
Deep Learning for Engineers

John Aynsley

Deep Learning for Engineers

AI, ML, and Deep Learning

Training a Neural Network

Deeper Insights

CNNs and RNNs

Tool Flow

2

AI versus ML versus Deep Learning

3

AI

Machine
Learning

Deep
Learning

Giving computers the ability

to learn without being

explicitly programmed

Neural networks with

many hidden layers

Knowledge databases

Logical inference

Expert systems

"Classical" Machine Learning

4

Tasks

Classification

Regression

Clustering

Anomaly detection

Dimensionality reduction

Algorithms

Support vector machines

Bayesian statistics

Markov models

Decision trees

Random forests

K-means

... and many more

Could be all you need! Appropriate for smaller datasets

Why Deep Learning Now?

2012 – a CNN wins ImageNet Challenge

Since 2012

5

Bigger datasets

Faster computers

Improved neural network architectures

Neural networks often outperforming previous state-of-the-art

The ImageNet Challenge (ILSVRC)

ImageNet Large Scale Visual Recognition Challenge: 1.2M images in 1000 categories

Year Network #Layers Top-5 Error Rate

2011 winner (Not a NN) - 25.8%

2012 winner AlexNet (CNN) 8 16.4%

2013 winner ZFNet (CNN) 8 11.7%

2014 VGGNet (CNN) 19 7.3%

2014 winner GoogLeNet (Inception) 22 6.7%

2015 winner ResNet (residual) 152 3.6%

2016 winner CUImage (ensemble) - 3.0%

Human error rate ~ 5%

3% bad labels

Dramatic improvement

Training typically takes a few weeks on a few GPUs
6

Cloud Computing versus Edge Computing

7

Cloud Computing in Data Centers Edge Computing in Embedded Devices

Massive, scalable compute power Limited compute power

Unlimited storage Limited storage

High latency Low latency (real-time response)

Restricted bandwidth Unrestricted bandwidth

Low energy efficiency High energy efficiency

Reliant on internet connection Can run without internet connection

Data sent over internet (privacy?) Data kept local

Relatively high cost Low cost

Cloud versus Edge ML/DL Applications

8

Images, video, voice, temperature, vibration, ...

Recommendation engines for websites

Fraud detection on financial transactions

Chat bots

Cloud

Edge / IoT

Sensors

Edge Applications of Deep Learning

9

Vision

Image recognition

Object detection

Image segmentation

Speech recognition

Text analysis

Anomaly detection

The low-hanging fruit

Automotive Applications

10

ADAS and autonomous vehicles

Traffic sign recognition

Lane detection

Pedestrian detection

Human pose estimation

Monitoring for a distracted driver

Detecting vehicle occupancy for car sharing

Detecting driver identity to store seat settings

Industrial, Medical, Retail, IoT

11

Touchscreen character recognition

Voice control - keyword spotting

Medical diagnosis from images

Customer counts and demographics from cameras in retail stores

Real-time failure prediction in industrial equipment

Face recognition in smart doorbells

Food classification – allergy advice

Deep Learning for Engineers

AI, ML, and Deep Learning

Training a Neural Network

Deeper Insights

CNNs and RNNs

Tool Flow

12

Supervised Learning

Learn to predict

the output from

the input

Input

Output

Training

GPU

Model
Novel

input

Predicted

output

Deployment

Inference

Platform

13

MCU, CPU,

GPU, FPGA,

SoC

Training a Neural Network

Persian

Abyssian

Siamese

British Shorthair

Scottish Fold

Burmese

Training data

Labels

Compare Cost

Function

Prediction

Ground Truth

14

Neural Network

Training a Neural Network

Persian

Abyssian

Siamese

British Shorthair

Scottish Fold

Burmese

Training data

Labels

Compare Cost

Function

Ground Truth

15

Layers

Units/neurons

An Artificial Neuron

Linear function

)(

3

1

uactivationy

bxwu
i

ii

=

+=
=

Non-linear function

16

Input units Hidden unit

1x

2x

3x

1w

2w

3w

y

Output units

Common Activation Functions

Sigmoid

aka

logistic

ReLU

17

A Deep Neural Network

Input units Hidden units Hidden units Output units









+= 

=

j

i

ijij bxwRELUy
3

1









+= 

=

j

n

i

ijij bxwRELUy
1

j

n

i

ijij bxwy +=
=1

18

Regression Task

x

y

Input

Output

19

Define a Hypothesis or Model or Network

20

offsetxslopexh offsetslope +=)(,

Input

vector

Trainable parameter

(Bias)

Trainable parameter

(Weight)

Predicted

output

Cost or Loss or Error Function

21

slope = 0, offset = 5

Error

()
21

(,) ()
2

i i

i

Loss slope offset h x y
m

= −

Prediction

Ground

truth

Cost as a Function of Slope and Offset

22
Weight

Bias

Contour Plot of Cost Function

23Slope (weight)

O
ff
s
e

t
(b

ia
s
)

Which way?

Optimal solution

Gradient Descent

24

Loss

slope


−


Loss

offset


−


Loss
weight weight

weight



 − 



Gradient Descent Algorithm

25

Initialize weights (trainable parameters)

for each training step:

Calculate the gradient with respect to every weight

for each weight:

new_weight = weight - learning_rate * gradient

for each weight:

weight = new_weight

Converging on the Minimum

0

1

2

3

26

Stochastic Gradient Descent

Use a subset of the training data at each step

27

Non-Linear Regression and Classification

28

Piecewise Linear Approximation

Input unit Hidden units Output unit

bxwy
i

ii +=
=

4

1

Piecewise linear function

)(jjj bxwRELUy +=
29

The Predicted Output

Such a network is hard to train

30

The Landscape of the Cost/Loss Function

Local and global minima and saddle points 31

A Deep Neural Network

Input unit 16 hidden units 16 hidden units

bxwy
i

ii +=
=

4

1

Cost function

(mean squared error)

Output unit

32

Ground truth









+= 

=

j

n

i

ijij bxwRELUy
1

The Predicted Output

33

Forward and Back-Propagation

34

Forward propagation calculates weighted sums and activation function

Back propagation calculates gradients and adjusts weights

Deep Learning for Engineers

AI, ML, and Deep Learning

Training a Neural Network

Deeper Insights

CNNs and RNNs

Tool Flow

35

Classification

36

1x

2x

Inputs

Labels

















0

0

1

















0

1

0

















1

0

0

1x

2x

cross-

entropy

Cost

Hidden

1y

2y

3y

Outputs

softmax
Probability vector

0.9904

0.0055

0.0040

 
 
 
 
 

















− 3.0

01.0

2.5

Logits

Underfitting and Overfitting

37

1 hidden layer of 6 neurons, 20 runs

Underfitting

4 hidden layers of 16 neurons, 20 runs

OverfittingGo Deeper!

Regularization

38

()
2 21

() ()
2 2

i i j

i j

Loss w h x y w
m


= − + 

Naked cost function Regularization term

Mean square error for regression

Softmax + cross-entropy for classification

With L2 Regularization

39

4 hidden layers of 16 neurons, 40 runs

Dropout

40

Training: Drop half the hidden units for each training step

Testing: Keep all the hidden units, divide activations by 2

Hyperparameters

41

Number of hidden layers

Number of neurons in each layer

Sigmoid or ReLU activation

Choice of cost function

Choice of gradient descent algorithm

Learning rate

L2 regularization factor

Amount of dropout

(Many more ...)

Training, Validation, and Test Datasets

42

Training

Evaluation

Choose

hyperparameters

Dataset

Normalize

Shuffle

Hyperparameter tuning

Evaluation

Training

Dataset

Validation

Dataset

Test

Dataset

Training:validation:test ~ 3:1:1

Estimate generalization error

Biased toward

validation dataset?

Deep Learning for Engineers

AI, ML, and Deep Learning

Training a Neural Network

Deeper Insights

CNNs and RNNs

Tool Flow

43

Kinds of Neural Network

ANN – Artificial Neural Network

CNN – Convolutional Neural Network (e.g. object recognition)

R-CNN – Regional CNN (image segmentation)

RNN – Recurrent Neural Network (e.g. speech & text processing)

44

Convolutional Neural Network

45

Fully-connected 3x convolution

5

1

j ji i j

i

y RELU w x b
=

 
= + 

 


Depth 3 (colors)

Multiple Filters and Feature Maps

46

Width 28

Height 28

5

5

28

28

Depth 30

5 x 5 x 3 x 30 weights, 30 biases

Convolution filters/kernel

Feature mapsInput layer


= = =

+=
5

1

5

1

3

1i j

n

k

ijkijknn bxwy

30

3

The Classical CNN Architecture

47

Conv+

RELU
Max

Pool

Conv+

RELU
Max

Pool

Fully-

connected

Fully-

connected
Flatten

Shape 32x32x3 32x32x16 16x16x16 16x16x32 8x8x32 2048 128 10

Parameters 416 832 262,272 1,290

Values 3,072 16,384 4,096 8,192 2,048 2,048 128 10

Input

Features Detection Classifier

Evolution of CNN Architectures

48

Traditional CNN:

Convolution → pool → convolution → pool → full → full → full → output

Hierarchical feature detectors Classifier

Sledgehammer!

Replace with convolutions – Fully Convolutional Network

Naïve Inception Module

49

Don't know what the optimal sparse structure is, so hedge our bets:

28x28x100

3x3 convolution

5x5 convolution

Max pooling

28x28x400

7x7 convolution

Concatenate

Feature depth would explode

Example GoogLeNet Inception Module

50

14x14x480

1x1

3x3 14x14x512

Concatenate

14x14x192

1x1
14x14x96

5x51x1
14x14x16

1x1
max

pool

14x14x480
14x14x64

14x14x208

14x14x48

ReLU ReLU

GoogLeNet

51

C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

A. Rabinovich (2014) Going Deeper with Convolutions. https://arxiv.org/abs/1409.4842

Transfer Learning

52

Conv

Pooling Conv
Pooling

Fully-

connected

Fully-

connected

Fully-

connected

Low-level features High-level features Classifier

Reuse trained weights Train from scratch

Recurrent Neural Network (RNN)

53

yt

Input

sequence

Output

sequence

Layer

xt

y0

Layer

x0

y1

Layer

x1

y2

Layer

x2

y3

Layer

x3

Equivalent unrolled network

Each copy has identical weights

x0, x1, x2, x3 ...

y0, y1, y2, y3 ...

RNN Applications

54

Image

Sequence of words

Output is whole sequence

Sequence of words

Category / next word

Output is final state

English sentence

French sentence

Both input and output sequences can be variable length

Very powerful and effective, but training can be tricky

Natural Language Processing

Long Short Term Memory – LSTM

55

LSTM

Input

Output

Internal

state

Output gate

Forget gate

Input gate

LSTM Gates

56

()i i i i

i i

Gate w x u r= + 

Input

Input gate

Forget gate

Output gate

Output

ri

xi

LSTM Trained on Linux Source Code

57

Generated by a 3-layer LSTM trained on the entire Linux source code ...

Andrej Karpathy (2015). The Unreasonable Effectiveness of Recurrent Neural Networks.

[Online] http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Deep Learning for Engineers

AI, ML, and Deep Learning

Training a Neural Network

Deeper Insights

CNNs and RNNs

Tool Flow

58

Training versus Inference

Training Inference

Desktop or cloud computing Cloud or edge computing

Large dataset One sample at a time

Forward and backward passes

through neural network
Forward pass only (simpler network)

Minutes-weeks on GPU Milliseconds-seconds/sample on edge device

Weights are computed Weights are known and can be compressed

59

Open Source Training Frameworks

60

facebook

Berkeley Artificial Intelligence Research (BAIR)

Berkeley Vision

Google

Cloud Platforms for Training and Inference

61

Amazon SageMaker

IBM Cloud

IBM AI OpenScale and many others

The Cloud can Provide

62

MLaaS – Machine Learning as a Service

Just the hardware (VM)

VM with pre-installed, pre-configured ML software

Specific ML services (language translation, chat bots, ...)

ML / DL Tool Flow for Edge Computing

63

Training

Format

conversion

Open Neural Network Exchange Format

ML / DL Tool Flow for Edge Computing

64

Training

Format

conversion

Pruning,

quantization,

compression

Pruning – setting near-zero weights to zero

Trade-Off Curve

65
Song Han, Jeff Pool, John Tran, William J. Dally (2015). Learning both Weights

and Connections for Efficient Neural Networks. https://arxiv.org/abs/1506.02626

ML / DL Tool Flow for Edge Computing

66

Training

Format

conversion

Pruning,

quantization,

compression

Pruning – setting near-zero weights to zero

Re-training – with sparse weight matrix (iterative)

Quantization – replacing 32-bit floats with 8-bit integers (typical)

Compression – storing sparse weight matrix in compressed format

10 X reduction in weight memory

ML / DL Tool Flow for Edge Computing

67

Training

Format

conversion

Pruning,

quantization,

compression

Engine-specific

optimizations

Using DSP or VLIW or GPU processor instructions

Operation fusing – using specialist neural network instructions

E.g. Arm CMSIS-NN uses DSP instructions of Cortex-M4

E.g. Arm Compute Library uses NEON acceleration for Cortex-A

Benchmark CNNs

68

AlexNet

VGG

Inception

Resnet

SqueezeNet

MobileNet

DenseNet

SSD

YOLO

ImageNet Challenge Winners

Pre-trained networks and transfer learning

Mobile

MobileNet V1 and V2

69

CNN for image recognition and object detection on mobile

Hyperparameters:

Scale down the size of the feature maps

Scale down the number of features

MobileNet v2 available as 22 pre-built, pre-trained models:

From 6M to 1.6M parameters, from 75% to 45% Top-1 accuracy

Deploying Mobilenet

70

Feature engineering

Collect and curate training, validation, test datasets

Select hyperparameters

Select a classifier (recognition) or detector (object detection)

Train classifier/detector, measure overfitting and generalisation error

For More Information

71

john.aynsley@doulos.com

5-Day Training Course: Practical Deep Learning

www.doulos.com

