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Deep Predictive Coverage Collection

Rajarshi Roy - NVIDIA Corp.
Chinmay Duvedi - NVIDIA Corp.
Saad Godil - NVIDIA Corp.
Mark Williams - NVIDIA Corp.

NVIDIA.
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=Xo=w NVIDIA VOLTA: 21B Transistors
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DV i )
DV Ccverage isn’t free
RTL Simulation Time
m \With Coverage = Without Coverage
100%

Percent Full Coverage Runtime

80%

60%

40%

20%

0%

A

G H

Coverage

visibility

2-3X faster
RTL runs
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* Weekly:
— ~100,000 tests across 8 units
— TBs of raw coverage data collected

* Usual flow:
— Compile overall reports
— Use compiled reports for coverage feedback
— Throw away raw coverage data

—_
Missed Opportunity?

Data mining




ogs.sp.movm%.oclr%m Module Condition Coverage vs (Modules X Tests) (1 Clusters, 121 Modules)

DVCOIN

CONFERENCE AND EXHIBITION

100

* Example:

— Small unit in NVIDIA
GPU

— 121 modules

— Module condition
coverage

* Height/heat map for 50
tests shown

Coverage (%)
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DESIGN AND VERIFICATION™ Module Condition Coverage vs (Modules X Tests) (2 Clusters, 121 Modules)
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100

e 2 clusters

Coverage (%)
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100

e 3 clusters

Coverage (%)




(4 Clusters, 121 Modules)

Module Condition Coverage vs (Modules X Tests)
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100

e 4 clusters
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DESIGN AND VERIFICATION™ Module Condition Coverage vs (Modules X Tests) (5 Clusters, 121 Modules)
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100

e 5 clusters

Coverage (%)
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DESIGN AND VERIFICATION™ Module Condition Coverage vs (Modules X Tests) (6 Clusters, 121 Modules)

DVCOIN

CONFERENCE AND EXHIBITION
100

6 clusters

* Modules in a cluster
have very similar
coverage behavior!

* Collect coverage for one
module per cluster...

Coverage (%)
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* 6 modules selected for
coverage collection

e Qut of 121 modules
* ~50% of design

Module Condition Coverage vs (Modules X Tests) (6 Clusters, 6 Modules)

Coverage (%)
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DVCOIN

Y=  Given a new test...

Coverage available for
selected modules

N /’Hjs ' Predict other modules in each cluster
ot i == " to have the same coverage...
Jj . B qesnet
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Y=  (Given a new test...

* Adecent guess...
e \WWe can do a lot better!

ge(%)

3
Covera
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=x====  Deep Learning
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Image Classification Cancer Cell Detection Video Captioning Face Detection Pedestrian Detection
Speech Recognition Diabetic Grading Video Search Video Surveillance Lane Tracking
Language Translation Drug Discovery el iian:lanon Satellite Imagery Recognize Traffic Sign

Language Processing
Sentiment Analysis
Recommendation
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RYCLIN Deep Neural Networks (DNNs)

* Collection of simple, trainable mathematical units
* Collectively learn complex functions

Hidden layers

Input layer Output layer
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DVCON DNN Layers

Raw data Low-level features Mid-level features High-level features
= bl bdidhs
Ed ./ ;
LA N
-




2018

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Training DNNs
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Yo Predict full coverage with DNN
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DVCOIN

Deep Neural Net Architecture

CONFERENCE AND EXHIBITION
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DVCOIN

BRI Sl Deep Neural Net Architecture

model = Sequential ()
model .add (Dense (y_train.shape[l], input shape=(x train.shape[l],), W _regularizer=regularizers.l2(l2 req)))

for 1 in range(layers-1):
model . add (BatchNormalization())
model.add (Activation (activation))

model.add (Dense (y_train.shape[l], W_regularizer=regularizers.l2(l2 req)))

model.compile (optimizer=SGD (1lr=1r), loss='mse', metrics=['mae'])

* 7 lines of code!
* GPU accelerated learning!

+ ‘|.‘

Tensor
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DV Results: Accuracy

* % modules selected for <5% error
— 0.9% - 5.9%

* 0% modules selected for <10% error
—0.2% -1.2%

Percentage Unit Module Count

7%

6%

5%

4%

3%

2

ES

.1

0%

ES

Coverage Subset Size For Meeting Error Bound

m 5% Error 10% Error
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DYl Results: Speedup

Coverage Prediction Error RTL Simulation Time Increase
Coverage Collected For 10% Of Modules Due To Coverage Collection

m All Modules u 10% of Modules

100%
4%
3.9% 80%
3.4% 3.4% o
3% 319 3.4% 3.3% : 72%
By 60%
2% .
40% 48% 47% 46%
1% S 28%
E 20% 24% -
0u, T S I S S S UESS SSSS 9%
0%
A B C D E F G H A B c D E = G H

Unit Unit

5%

Mean Absolute Error

% of Full Coverage Sim Time Increase

Unit A: Full coverage reports with only 2.8% error at 11.53x overhead reduction
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DVCOIN -
Y e Always-On Coverage Collection
* Earlier
t No feedback throughout week
E% Weekend
@ =|  runs with
-]
= o| coverage
S
|_
Days
e Now Always-On
A Lightweight coverage collection
— Full coverage prediction
#Jég Weekend
@ @] runs with
-]
= o| coverage
L
|_

Days




o Store:
— Per-test coverage data
— For selected (10%) modules
— 1/10t™ storage needed
* Predict “"decompress”:
— Per-test coverage data
— For all modules
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Yoz A data driven path forward...

[ Coverage @)

Insights @

LY
S0
Instant YN Q g

Per-test Test
Coverage e Coverage Stimulus
Visibility Data Data

@ @ Insights ?
\ v
Improve Tests /®\

Faster
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DVETN Next Steps

* Improve on current results
— Better neural net architecture (ResNets!t, DenseNets!?, HighwayNets!3])
— Let DNN select modules instead of k-means (saliency maps!#)
— Optimize module subset selection for simulation time reduction
— Evaluate robustness:
* Extent/nature of change to design/stimulus before DNN accuracy drops
* Scale up to per-line/per-condition inference granularity
— Binary coverage values and Boolean relations
— Logic minimization® instead of k-means?
— Binarized neural networks (6]
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Y=t  K-means clustering

* Given a dataset of module coverage across multiple tests

— MXT matrix (M modules X T tests)

— Each module represented as a vector of length T (it's coverage across tests)
* K-means clustering clusters the modules into K clusters

— Modules in a cluster have similar test coverage vectors

. A
Right: 100% o~
- 1
] /, .A\\\ {\"'I )
4-means clustering clusters 9 ol 1 wes! -
modules into 4 clusters based on S \ec
coverage from 2 tests. g Nl-
3 ~~
) . 7] —
Each clusters’ center (mean) is e (Do PG LN
shown with Y [ Fe \
E® oG /
~ - - ’
0% Testl Coverage 10002
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=admimly Evaluation: Metrics

* Revisiting Goal: High quality coverage feedback with low overhead

* Low overhead:

— % of full design sampled (smaller the better)

— Simulation time overhead of coverage collection (lower the better)
* High quality:

— Error in inferring full coverage (lower the better)

— Error defined as: Mean Absolute Error

Actual Testl | Test2 Inferred Testl | Test 2 Absolute | Testl | Test?2 Mean Absolute
Coverage Coverage Error Error
Module A 10% 20% Module A 10% 25% » Module A 0% 5% » 5%
Module B 80% 50% Module B 75% 60% Module B 5% 10%
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=admimly Evaluation: Dataset

* Module Condition Coverage (modules == module instances)
* 8 NVIDIA GPU units of various sizes
* Various test suites split into:

— Training sets (clustering, subset selection, DNN training)
— Validation sets (validating inference against actual coverage)

# modules # training tests (40%) # validation tests (60%)
Unit A 82 13416 20124
Unit B 121 5864 8796
Unit C 176 8612 12918
Unit D 224 20676 31014
Unit E 268 3964 5946
Unit F 410 3772 5658
Unit G 500 12752 19128
Unit H 574 13224 19836




