

Deep Learning for Design and Verification Engineers

John Aynsley

Deep Learning for Design and Verification Engineers

What is Deep Learning?

Neural Networks

How a Network Learns

Getting Started

Machine Learning – Definition

"Giving computers the ability to learn without being explicitly programmed"

Machine Learning Algorithms

Classification Regression Neural networks Support vector machines Dimensionality reduction Bayesian statistics

Hebbian learning

Markov models

Decision tree learning

Random forests

Reinforcement learning

Evolutionary algorithms

Used in statistics and data science

Deep learning is very simple algorithms applied very intensively to massive datasets and often applied end-to-end

This is not a definition, just an intuitive description!

Machine Learning and Deep Learning

Machine learning is not new

Deep learning is new

Deep learning is growing fast because it really works!

Unsupervised Learning

Examples

Partition the data into clusters based on similarity

Find hidden patterns in the data

Pick out anomalous data samples

Supervised Learning with a Neural Network

Why Neural Networks Now?

Bigger datasets

Faster computers

Since 2012

Improved neural network architectures

Neural networks often outperforming previous state-of-the-art

Image Classification

← → C 🔒	Secure https://c	loud.google.com	/vision/					☆	
🔿 Goog	le Cloud Plat	tform				Q Search	CONS	OLE SIGN IN	
Why Google	Products	Solutions	Launcher	Pricing Cu	stomers Documentation > TRY IT FREE CONTACT				
							×		
	Labels	Web	Text	Document	Properties	Safe Search	JSON		
	The second s				Telephony		84%		
		HE	0	0	Corded Pho	one	79%		
		18-0			Product		77%		
		9.50			Technology	/	74%		
	7	50	COMPANY .		Electronics		70%		
	2		1	1	Electronic I	nstrument	68%		
		and and a second second	TONINAM	all the	Product De	sign	63%		
			_0352.JPG		Electronic [Device	62%		

÷

The ImageNet Challenge (ILSVRC)

Depends what vou measure!

ImageNet Large Scale Visual Recognition Challenge: 1.2M images in 1000 categories

you mousulo.								
Year	Network	#Layers	Top-5 Error Rate					
2012 winner	AlexNet (CNN)	8	15.3%		Dramatic improvement			
2013 winner	ZFNet (CNN)	8	14.8%					
2014	VGGNet (CNN)	19	7.3%					
2014 winner	GoogLeNet (Inception)	GoogLeNet (Inception) 22 6.7%			Human arrar rata 50/			
2015 winner	ResNet (residual)	152	3.6%		Human error rate ~ 5%			
2016 winner	CUImage (ensemble)	-	3.0%		3% bad labels			

Training typically takes a few weeks on a few GPUs

Natural Language Translation

← → C Secure https://cloud.google.com/translate/												
Google Cloud Platform Q Search							h	CONSOLE	SIGN IN			
Why Google	Products Solutions		Launcher	Pricing Customers		stomers	Documentation >		>	TRY IT FREE	CONTACT SALES	
	TRY THE API											
	Source Language English (en)		Ŧ	←→ Target Lang French (f								
	It was raining cats and dogs and I had forgotte my umbrella.			l forgotten		ll y avait des chiens et des chiens et j'avais l'idée d'être un monstre.						

Other Exciting Applications

- Image segmentation
- Adding captions to images
- Adding color to black-and-white images
- Generating images that mimic other artists or styles
- Spotting significant events in videos
- Human pose estimation to analyze behavior
- Handwriting recognition
- Voice recognition and voice generation
- Predicting patterns in natural phenomena
- Playing games

http://www.yaronhadad.com/deep-learning-most-amazing-applications/

https://deepdreamgenerator.com

Deep Learning for Design and Verification Engineers

What is Deep Learning?

Neural Networks

How a Network Learns

Getting Started

A Neural Network?

Inception network

Auxiliary outputs

An Artificial Neuron

Common Activation Functions

A Deep Neural Network

Kinds of Neural Network

ANN – Artificial Neural Network

CNN – Convolutional Neural Network (e.g. image processing)

R-CNN – Regional CNN (image segmentation)

RNN – Recursive Neural Network (e.g. natural language processing)

GAN – Generative Adversarial Network

Deep Learning for Design and Verification Engineers

What is Deep Learning?

Neural Networks

How a Network Learns

Getting Started

Regression Task

Define a Hypothesis / Model / Network

$$h_{slope,offset}(x) = slope \cdot x + offset$$

Cost Function

return np.mean(np.square(hypothesis(x, slope, offset) - y)) / 2.0

Cost as a Function of Slope and Offset

Contour Plot of Cost Function

Gradient Descent

Gradient Descent Algorithm

```
num steps = 3000
learning rate = 0.001
slope = 4.0
offset = -4.0
def derivative wrt slope():
    return np.mean((hypothesis(x, slope, offset) - y) * x)
def derivative wrt offset():
    return np.mean((hypothesis(x, slope, offset) - y))
for step in range(num steps):
    new slope = slope - learning rate * derivative wrt slope()
    new offset = offset - learning rate * derivative wrt offset()
    slope = new slope
    offset = new offset
```


Converging on the Minimum

Final slope = -2.31499114425 offset = 4.38980555415

Cost, Slope, Offset against Step

Stochastic Gradient Descent

Forward and Back-Propagation

Forward propagation calculates weighted sums and activation function

Back propagation calculates gradients

Classification Task

One-Hot Labels

The Hypothesis or Model

2018 DESIGN AND VERIFICATION

UNITED STATES

ICE AND EXHIBITION

CONFERE

The Softmax Function

$$\begin{pmatrix} -0.1 \\ 0.0 \\ +0.1 \end{pmatrix} \rightarrow \begin{pmatrix} 0.301 \\ 0.332 \\ 0.367 \end{pmatrix} \xleftarrow{compare} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1.0 \\ 2.0 \\ 3.0 \end{pmatrix} \rightarrow \begin{pmatrix} 0.090 \\ 0.245 \\ 0.665 \end{pmatrix} \xleftarrow{compare} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 10 \\ 20 \\ 30 \end{pmatrix} \rightarrow \begin{pmatrix} 2 \times 10^{-9} \\ 5 \times 10^{-5} \\ 9.999 \end{pmatrix} \xleftarrow{compare} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Compare using Cross-Entropy

The closer the softmax value corresponding to the given label is to 1, the closer the cost is to 0.

Predictions, Confidence > 0.8

The Decision Boundary

Classes are Linearly Separable 10.0 7.5 BLUE RED 5.0 2.5 0.0 -2.5 -5.0 RED BLUE -7.5 GREEN GREEN -10.0 -7.5 -5.0 2.5 -10.0 -2.5 0.0 7.5

5.0

10.0

Non-Linear Regression and Classification

The Predicted Output

The Landscape of the Cost Function

A Deep Neural Network

 $y_j = RELU(w_j x + b_j)$ $y_j = RELU(w_j x + b_j)$

The Predicted Output

The Magic of Deep Neural Networks

Deep neural networks have many degrees of freedom / degenerate / redundant

Gradient descent tends not to get stuck in local minima

Gradient descent tends to find a good global minimum

Why?

Most stationary points are saddle points, not local minima?

Deep Learning for Design and Verification Engineers

What is Deep Learning?

Neural Networks

How a Network Learns

Getting Started

Libraries and Frameworks for Training

	Scikit-learn Not deep learning		
University of Montreal	Theano	Runs on GPU	
	Pylearn2	(Theano)	
	Lasagne	(Theano)	
Berkeley AI Research	Caffe	Runs on GPU	
Facebook, Twitter,	Torch, PyTorch	Runs on GPU	
Google	TensorFlow	Runs on GPU	
Microsoft	CNTK	Cognitive Tool Kit	
	Keras	(Theano, TensorFlow, CNTK)	
Skymind	DL4J	Deep Learning for Java	
Apache	MXNet		
Intel	Neon	Optimized for Intel CPUs	
MathWorks	MATLAB	Various toolboxes	

Deep Learning Platforms and Toolkits

Amazon Deep Learning AMIs Au-Zone DeepView Google Cloud Machine Learning Engine IBM Watson Intel Nervana Cloud

Microsoft Azure Machine Learning Studio MVTec HALCON NVIDIA TensorRT Qualcomm Snapdragon NPE SDK Xilinx reVISION

Deep Learning IP and Chips

BrainChip Cadence Tensilica Vision DSP Google TPU Graphcore IBM TrueNorth Intel Loihi Intel Movidius KAIST MVLSI Laboratory KALRAY MPPA Synopsys DesignWare EV6x

Python and Jupyter Notebook

	🔵 tutorial_	reras x +				
¢	→ C' 1	Image: Anttps://localhost:8888/notebooks/dvcon_tutorial/tutorial	L III\ (
	💭 Jupy	ter tutorial_keras Last Checkpoint: 30 minutes ago (unsaved changes)	Je Logo	ut		
	File I	dit View Insert Cell Kernel Widgets Help Trusted	Python 3	0		
		84 4 ² 1 ³ ↑ ↓ H ■ C Markdown ■				
	Simple Example of Non-Linear Regression using Keras Keras is an API on top of TensorFlow (or Theano, another ML library) that hides and abstracts a lot of the detail when building deep neural network models. Keras models are a lot more compact and readable than low-level TensorFlow models, although because a lot of the detail is obscured, it might not be so clear to beginners what is going on under-the-hood. First run the code to generate and plot the dataset.					
	In [43	<pre>]: 1 import numpy as np 2 import matplotlib.pyplot as plt 3 4 m = 200 5 train_slope = 0.1 6 train_offset = -1.0</pre>	Pyt	hon coo		


```
5 train_slope = 0.1
6 train_offset = -1.0
7
8 train_x = np.linspace(-10, 10, m).astype(np.float32)
9 rng = np.random.RandomState(seed=42)
10 train_y = (train_slope * train_x + np.sin(train_x / 1.5) + train_offset +
11 rng.normal(0.0, 0.2, size=len(train_x))).astype(np.float32)
12
13 plt.rcParams["figure.figsize"] = (12, 8)
14 plt.plot(train_x, train_y, 'o');
15 plt.show()
```


Jupyter Notebook Architecture

AWS Deep Learning AMI

Apache MXNet, Caffe2, TensorFlow, PyTorch, Keras, CNTK, Theano

SSH Port Forwarding

Jupyter Notebook in local web browser

Reputity Configuration	1				
Category:					
- Window	*	Options controlling SSH port forwarding			
Appearance		Port forwarding			
···· Behaviour ···· Translation		Local ports accept connections from other hosts			
Selection		Remote ports do the same (SSH-2 only)			
Colours		Forwarded ports: Remove			
		L6006 54.246.224.154:6006			
Data		L8888 54.246.224.154:8888			
Proxy Telnet					
Rlogin		Add new forwarded port:			
SSH	=	Source port Add			
Kex	=	Destination			
Cipher ⊫ Auth					
GSSAPI					
TTY					
X11		I			
<mark>Tunnels</mark> Bugs		I			
Serial	÷	I			
< <u> </u>					
About		<u>Open</u> <u>C</u> ancel			

Amazon EC2 instance with NVIDIA Tesla GPU In [47]: 1 import keras
2 from keras.models import Sequential
3 from keras.layers import Dense
4
5 keras.backend.clear_session()
6 n_hidden = 32
7
8 model = Sequential()
9 model.add(Dense(input_dim=1, units=n_hidden, activation='relu'))

```
10 model.add(Dense(units=n hidden, activation='relu'))
```

Build a neural network model with two hidden layers using the Keras API.

```
11 model.add(Dense(units=1))
12 model.summary()
13 model.compile(loss='mean squared error', optimizer='sgd', metrics=['accuracy'])
```

63

```
Layer (type)Output ShapeParam #dense_1 (Dense)(None, 32)64dense_2 (Dense)(None, 32)1056dense_3 (Dense)(None, 1)33Total params: 1,153Trainable params: 1,153Non-trainable params: 0
```

In [44]: 1 model.fit(train_x, train_y, epochs=10000, batch_size=m, verbose=0)

In [42]:

Plot the predicted curve learnt by the model.

1 y = model.predict(train_x)
2 plt.plot(train_x, train_y, 'o')
3 plt.plot(train_x, y, linewidth=5)
4 plt.show()


```
In [98]:
          1 import keras
           2 from keras.models import Sequential
           3 from keras.layers import Dense
           4 from keras.optimizers import sqd
           5
           6 keras.backend.clear session()
           7 n hidden = 16
           8
           9 model = Sequential()
          10 model.add(Dense(input dim=n features, units=n hidden, activation='relu'))
          11 model.add(Dense(units=n hidden, activation='relu'))
          12 model.add(Dense(units=n hidden, activation='relu'))
          13 model.add(Dense(units=n labels, activation='softmax'))
          14 model.summary()
          15 model.compile(loss='categorical crossentropy', optimizer=sgd(lr=0.05), metrics=['accuracy'])
```

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 16)	48
dense_2 (Dense)	(None, 16)	272
dense_3 (Dense)	(None, 16)	272
dense_4 (Dense)	(None, 4)	68
Total params: 660		

CO

Run and Evaluate the Model

Run gradient descent.


```
Out[101]: <keras.callbacks.History at 0x7f416fe2d390>
```

Evaluate the trained model on the training data.

```
In [102]:
```

```
1 loss_and_acc = model.evaluate(train_x, train_y, batch_size=m, verbose=0)
2 print('Accuracy = {:4.2f}'.format(loss_and_acc[1]))
```

Accuracy = 0.98

The Decision Boundary

Softmax Probability for each Label

For More Information

Example Jupyter Notebook:

www.doulos.com/downloads/dvcon_dl.ipynb

john.aynsley@doulos.com