

# **Deep Learning for Engineers**

# John Aynsley







**Deep Learning for Engineers** 



### AI, ML, and Deep Learning

### **Training a Neural Network**

**Deeper Insights** 

**CNNs and RNNs** 

### **Tool Flow**





### Al versus ML versus Deep Learning







## "Classical" Machine Learning

### Tasks

Classification

Regression

Clustering

Anomaly detection

**Dimensionality reduction** 

### Algorithms

Support vector machines

**Bayesian statistics** 

Markov models

**Decision trees** 

Random forests

K-means

... and many more

SYSTEMS INITIATIVE



Appropriate for smaller datasets



## Why Deep Learning Now?

2012 – a CNN wins ImageNet Challenge

**Bigger datasets** 

Faster computers

Since 2012

Improved neural network architectures

Neural networks often outperforming previous state-of-the-art





# The ImageNet Challenge (ILSVRC)

ImageNet Large Scale Visual Recognition Challenge: 1.2M images in 1000 categories

| Year        | Network               | #Layers | Top-5 Error Rate |   |                       |
|-------------|-----------------------|---------|------------------|---|-----------------------|
| 2011 winner | (Not a NN)            | -       | 25.8%            |   |                       |
| 2012 winner | AlexNet (CNN)         | 8       | 16.4%            |   | Dramatic improvement  |
| 2013 winner | ZFNet (CNN)           | 8       | 11.7%            |   |                       |
| 2014        | VGGNet (CNN)          | 19      | 7.3%             |   |                       |
| 2014 winner | GoogLeNet (Inception) | 22      | 6.7%             |   | Human error rate - 5% |
| 2015 winner | ResNet (residual)     | 152     | 3.6%             | • |                       |
| 2016 winner | CUImage (ensemble)    | -       | 3.0%             |   | 3% bad labels         |



Training typically takes a few weeks on a few GPUs



# **Cloud Computing versus Edge Computing**

| Cloud Computing in Data Centers    | Edge Computing in Embedded Devices  |
|------------------------------------|-------------------------------------|
| Massive, scalable compute power    | Limited compute power               |
| Unlimited storage                  | Limited storage                     |
| High latency                       | Low latency (real-time response)    |
| Restricted bandwidth               | Unrestricted bandwidth              |
| Low energy efficiency              | High energy efficiency              |
| Reliant on internet connection     | Can run without internet connection |
| Data sent over internet (privacy?) | Data kept local                     |
| Relatively high cost               | Low cost                            |





## **Cloud versus Edge ML/DL Applications**



Recommendation engines for websites Fraud detection on financial transactions Chat bots



Images, video, voice, temperature, vibration, ...





## **Edge Applications of Deep Learning**

The low-hanging fruit

Vision

Image recognition

**Object detection** 

Image segmentation

Speech recognition

Text analysis

Anomaly detection





## **Automotive Applications**

ADAS and autonomous vehicles

Traffic sign recognition

Lane detection

Pedestrian detection

Human pose estimation

Monitoring for a distracted driver

Detecting vehicle occupancy for car sharing

Detecting driver identity to store seat settings





## Industrial, Medical, Retail, IoT

Touchscreen character recognition

Voice control - keyword spotting

Medical diagnosis from images

Customer counts and demographics from cameras in retail stores

Real-time failure prediction in industrial equipment

Face recognition in smart doorbells

Food classification – allergy advice





## **Deep Learning for Engineers**

### AI, ML, and Deep Learning



**Training a Neural Network** 

**Deeper Insights** 

**CNNs and RNNs** 

### **Tool Flow**





accellera

SYSTEMS INITIATIVE

### **Supervised Learning**





## **Training a Neural Network**

#### Labels







## **Training a Neural Network**

#### Labels







### **An Artificial Neuron**







### **Common Activation Functions**







### **A Deep Neural Network**







### **Regression Task**







## **Define a Hypothesis or Model or Network**







### **Cost or Loss or Error Function**







### **Cost as a Function of Slope and Offset**







accellera

SYSTEMS INITIATIVE

### **Contour Plot of Cost Function**





### **Gradient Descent**







## **Gradient Descent Algorithm**

Initialize weights (trainable parameters)

for each training step:

Calculate the gradient with respect to every weight

for each weight:

new weight = weight - learning rate \* gradient

for each weight:

weight = new\_weight





### **Converging on the Minimum**

Final slope = -2.31499114425 offset = 4.38980555415







### **Stochastic Gradient Descent**







### **Non-Linear Regression and Classification**







SYSTEMS INITIATIVE

### **Piecewise Linear Approximation**





### **The Predicted Output**







### The Landscape of the Cost/Loss Function





Local and global minima and saddle points



### **A Deep Neural Network**

16 hidden units 16 hidden units Input unit Output unit Cost function (mean squared error)  $y = \sum^{\cdot} w_i x_i + b$ Ground truth  $y_j = RELU\left(\sum_{i=1}^n w_{ji}x_i + b_j\right)$ 





### **The Predicted Output**







## **Forward and Back-Propagation**

Forward propagation calculates weighted sums and activation function



Back propagation calculates gradients and adjusts weights





**Deep Learning for Engineers** 

### AI, ML, and Deep Learning

**Training a Neural Network** 



**Deeper Insights** 

**CNNs and RNNs** 

### **Tool Flow**







SYSTEMS INITIATIVE

## **Underfitting and Overfitting**

#### 1 hidden layer of 6 neurons, 20 runs

#### 4 hidden layers of 16 neurons, 20 runs





Regularization







## With L2 Regularization







### Dropout



Training: Drop half the hidden units for each training step



Testing: Keep all the hidden units, divide activations by 2



### **Hyperparameters**

- Number of hidden layers
- Number of neurons in each layer
- Sigmoid or ReLU activation
- Choice of cost function
- Choice of gradient descent algorithm
- Learning rate
- L2 regularization factor
- Amount of dropout



(Many more ...)



## Training, Validation, and Test Datasets







**Deep Learning for Engineers** 

### AI, ML, and Deep Learning

### **Training a Neural Network**

**Deeper Insights** 



**CNNs and RNNs** 

### **Tool Flow**





### **Kinds of Neural Network**

### ANN – Artificial Neural Network

### CNN – Convolutional Neural Network (e.g. object recognition)

### R-CNN – Regional CNN (image segmentation)

### RNN – Recurrent Neural Network (e.g. speech & text processing)





### **Convolutional Neural Network**

**Fully-connected** 





 $y_{j} = RELU\left(\sum_{i=1}^{5} w_{ji}x_{i} + b_{j}\right)$ 







### **The Classical CNN Architecture**



| Shape        | 32x32x3 | 32x32x16 | 16x16x16 | 16x16x32 | 8x8x32 | 2048  | 128     | 10    |
|--------------|---------|----------|----------|----------|--------|-------|---------|-------|
| # Parameters |         | 416      |          | 832      |        |       | 262,272 | 1,290 |
| # Values     | 3,072   | 16,384   | 4,096    | 8,192    | 2,048  | 2,048 | 128     | 10    |



**Features Detection** 

Classifier

47



## **Evolution of CNN Architectures**

Traditional CNN:

 $Convolution \rightarrow pool \rightarrow convolution \rightarrow pool \rightarrow full \rightarrow full \rightarrow output$ 



Replace with convolutions – Fully Convolutional Network





### **Naïve Inception Module**

Don't know what the optimal sparse structure is, so hedge our bets:





### **Example GoogLeNet Inception Module**





2019

JNITED STATES

NCE AND EXHIBITION





C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich (2014) *Going Deeper with Convolutions.* https://arxiv.org/abs/1409.4842



## **Transfer Learning**







## **Recurrent Neural Network (RNN)**







### **RNN Applications**

#### Natural Language Processing

Category / next word Output is final state



Sequence of words

Sequence of words *Output is whole sequence* 



French sentence

Image

English sentence



Both input and output sequences can be variable length Very powerful and effective, but training can be tricky



LSTM

Input

state



Output gate

Forget gate

Input gate

\_











## **LSTM Trained on Linux Source Code**

Generated by a 3-layer LSTM trained on the entire Linux source code ...

```
/*
* Increment the size file of the new incorrect UI FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
 int error;
 if (fd == MARN EPT) {
    /*
     * The kernel blank will coeld it to userspace.
     */
    if (ss->segment < mem total)</pre>
      unblock graph and set blocked();
    else
      ret = 1;
    goto bail;
```



Andrej Karpathy (2015). *The Unreasonable Effectiveness of Recurrent Neural Networks*. [Online] http://karpathy.github.io/2015/05/21/rnn-effectiveness/



**Deep Learning for Engineers** 

### AI, ML, and Deep Learning

### **Training a Neural Network**

**Deeper Insights** 

**CNNs and RNNs** 



**Tool Flow** 



### **Training versus Inference**

| Training                                           | Inference                                  |
|----------------------------------------------------|--------------------------------------------|
| Desktop or cloud computing                         | Cloud or edge computing                    |
| Large dataset                                      | One sample at a time                       |
| Forward and backward passes through neural network | Forward pass only (simpler network)        |
| Minutes-weeks on GPU                               | Milliseconds-seconds/sample on edge device |
| Weights are computed                               | Weights are known and can be compressed    |





accellera

### **Open Source Training Frameworks**





accellera

SYSTEMS INITIATIVE

## **Cloud Platforms for Training and Inference**



Amazon SageMaker







IBM Cloud IBM AI OpenScale

and many others



### **The Cloud can Provide**

Just the hardware (VM)

VM with pre-installed, pre-configured ML software

MLaaS – Machine Learning as a Service

Specific ML services (language translation, chat bots, ...)





# **ML / DL Tool Flow for Edge Computing**

ONNX Open Neural Network Exchange Format







# **ML / DL Tool Flow for Edge Computing**





### **Trade-Off Curve**

- -O-L2 regularization w/o retrain
- ▲L1 regularization w/ retrain
- L2 regularization w/ iterative prune and retrain







Song Han, Jeff Pool, John Tran, William J. Dally (2015). *Learning both Weights and Connections for Efficient Neural Networks*. https://arxiv.org/abs/1506.02626



accelle

SYSTEMS INITIATIVE

# **ML / DL Tool Flow for Edge Computing**







# **ML / DL Tool Flow for Edge Computing**







### **Benchmark CNNs**

ImageNet Challenge Winners



AlexNet VGG Inception Resnet SqueezeNet MobileNet DenseNet SSD YOLO





and transfer learning



### **MobileNet V1 and V2**

CNN for image recognition and object detection on mobile

Hyperparameters:

Scale down the size of the feature maps

Scale down the number of features

MobileNet v2 available as 22 pre-built, pre-trained models:

From 6M to 1.6M parameters, from 75% to 45% Top-1 accuracy





### **Deploying Mobilenet**

Feature engineering

Collect and curate training, validation, test datasets

Select hyperparameters

Select a classifier (recognition) or detector (object detection)

Train classifier/detector, measure overfitting and generalisation error





### **For More Information**

### 5-Day Training Course: Practical Deep Learning

### www.doulos.com

john.aynsley@doulos.com

