
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Demystifying the UVM Configuration Database
Vanessa R. Cooper Paul Marriott
Verilab, Inc.                 Verilab Canada

vanessa.cooper@verilab.com       paul.marriott@verilab.com

Abstract

The configuration database in the UVM is a highly versatile 
feature that allows the passing of objects and data to various 
components in the testbench. However, despite its versatility, the 
configuration database (uvm_config_db) can be a source of great 
confusion to those verification and design engineers who are 
trying to learn UVM. The goal of this paper is to demystify the 
uvm_config_db for the novice user. This paper will examine the 
functionality of the uvm_config_db starting with its relationship to 
the resource database. It will discuss how the database is 
implemented in the UVM library, and it will explore how to add to 
and retrieve from the database. In addition, practical examples 
will illustrate how to use the database in various scenarios. 

The questions that need to be answered are as follows:

§ What is the uvm_config_db?
§ When is the uvm_config_db used?
§ How is data stored and retrieved?
§ How do I debug when something goes wrong?

uvm_resource_db

The UVM configuration database, uvm_config_db, is built on top 
of the UVM resource database, uvm_resource_db. The 
uvm_resource_db is a data sharing mechanism where hierarchy 
is not important. The database is essentially a lookup table which 
uses a string as a key and where you can add and retrieve 
entries.

class uvm_resource_db#(type T=uvm_object) 

static function void set(input string scope,
input string name,
T val,
input uvm_object accessor=null)

uvm_resource_db#(bit)::set("CHECKS_DISABLE", "disable_scoreboard", 1, 
this)

static function bit read_by_name(input string scope,
input string name,
inout T val,

input uvm_object accessor=null)

uvm_resource_db#(bit)::read_by_name("CHECKS_DISABLE", 
"disable_scoreboard", disable_sb)

uvm_config_db::set

uvm_resource_db

In what ways does the uvm_config_db differ from its parent, the 
uvm_resource_db? The uvm_config_db is used when hierarchy 
is important.  Unlike the resource database, there are only two 
functions that are most commonly used with the configuration 
database:

§ set – adds an object to the uvm_config_db
§ get – retrieves an object from the uvm_config_db

class uvm_config_db#(type T=int) extends 
uvm_resource_db#(T)

The classic example of uvm_config_db usage is with sharing a 
virtual interface. A SystemVerilog interface is instantiated at in the 
top level and now needs to be added to the uvm_config_db using 
the set() function. 

static function void set(uvm_component cntxt,
string inst_name,
string field_name,
T value)

uvm_config_db#(virtual tb_intf)::set(uvm_root::get(), "*", "dut_intf", vif)

uvm_config_db#(TYPE)::set(this, "*.path", "label", value) 

Argument Description

uvm_component cntxt The context is the 
hierarchical starting point of 
where the database entry is 
accessible.

string inst_name The instance name is the 
hierarchical path that limits 
accessibility of the database 
entry.

string field_name The field name is the label 
used as a lookup for the 
database entry.

T value The value to be stored in the 
database of the 
parameterized type. By 
default the type is int.

uvm_config_db::get

The next method that needs to be explored is the get() function 
which is used to retrieve items from the database. It is important 
to note that objects are not removed from the database when you 
call get(). The actual variable is passed in as an inout formal 
function argument and so is performed as a copy-in-copy-out 
operation.

static function bit get(uvm_component cntxt,
string inst_name,
string field_name,
inout T value)

uvm_config_db#(TYPE)::get(this, "", "label", value) 

In the following diagram, three different items have been added 
to the uvm_config_db: a virtual interface, an integer value, and a 
configuration object. Also, there is a generic calls to the set() and  
get() functions. To retrieve the integer value the label would be 
"retry_count" and the value stored in this entry would be assigned 
to the rty_cnt property in the object that is calling the get() 
function.

Debug

The biggest source of bugs is due to the fact that many of the 
arguments to resource and configuration database methods are 
of type string. This means that typos in the actual arguments 
cannot be detected at compile time, but must wait until a test is 
actually run. 

Fortunately, there are debugging facilities available to help find 
the source of these problems. Two run-time options are available 
which can be used to turn on tracing of every write and read 
access to the databases.

sim_cmd +UVM_TESTNAME=my_test
+UVM_RESOURCE_DB_TRACE

sim_cmd +UVM_TESTNAME=my_test +UVM_CONFIG_DB_TRACE

UVM_INFO @ 0: reporter [CFGDB/SET] Configuration 
'*.agent.*.in_intf' (type virtual interface pipe_if) set by  = (virtual 
interface pipe_if) ?

UVM_INFO @ 0: reporter [CFGDB/SET] Configuration 
'*.monitor.out_intf' (type virtual interface pipe_if) set by  = (virtual 
interface pipe_if) ?

UVM_INFO @ 0: reporter [CFGDB/GET] Configuration 
'uvm_test_top.env.penv_in.agent.driver.i_intf' (type virtual interface 
pipe_if) read by uvm_test_top.env.penv_in.agent.driver = null (failed 
lookup)

Conclusion

In this paper we demystify the use of the UVM's resource and 
configuration databases. These are powerful facilities that are 
available to testbench writers that help with the configuration of 
the testbench itself as well as provide a repository for parameters 
that represent values required by different parts of the 
environment. 

All of the code examples in this paper were from "Getting Started 
with UVM: A Beginner's Guide" by Vanessa Cooper and 
published by Verilab Publishing. Copies of the code will be made 
available on request to the authors.


