power
•Optimized for area
•Small design teams
•Short development times
•Low cost, high volume

4 of 24

•Not satisfied with previous verification results

Sponsored By:

Agenda:Agenda:

Introd ction•Introduction
•Design of CPU
V ifi ti f CPU•Verification of CPU

•Functional Coverage
•Results
•Summary

5 of 24

Sponsored By:

Design of CPU: overviewDesign of CPU: overview
•Why a CPU?
•Not a trivial effort, need to justify
•CPU requirements for our application

•No support for C/C++ or legacy SW
•Efficient execution of application
•Small silicon area

•Algorithm requirements
• 12-bit data words
•Multiplication and division

6 of 24

•Support of hardware accelerator

Sponsored By:

Design of CPU: architectureDesign of CPU: architecture

7 of 24

Sponsored By:

Design of CPU: hazardsDesign of CPU: hazards
•Data hazards

ADD R1, R0 ;; R1=R1+R0
SUB R2, R1 ;; R2=R2-R1

Old value of R1 used

•Control hazards
<branch instruction>

Always taken

•Structural hazards

<instruction after branch>

Structural hazards
<multiply instruction>
<cannot write into register>

8 of 24

Sponsored By:

Agenda:Agenda:

Introd ction•Introduction
•Design of CPU
V ifi ti f CPU•Verification of CPU

•Functional Coverage
•Results
•Summary

9 of 24

Sponsored By:

Verification of CPU: overviewVerification of CPU: overview
•Unique verification challenges
•Chosen methodology must:

•have a quick development time UVM

•randomly generate instructions
•steer the randomly generated instructions into y g
interesting corner cases
•use functional coverage to stop the testbench
once functional coverage is obtained

•UVM is a tough sell to the uninitiated

10 of 24

Sponsored By:Verif. of CPU: architecture

11 of 24

Sponsored By:

Verif of CPU: UVM AgentVerif. of CPU: UVM Agent

Sequencerto subscriber

uvm_analysis_port (1 or more)

Agent
Sequencer

transactions
* trans

DriverMonitor
*_trans

pin levelpin level

12 of 24

Sponsored By:

Verif of CPU: Firmware AgentVerif. of CPU: Firmware Agent
•An active agent
•Sequencer creates instruction objects
•Driver “assembles” instruction objectsj
•Monitor:

•Collects state of CPU
•Stores information in a firmware_results object
•Passes firmware_results object to subscriber
•Collects machine code fetched by DUV
•Stores machine code in instruction object

13 of 24

•Passes instruction object to subscriber

Sponsored By:

Verif of CPU: instructionVerif. of CPU: instruction
class instruction extends uvm_sequence_item;

` bj t til (i t ti)`uvm_object_utils(instruction)
function new(string name="");

super.new(name);p ()
endfunction
rand opcode_e opcode;
rand src dest e Rb Ra;rand src_dest_e Rb, Ra;
rand bit [9:0] Addr;
……
t ti t i i t ti t

See in waveform!
static string instruction_str;

function string get_instruction();
Disassembler

14 of 24

g g ()
endfunction

endclass

Sponsored By:

Verif of CPU: firmware resultsVerif. of CPU: firmware_results
class firmware_results extends uvm_sequence_item;

` bj t til (fi lt)`uvm_object_utils(firmware_results)
logic signed [15:0] gp_reg[16];
logic SF, OF, ZF, CF;

State of CPU
g

logic [FIRMWARE_RAM_ADDR_WIDTH-1:0] PC, RAR;
logic [15:0] instr_code;

bit ram_write;
bit [RAM_ADDR_WIDTH-1:0] write_addr;
bit [RAM DATA SIZE 1 0] d t it

Write transaction

bit [RAM_DATA_SIZE-1:0] data_write;
…

endclass

15 of 24

Sponsored By:Verif. of CPU: scoreboard

16 of 24

Sponsored By:Verif. of CPU: gold subscriberVerif. of CPU: gold_subscriber
class gold_subscriber extends uvm_subscriber #(instruction);

`uvm component utils(gold subscriber)_ p _ (g _)
firmware_results firmware_results_h;
uvm_analysis_port #(firmware_results) gold_firmware_results_aport;
function void build phase (uvm phase phase); _p (_p p);

// create gold_firmware_results_aport object
endfunction
function void write(instruction t);

G ld d l
();

case (t.opcode)
ADD: firmware_results_h.gp_reg[t.Rb] = val(t.Ra) + (t.Rb);
....

Golden model

endcase
gold_firmware_results_aport.write(firmware_results_h);

endfunction

Send to gold_firmware_results_aport

17 of 24

endclass

Sponsored By:

Agenda:Agenda:

Introd ction•Introduction
•Design of CPU
V ifi ti f CPU•Verification of CPU

•Functional Coverage
•Results
•Summary

18 of 24

Sponsored By:

Functional CoverageFunctional Coverage
•Instructions can be grouped

•Two 16 bit operands•Two 16-bit operands
•One 16-bit operand
•One 16-bit operand and 8-bit immediateOne 16 bit operand and 8 bit immediate
•etc.

•Create coverpoints for each operand, immediate,etc
•Cross coverpoints for each instruction group
•Monitor cross coverage, reduce probability if
coverage=100%

19 of 24

Sponsored By:

Functional Coverage: LDRFunctional Coverage: LDR
all_opcodes_Ra_Imm8: coverpoint instr.opcode {

bins opcodes[] = { LDR STR }; option weight = 0; }bins opcodes[] {…, LDR, STR, …}; option.weight 0; }
all_Ra: coverpoint instr.Ra{ option.weight = 0;}
Imm8_range: coverpoint instr.Imm8 {

bi i {(2**8) 1}bins maximum = {(2**8)-1};
bins mid = {[1:(2**8)-1]};
bins minimum = {0};
option.weight = 0; }

all_opcodes_Ra_Imm8_x_Ra_x_Imm8_range: cross
all opcodes Ra Imm8 all Ra Imm8 range;all_opcodes_Ra_Imm8, all_Ra, Imm8_range;

Monitored during simulation

20 of 24

Sponsored By:

Agenda:Agenda:

Introd ction•Introduction
•Design of CPU
V ifi ti f CPU•Verification of CPU

•Functional Coverage
•Results
•Summary

21 of 24

Sponsored By:

ResultsResults
•Design spec to verification closure: 12 weeks
• 14 000 coverage bins•~14,000 coverage bins
•350,000-450,000 random instructions required
100% t t t ith t t t•100% statement coverage with no extra tests.

•No additional bugs found during system level
verificationverification
•Verified assembler as well
Sili l ti l d b•Silicon evaluation revealed no new bugs

First Pass

22 of 24

Success!

Sponsored By:

Agenda:Agenda:

Introd ction•Introduction
•Design of CPU
V ifi ti f CPU•Verification of CPU

•Functional Coverage
•Results
•Summary

23 of 24

Sponsored By:

SummarySummary
•A custom cpu is warranted in some situations
•Don’t forget the software task•Don t forget the software task
•Verifying a CPU is hard!
D ’t t t t t thi t th bl k l l•Don’t try to test everything at the block level

•UVM appropriate for small ASICs/FPGAs
UVM i f bl k l l ifi i•UVM appropriate for block level verification

•Thanks to EM Microelectronic-US

24 of 24

