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Abstract—Virtual Prototypes (VPs) based on Transaction Level
Modeling (TLM) have become a de-facto standard in today’s SoC
design, enabling early SW development. However, due to the
growing complexity of SoC architectures, full system simulations
(HW+SW) become a bottleneck. Hence, it is necessary to develop
modeling styles which allow for further abstraction beyond the
currently applied TLM methodology.

This paper introduces such a modeling style, referred to as
TLM+. First applications of TLM+ in an industrial virtual pro-
totyping project show a speedup of several orders of magnitude
compared to state-of-the-art TL modeling.

I. INTRODUCTION

Transaction Level Modeling (TLM) is the de facto standard
for developing so called Virtual Prototypes (VPs). As VPs are
ready much earlier than the hardware (HW) and provide the
same programming interface, the software (SW) development
can start much earlier as well. This shortens the overall
development time for a new product. However, with the
steady increase of complexity in SoCs, the VP simulation
performance becomes a bottleneck which reduces this time
benefit.

This bottleneck starts already to effect the development of
complex SoCs such as a mobile phone platform. The lack of
simulation performance for running e.g., protocol stack SW
on a VP increases the SW development time drastically, as
modeling a complete SoC at TLM abstraction still leads to
huge amounts of detail to be simulated.

In order to counteract this problem, further abstraction
techniques are required which go beyond the current TLM
approach. Therefore, a new modeling style called TLM+ is
introduced which allows for raising the level of abstraction
but keeping the required level of detail for SW development
and still preserving the overall architecture of the design for
providing required HW details like clock, reset, and power
control.

This TLM+ style represents a combination of three new
modeling concepts which are introduced and described in this
paper:

• Transaction to transfer abstraction
• Bit true to content true abstraction
• Strong separation of functionality and timing

The key idea of the transaction to transfer abstraction is to
increase the atomicity of actions, i.e., HW constraints such
as bus widths and burst lengths are neglected with SW data
packages being transferred instead. Therefore, a new interface

concept is introduced which represents a merge of the device
driver SW and the corresponding peripheral bus interfaces
while being transparent to the higher-level SW.

For further improvement of the simulation performance we
introduce the bit true to content true abstraction which helps
reducing the amount of number-crunching operations to a
minimum. Hence, this abstraction is especially applicable to
communication oriented applications (e.g. UMTS, ciphering,
etc.).

Since timing influences system functionality and since
satisfaction of timing constraints is essential in embedded
systems, a quite accurate timing representation is important
for TLM+, too. For this purpose we introduce a so called
resource model (RM) which enables the strict separation of
functional and timing computations in order to distinctively
control and correct timing behavior of a TLM+ model.

The paper is structured as follows. First, related work is
discussed followed by a clear definition of the TLM+ model-
ing style. In connection to that a generic CPU model for host
code execution is introduced which represents a prerequisite to
most applications of TLM+. After that, a detailed description
of the TLM+ modeling concepts and techniques are described.
Furthermore, the introduced concepts are analyzed in the
context of an industrial application example and experimental
results are presented followed by a brief summary and an
overview on the next steps.

II. RELATED WORK

Transaction Level Modeling is the de-facto standard for cre-
ating Virtual Prototypes. Open SystemC Initiative (OSCI) has
released two standards for Transaction Level (TL) modeling
up to now [1]. These standards define different communication
concepts for modeling hardware interfaces. Especially, with
the TLM2 standard timing abstraction techniques were intro-
duced to boost simulation performance. These OSCI standards
are complementary to the approach introduced here as the
abstraction is obtained by block based transactions which can
be modeled using the OSCI standards.

The approach presented in [2] connects the QEMU pro-
cessor emulator to SystemC TL models to enable driver and
SW development. Also several EDA companies provide high
speed processor models for VP design, e.g. VaST or CoWare.
These models and QEMU are instruction set simulators (ISS).
Our approach is to merge the HW/SW interface to enable
further communication abstraction. Due to this merge, an ISS



can no longer be used. However, we are providing mixed
TLM/TLM+ support. Hence, TLM+ abstracted subsystems
can be combined with these ISS based approaches.

The SystemQ approach presented in [3] provides high-speed
simulation models based on queuing networks. These models
are mainly used for system performance estimation and cannot
be used for SW development.

Several approaches presented in [4], [5], [6] target the
development of fast and timed Real-Time Operating System
(RTOS) simulation models to increase the simulation speed.
These approaches are increasing the simulation speed due to
native software execution of the RTOS models in combination
with e.g., SW timing annotations or task scheduler models.

The authors of [7] are presenting the generation of timed
OS simulation models using delay annotation for the SW
execution. These OS models are communicating through bus
functional models with the HW model. The OS models pre-
sented in [8] are dealing with synchronization problems of SW
and HW. A timed HW/SW co-simulation at an early design
stage which allows simulation performance up to 3 orders of
magnitude faster than using an ISS is presented in [9]. Other
approaches target automatic timing annotations of the native
SW execution. A compiler based approach is presented in [10].
In [11] the SW execution time is derived from a static analysis
and combined with dynamic runtime information in order to
achieve Cycle Approximate (CA) simulations of the native SW
execution. A combination of instruction set simulation and an
abstract RTOS is presented in [12].

None of these approaches deal with an abstraction of the
HW models. In contrast to that, our TLM+ abstraction con-
siders both, the HW and the SW models due to the merge of
the low-level device driver SW and the HW model. However,
since these other approaches deal with areas of optimization
not or only marginally covered by our approach, it might be
possible to combine them to increase the timing accuracy and
system performance of the native SW execution.

III. TLM+ DEFINITION

Prior to describing the various new techniques in detail it is
necessary to explain the exact notion of the TLM+ abstraction
and how it relates to other abstraction levels. Figure 1 outlines
the major modeling related abstraction levels.
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Fig. 1. Abstraction Chain

Our view of the abstraction chain starts with the RTL level
which is a cycle, bit, and architecture accurate model repre-
sentation of the hardware. At RTL, communication between

different blocks and components is described in terms of signal
protocols. The protocol in turn is described and simulated at bit
level. Due to the high level of detail a SoC at RTL abstraction
cannot be used as development model for e.g. software. The
simulation effort required for this task is just too high. In
this case it makes more sense to wait for the first engineering
samples. However, this creates a high sequential dependency
between SW and HW development during the design cycle
and impacts the time-to-market window.

These disadvantages have led to the establishment of TLM.
Here, communication between blocks is captured with function
calls, clocked synchronization is replaced by event based
synchronization, and abstract integer value and complex data
types are used instead of bit types. All this techniques applied
yield a more abstract model of the overall system, with much
less detail and hence, better simulation performance.

In TLM, transactions are modeled by virtual function
calls and payload objects, instead of signal based protocols
between hardware peripherals. A serial interface (SIF) is a
good example to explain the TLM abstraction: At RTL the
SIF is controlled by a core via a bit accurate bus protocol
like AMBA. The state machines within the SIF control the
buffering of transmission (TX) and reception (RX) data, and
furthermore, control the physical layer path which applies/in-
terprets transmission/reception protocol information to/from
the data stream. For instance, each data byte is extended
by delimiters and the whole character is transmitted bit-by-
bit, each consuming one clock cycle. At TLM the CPU core
makes a transaction (a simple function call) over the bus to
the SIF. The SIF also applies the physical layer information
to the data and uses a transaction containing the complete
data and the protocol information as payload in order to
communicate to another serial device. Hence, the overall
character is transmitted at once in contrast to bit-by-bit. This
however, requires also that timing has to be modeled in an
abstract way, to still being able to capture the relevant timing
information. Since in TLM a high simulation performance
is mostly achieved by avoiding a toggling clock, and hence,
numerous simulation cycles, timing is modeled in different
ways, as for instance, by timing annotations and simulation
time based event notifications. As an example, a transaction
payload can contain a field for tracking the virtual time a
transaction consumes. Each hardware module and bus which
is involved by such a transaction adds its timing increment
to this information. By continuing the accumulation of these
values further, the actual system time needs only be executed
when processes from different timing domains need to be
synchronized, at so called synchronization points.

Still, a pure TLM based VP of a complete SoC is too
expensive with regard to a complete simulation. A first step to
improve the simulation performance of such a VP for faster
system simulations is to replace the instruction set simulated
core model by a host-simulation wrapper model, which allows
a direct execution of the SW on the simulation host. This core
abstraction leads to better simulation performance however,
the granularity of timing information is reduced as the SW is



now no longer interruptible per instruction, but rather per bus
access. This abstraction is also depicted in Figure 1 and forms
the basis for the continuation of abstraction towards TLM+.
Details with regard to this approach are explained further in
Section IV.
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Fig. 2. Transaction to Transfer Abstraction

TLM+ represents a transaction to transfer abstraction on top
of TLM in combination with host-executed SW and hence,
continues the abstraction chain as shown in Figure 1 to a
higher level. Figure 2 depicts the levels of communication
within a system from the application SW down to particular
HW blocks. Data going in between has to pass several layers.

Starting from the application SW which allocates a buffer
of data to be processed by the HW the corresponding request
and the buffer are passed down to the driver of the required
device. The driver in turn translates the request into control
values for the HW and performs sequences of accesses on the
HW/SW interface in order to initiate the HW. The data to be
processed is also tailored into smaller pieces, depending on the
data width and burst capabilities of the underlying bus system.
Finally, the data is also sent to the HW through several bus
accesses. Within the HW however, the data to be processed is
again reassembled to bigger frames or blocks before starting
the actual operation.

Simulating all these activities within a VP, requires a non-
feasible amount of time as the complexity of the targeted
platforms continues to grow, even though it is modeled at
the TLM abstraction even with host-executed SW. Hence, the
key idea of the TLM+ abstraction is to reduce the number
of communication activities in order to reduce the overall
simulation time. This is achieved through data abstraction,
basically by avoiding most of the activity at the HW/SW
interface. As the data blocks at the level of application SW
are reconstructed down in the HW, the separation into smaller
units of data within the device drivers and the HW/SW
interface and the reconstruction into buffers can be avoided.
Moving to TLM+ can be achieved through a combination of
the following steps, which are explained in detail in Sections
IV and V:

• Insertion of an interruptible and timing aware host-
simulation wrapper (EMUCPU)

• Introduction of a new HW/SW interface at driver as well
as peripheral level

The first item represents a precondition for the TLM+ data
abstraction, as introducing a more abstract HW/SW interface
requires a merge of the low-level driver SW with the associated
peripheral interface which cannot be accomplished if the SW
is cross compiled to instructions. The latter item addresses the
actual TLM+ modeling techniques. It incorporates techniques
on how to cut at driver level and incorporate a new HW
API based on block transfers, while preserving the original
architecture and providing means for a migration path from
TLM.

In order to provide further improvements to the simulation
performance the TLM+ style offers the bit true to content
true abstraction. Here, the data is not encoded at one side of
the system and decoded at the other but transferred directly
including its configuration parameters. The combination of this
abstraction with the data flow abstraction is obvious, since
data packages are rather related to logical entities such as
OS buffer sizes or data content sizes such as pictures. The
bit true to content true abstraction is orthogonal to the data
flow abstraction as it is shown in Figure 3. The figure shows
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Fig. 3. Data versus Interface Abstraction

combination possibilities of the word and package mode with
bit and content true data. As it is shown, word mode com-
bined with bit true abstraction represents today’s TLM. The
combination of the two newly introduced abstraction concepts
represents TLM+. Other combinations are also possible e.g.,
for providing a migration path from TLM to TLM+.

TLM+ block transfers decrease the timing accuracy of the
simulation model even more than for instance TLM2 burst
transactions because the transported data blocks of TLM+

transfers are not limited by the constraints of the underlying
HW communication architecture. Hence, bigger chunks of data
are transferred by one function call, and the transfers are
atomic. With the third TLM+ concept, namely the separation
of functionality and timing we introduce a new auxiliary
unit called resource model (RM). The RM is responsible for
ensuring the best possible timing accuracy with regard to
regular TLM, while preserving the speed obtained by moving
to block transfers. The RM keeps track of resource requests
and handles resource conflicts by applying timing corrections
according to a prioritization scheme.

IV. NATIVE SOFTWARE EXECUTION

Native software execution is the basic requirement for our
TLM+ methodology to enable interface abstractions at the
HW/SW interface. The merge of software and hardware at
the HW/SW interface is not possible with an ISS CPU model



because an ISS is restricted to its maximum data width.
Therefore we developed an EMUCPU model in SystemC
which supports synchronization mechanisms like interrupt
handling and software timing annotations. The EMUCPU does
also support multiple instances in order to form a multi core
system even in combination with instruction set simulator
(ISS) CPU cores. The EMUCPU model is highly generic and
can be configured to replace any type of ISS CPU model. The
following sections illustrate the main concepts implemented
in our EMUCPU.

A. HW/SW Interface

EMUCPUReset
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main() {
  unsigned i = 1;
  unsigned d =
    read_bus(0x10, 4);
}
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Fig. 4. EMUCPU Model and HW/SW Interface

Figure 4 gives an overview of the EMUCPU model and how
the HW/SW interface is modeled. As shown, the software is
executed on the simulation host CPU. Software accesses to
memory mapped IO are modeled via the functions read_bus
and write_bus. These functions are wrapped to access the
bus initiator port of the SystemC EMUCPU model. Hence,
the C-software can directly access registers and memories of
HW modules. In general, to avoid consistency issues it is
recommended to generate register, bit field and memory access
functions based on a meta model specification like IP-XACT.
If the application and driver software uses these functions or
macros for accessing the hardware, switching from an ISS to
the EMUCPU can be achieved in negligible time, because only
the implementation of these access functions has to be changed
to call the bus access functions read_bus and write_bus
from the EMUCPU. Here, again if generators are applied
to create the various access functions, rerouting these to the
EMUCPU bus access functions can be accomplished quickly.

B. Software Timing

Native execution of the SW on the simulation host inevitably
leads to differences in timing behavior in comparison to
an ISS based SW execution. Apart from timing added by
the system infrastructure and peripherals an ISS introduces
additional timing into SW due to its instruction execution
cycles. This information is lost when moving to the host
execution approach. This drawback is tackled by two timing
mechanisms supported within our EMUCPU model. On one
hand, each bus access initiated from the SW is blocking and
hence suspends the SW execution for the duration of the
access. On the other hand, the programmer has the possibility
to annotate the SW with a parameterized wait function to force

additional SW suspension. Automated solutions for software
timing annotations may be applied as well.

C. Interrupt Handling

The EMUCPU model provides a generic configurable num-
ber of interrupts and an interface for configuring the priority
level of each interrupt. The main software and the interrupt ser-
vice routines are executed in the context of one SC THREAD.
The main software thread needs to be suspended in case of
the occurrence of an interrupt. In case of an ISS CPU model
the software execution can be interrupted at the granularity
of instructions or even more fine grained. In contrast to this,
SW running on the EMUCPU model can only be interrupted
when the software execution is suspended by the aforemen-
tioned means. When serving an interrupt the EMUCPU model
automatically corrects the wait times of the main SW as the
interrupt service routine consumes time as well. A detailed
description of the interrupt handling is given in [13] and hence,
is skipped here.

D. Multi Core Support

Today’s systems mostly contain more than one CPU core.
For instance, CPU cores of the same type or different CPU
cores in heterogeneous systems. Therefore, the EMUCPU
model provides multi core support and can be instantiated
multiple times within a VP. As linking the Software to the
SystemC module has to happen through regular C functions,
a mechanism is necessary which detects which EMUCPU in-
stance is executing the C function which requests a bus access.
This is solved by obtaining the currently active sc module
through accessing the simulation context API of SystemC.

V. TLM+ MODELING CONCEPTS

This chapter describes the aforementioned steps towards
implementing the TLM+ abstraction within the following
sections. Figure 5 illustrates an example system which is used
to describe the TLM+ abstraction concepts in the following
sections. The example system includes two different interfaces
- one for the bus communication and one for the external
interface of the SIF which is connected to the IO device.
In Section V-A the TLM+ interface abstraction concepts are

SIFCPU DMA MEM

BUS

IO

Master

Slave

Fig. 5. Explanation Example

described in detail. Following that Section V-B explains the
bit true to content true TLM+ abstraction concept. At the end
in Section V-C the concept of the separation of timing and
functionality is described by introducing the resource model
(RM).



A. TLM+ Interface Abstraction

In this section transaction to transfer abstraction is de-
scribed. Here, data blocks are transferred instead of single
words. In contrast to state-of-the-art TLM modeling style, the
data blocks are not related to infrastructure details as e.g.,
bus transaction burst size. The data blocks are rather related
to logical entities such as OS buffer sizes or data content
sizes such as pictures. This abstraction technique leads to a
huge speedup since the HW/SW and HW/HW interactions
are reduced to block accesses at OS level. Nevertheless, the
programming technique is quite close to the concepts applied
in TLM for modeling burst transactions. Hence, OSCI TLM1
or TLM2 libraries can be used for the implementation of the
TLM+ interface abstraction concepts which is explained in the
following.

The TLM+ interface abstraction is applied at the HW/SW
interface for enabling direct block transfers from the SW to
the HW models of the VP. The abstraction of the HW/SW
interface is described in Section V-A1. Following that, the
abstraction of the TLM interfaces is described to allow block
communication between all HW modules and SW. The TLM
interface abstraction is described in detail in Section V-A2

1) HW/SW Interface Abstraction: The requirement to al-
low for further abstractions of the HW/SW interface was
described in Section IV by introducing an EMUCPU SystemC
model which provides a function interface (read_bus and
write_bus) between the SW and the HW model. In TLM+

the EMUCPU model is extended by additional interface func-
tions which provide block transfer capabilities. Listing 1 shows
the abstract functions which enable the transfer of complete
SW buffers to the HW model. The count parameter of
these functions yields the number of bytes which are to be
transferred.

void w r i t e b u s p k g ( u i n t 3 2 t addr , char∗ da ta ,
u i n t 3 2 t c o u n t ) ;

char∗ r ead bus pkg ( u i n t 3 2 t addr , char∗ da ta ,
u i n t 3 2 t c o u n t ) ;

Listing 1. Abstract HW/SW Interface Access

The reasons for not replacing the existing access functions
with the abstracted functions is to be able to switch dynam-
ically between word and block accesses. Hence, the control
flow can be modeled using word accesses to setup the neces-
sary HW details while data blocks are transferred using the
abstract interface functions. Another reason is that TLM and
TLM+ modules can be mixed within one embedded HW/SW
system because modules which are not TLM+ abstracted can
be accessed by the SW using the word based functions.

At the SW side normally, device drivers offer read and write
buffer access to the HW models. The SW application can
call the interface function of the device drivers by passing a
data buffer and its length as arguments. Normally, the device
driver cuts the buffer into data words and transfers each of
them separately to the HW device. In TLM+ the device driver
functions directly pass the buffers to the HW model using the
introduced abstract interface functions.

As an example if the SW wants to write a buffer containing
4000 bytes to the SIF the complete buffer is transferred by the
device driver using the TLM+ interfaces instead of transferring
1000 single words. Also the control flow and interrupt details
are simulated but only once for the complete buffer.

In the following section the abstraction of the TLM inter-
faces to provide block based communication within the VP is
explained in detail.

2) TLM Interface Abstraction: This section describes the
abstraction of the TLM interfaces for the bus communication
and other HW interfaces like the external interface of the
SIF module. The interface concepts of the OSCI TLM1 or
TLM2 libraries can also be used for TLM+ because only
the payload classes need to be extended to implement the
TLM+ interface abstraction. Hence, TLM+ does not require
its own modeling library but can be realized using the existing
library and interface concepts. So to say, the plus of TLM+

is a definition of the payload structure, and a recommended
practice on how to use the defined payload items.

In case of TLM1 special payload classes need to be defined
for bus communication or other HW interfaces. If for instance
the blocking transport interface is used for bus communication
the request and response classes need to be extended by the
count member which corresponds to the number of bytes
of a TLM+ data transfer. This interface member is also used
to differentiate between TLM and TLM+ transactions. If the
value of count is zero then it is a TLM transaction otherwise
it is a TLM+ transfer.

In case of TLM2 a generic payload (GP) is predefined which
already supports most of the common bus protocols. This GP
can be used for TLM+ but with an extension containing the
count member as well. The extension definition is shown in
Listing 2 and can be added with set_extension to the GP.

Both in TLM1 and in TLM2 the data interface member
shall be a pointer to provide word and block transfers. Hence,
it is not required to extend the payload by an additional
pointer member for TLM+ data blocks. To enable TLM+ data
transfers for other HW interfaces like the external interface of
the SIF again only the payload definition of this interface needs
to be extended.

c l a s s t l m p p a y l o a d e x t e n s i o n :
p u b l i c t lm : : t l m e x t e n s i o n <t l m p p a y l o a d e x t e n s i o n >{

p u b l i c :
u i n t 3 2 t c o u n t ;
. . .

} ;

Listing 2. TLM+ Generic Payload Extension

As it is shown, the TLM+ interface concepts and extensions
are fully compatible to state-of-the-art TLM interfaces. Hence,
the TLM+ interface concept provides a migration path of
today’s TLM to TLM+. It is not required to abstract the whole
VP to TLM+ at once. Because of the dynamic detection of
TLM and TLM+ transfers it is possible to migrate one module
after the other of a VP to TLM+. If the bottleneck of the
simulation performance is located in only one subsystem of
the complete VP then only this subsystem can be abstracted.



B. TLM+ Data Abstraction

Especially in communication applications data is usually not
transferred as raw data. Extra information might be added to
support error recognition resp. correction (e.g. parity bit, CRC
or channel coding), data might be extended or split into smaller
chunks in order to match a protocol or other transformations
are being done to support access protection, data separation,
etc. Transformations on one end of the communication channel
are usually reverted on the other end. Thus, in case the
communication protocol is known the data transfer can be
modeled on a higher abstraction level by providing:

• the raw data to be transferred and
• control information describing algorithm parameters or

results.

By skipping the data encoding and decoding processes and
blockwise data transfer, the simulation can be accelerated
significantly but transmission error injection as well as check-
ing for correct configuration of hardware accelerators is still
possible. Of course the encoding and decoding processes
cannot be verified within such an accelerated model as they
are not modeled any more.

1) Serial interface Data Abstraction Example: The idea of
data abstraction can be illustrated quite well on a simple serial
interface characterized by:

• Size of a character (e.g. 1..32 bit)
• Number of stop bits (1 or 2)
• Parity mode (even or odd)
• Good parity or parity error
• The raw data itself

As shown in Listing 3, this serial interface can be
modeled using e.g. the OSCI TLM put interface defini-
tion in conjunction with a custom payload definition.

s t r u c t S e r i a l D a t a {
unsigned d a t a s i z e i n b i t ;
unsigned n u m b e r o f s t o p b i t ;
bool p a r i t y i s e v e n ;
bool p a r i t y e r r o r ;
u i n t 3 2 t d a t a ;

} ;
void p u t ( S e r i a l D a t a &s e r i a l d a t a ) ;

Listing 3. Abstract data transfer across a simple serial interface

Note that data transfer could also be modeled using an
sc_signal<SerialData> but a value changed event will
not be emitted when the same datum is transferred twice and
thus it might be missed. Using the suggested modeling style
the most important effects on simulation time are:

• Less activity as simulation is only triggered once per
character and not once per transferred bit.

• Less calculation as bit stuffing as well as parity calcula-
tion can be skipped.

The example of the simple serial interface also shows that
the concrete data abstraction is individual to the transmission
protocol and also depends on the abstraction level being
addressed (e.g. packet transfer instead of character transfer).

C. TLM+ Timing Handling
Since timing influences system functionality and since satis-

faction of timing constraints is essential in embedded systems,
a quite accurate timing representation is important for TLM+,
too. In order to gain high simulation speed, computation
of functionality and timing is strictly separated. Timing is
computed in a so called resource model (RM), which is
considering the resources and infrastructure (e.g. bus, CPU)
of the complete SoC architecture and the resulting resource
conflicts for the computation of time. This RM performs
timing corrections and actively reschedules pending transfers
to achieve a good timing accuracy at TLM+ level.

An overview about the resource model and its structure is
described in Section V-C1. After that the handling of resource
conflicts is explained in Section V-C2.

1) Resource Model Overview: The last TLM+ modeling
concept is that the handling of the system timing is separated
from the functionality of the system. This is achieved by
introducing a resource model (RM) which handles on one hand
the timing of the native software execution and handles on the
other hand the timing of the hardware VP. Figure 6 gives an
overview about the RM for the explanation example. As it
is shown in the figure, each module in a VP corresponds to
a resource (R1-R6). Each initiating module also corresponds
to an initiator (I1-I4). The resource model provides interface
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Fig. 6. Resource Model Overview

functions for the registration of resources and initiators during
the SystemC construction time. These functions are:

• int registerResource(string name)
This function registers the resource at the RM using its
hierarchical name and returns a unique integer identifier
for the resource referred to as resource ID (RSID).

• int registerInitiator(string name, int
prio, sc_event* resume_ev)
This function registers an initiator at the RM using its
hierarchical name, its priority and a sc event pointer. A
unique initiator identifier (IID) is returned.

The resource model itself has no structure but it inherits the
structure from the underlying VP. This structural inheritance is
achieved during the simulation runtime when an initiator starts
a transaction addressing a specific module (resource). Here,
each resource which gets passed by this transaction requests
itself for a specific amount of time which refers for instance
to the block size of the transferred data. The resource model
provides the following function:



• requestResource(int IID, int RSID,
sc_time time)
This function uses the IID to request the resource which
is specified in the RSID argument for the specified
amount of time. Usually this function gets called
from the corresponding resource itself, e.g., from the
transaction interface or state machines.

In the explanation example following requests are executed for
a data transfer from the CPU to the memory module. First the
CPU resource gets requested using the initiator ID (IID) I1 and
resource ID (RSID) R1, after that the transaction passes the
bus resource which is requested also using IID I1 but RSID
R2. When the transaction reaches its destination the memory
resource is requested using IID I1 and RSID R6. Before the
actual read or write access is performed the transaction is
suspended for the requested amount of time. The RM offers
the following function to suspend and resume transactions:

• waitResumeEvent(int IID)
This function suspends the transaction of the specified
initiator for the requested amount of time using the
sc event which corresponds to the IID.

Each time a resource is requested using a specific IID the
corresponding resume event is scheduled to the new time. The
payloads of the TLM interfaces need to be extended further
on by the IID which needs to be passed along the transaction.

Each transaction has a forward path (to its destination) and
a backward path (returning to the initiator). This results in
two synchronization points where the waitResumeEvent
function needs to be called. One synchronization point is at
the destination of the transaction before the actual access is
performed and one is when the transaction has returned to the
initiator. Using these synchronization points the RM handles
resource conflicts and performs timing corrections which is
explained in the following section.

2) Resource Conflict Handling: In TLM+ a complete data
block is transferred atomically as one TLM+ transfer. Hence,
it cannot be interrupted by a transfer of an initiator with a
higher priority. This would lead to a wrong timing behavior
and could also result in wrong functionality.

Figure 7 shows an example of a resource conflict where
two initiators are accessing the same resource during an
overlapping time period. Here the CPU (I1) with priority 0
initiates a data transfer to the SIF at 0 ns. Each resource
(CPU, BUS, SIF) is requested for 10 ns. At the SIF module
the transaction is suspended and resumes at 30 ns.

The DMA (I2) with higher priority than the CPU starts its
transfer to the memory at 10 ns. Each resource (DMA, BUS,
MEM) is requested also for 10 ns. The transfer of the DMA
gets suspended at the memory module and will resume at
40 ns.

This example describes a resource conflict at the BUS which
is requested from the CPU transfer and from the DMA transfer.
Hence, because of the higher priority of the DMA transfer the
resource model needs to consider the conflict by scheduling
the resume event of the CPU transfer to a later point of time:

CPU

I1(0) R1

DMA

I2(1) R5

MEM

R6

BUS

R2

SIF

R4

start=0
end=30

new end=60

start=10

request
(I2,R5,10)

request
(I2,R2,10)

request
(I2,R6,10)

request
(I1,R1,10)

request
(I1,R2,10)

request
(I1,R4,10)

end=40

Fig. 7. Resource Model Conflict Handling

The new resume time of the CPU transfer is rescheduled from
30 ns to 60 ns.

With OSCI TLM2 the concept of the quantum keeper
is introduced where context switches can be reduced by
using a time quantum during which concurrent processes can
accumulate time values. One process can perform several
subsequent transactions and accumulate the transaction times
until the accumulation has reached the time quantum. Then the
accumulated time gets synchronized with the simulation time.
Hence, a big quantum improves the simulation speed but if
it is chosen too big it can lead to wrong simulation results.
In contrast to that the RM ensures that TLM+ data transfers
are directly synchronized but also resolves resource conflicts
by controlling the emission of the various resume events as
described earlier.

VI. APPLICATION EXAMPLE

In this section the methodology is demonstrated on an
industrial UMTS modem VP (see Fig. 8) that is being used
on different abstraction levels for different use cases:

• The fully accurate VP (see Table I) operating with I/Q-
samples is being used to develop and verify algorithms
distributed across SW and HW. As this includes non-
ideal effects like e.g. noise, reflection, etc. low-level data
is required.

• In an intermediate version internal data transfers (e.g.
from and to memory) are performed on a higher abstrac-
tion level as described in section V-A (Block mode VP
in Table I).

• An accelerated version with data abstraction on layer1
(air) is being used to develop control software (Data
abstraction VP in Table I). In this case, the non-ideal
effects are only of minor interest and thus data abstraction
(see Section V-B) is used. The data abstraction applied
is described in more detail below.

• Further acceleration is achieved by replacing the CPU and
DSPs with native code execution. This part is skipped in
the application example.

In the next section abstraction of data transfer across layer1
(air) interface for UMTS will be discussed briefly.
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Fig. 8. UMTS Communication Example

A. Data Abstraction

Within UMTS data transfer from the basestation (NodeB)
and the user equipment (UE, e.g. mobile phone) is via air.
The data is then mixed down into the low-frequency baseband
and further signal processing takes place on the I/Q-samples
provided in the baseband. Before a transfer the raw data
provided to the NodeB is transformed in several steps in order
to provide error correction, identification, etc. The same steps
are reverted in the UE (see Figure 9). When not interested in
the exact operation of the encoding and decoding algorithms
themselves it is sufficient to transfer the data and some addi-
tional control information as indicated as “Data Abstraction”
in Figure 9. Within the data abstraction interface the I/Q-data is

Data CRC
Channel
Coding Spreading Scrambling

I/Q
Samples

Data CRC ...

...
NodeB
VP

Decode
Channel

spreading
De−

scrambling
De−

Data
Abstraction

Fig. 9. Transformation steps and data abstraction in UMTS RX path.

not transferred but rather the raw data including some control
information like scrambling code, spreading factor, etc. Thus
the UE has all information available in the I/Q-data.

Full accurate Block mode Data abstraction
VP VP VP

Simulation speed 0.031 0.201 3.310
[10ms frames/sec]
Speedup 1.0 6.5 106

TABLE I
SIMULATION PERFORMANCE COMPARISON

Table I compares the simulation performance measured in
UMTS frames (10 ms) simulated per second wall-clock time
(e.g. 1 frame/second means a factor of 100 compared to
real time) for a standard test-case including e.g. cell search,
BCH/PCCPCH decoding, etc.

It can be seen that just by abstracting the data transfer a
speed-up of more than a magnitude can be achieved. The more
data transfer happens, the higher the speedup and thus the
speedup heavily depends on the application scenario.

VII. CONCLUSION AND OUTLOOK

In this paper we introduce the TLM+ modeling style which
enables abstraction techniques which go beyond the current
TLM abstraction, thus enabling faster VP simulations for early
SW validation in complex SoC platforms. We achieved the
higher abstraction by employing three different abstraction
techniques. Namely, merging directly at the HW/SW interface
moving from bit true to content true data representations, and
by a dedicated resource model for obtaining a high degree
of timing accuracy when compared to TLM. Experimental
results on an industrial mobile phone platform application have
also shown that moving to the TLM+ abstraction can yield
up to hundred orders of magnitude faster simulations when
compared to regular TLM platforms with ISS-core models.

Currently, this work is being applied to further industrial
use cases, in order to obtain more experimental results and to
analyze the feasibility of the approach in an industrial design
environment.

The work presented in this paper is partially funded by the
German Federal Ministry of Education and Research within
the context of the SANITAS project (01M3088).
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