
Debugging Functional Coverage Models

Get The Most Out of Your Cover Crosses

Mennatallah Amer, Amr Hany
Mentor, A Siemens Business

78 El Nozha St., Heliopolis, Cairo. +202 24141306

mennatallah_amer@mentor.com, amr_hany@mentor.com

Abstract- Functional coverage models have grown in complexity to account for the increasing demands of designs

today. Traditional and even advanced analysis techniques have yet to evolve to provide the verification engineer with

actionable insights on how to debug their functional coverage model. In this paper, we generalize advanced hole analysis

techniques to be able to get the most out of cover groups containing multiple cover crosses. Applying hole analysis on

each cover cross independently can lead to misleading results and is sometimes prohibitive due to the sheer number of

crosses. Additionally, we introduce a metric, hole effect, that is proportional to the coverage gains that would result upon

resolving the highlighted hole. We evaluate our approach on a real processor’s data processing unit to validate its

applicability and usefulness for debugging complex functional coverage models.

I. INTRODUCTION

Functional coverage paired with constrained random testing is a critical, invaluable methodology in a verification

engineer’s tool-set. The verification engineer has to capture the correct, important design aspects within the coverage

model. Since this is an iterative process due to the increasing complexity of the design under verification and the often

ambiguous, evolving functional specifications, the coverage model itself can end up containing bugs. That requires

the engineer to go through a time-consuming debugging process. Conventionally, coverage model debugging is

performed by the manual inspection of the coverage reports generated by EDA coverage tools. The end goal is to

extract actionable insights that can aid in adjusting the coverage model, or perhaps adjusting the constraints in the

random test generator to reach coverage holes. Those conclusions are incredibly hard to extract from the influx of

information available in the traditional coverage reports. Applying advanced analysis techniques to get the most out

the available information would save verification engineers precious, critical time and aid in reaching faster coverage

closure.

In this paper, we adopt and generalize the hole analysis technique proposed in [1], reaping the benefits of concise

representation of the vast information present in complex functional coverage models. Our focus is on covergroups

with a number of cover crosses. A Covergroup is composed of a set of coverpoints and an optional set of cover crosses

modeling the combination of the various coverpoints. Verification engineers use cross coverage to define expected

valid combination of signals or variables in the design under verification. To help with the analysis of complex designs,

verification engineers leverage SystemVerilog syntax to perform semantic grouping of valid expected combinations.

That in terms helps with the analysis as well as trimming down the number of bins in the coverage model. On the

other hand, that can result in a large number of possibly related cover crosses which poses an additional burden of

having to analyze them all in order to debug/understand any issue in the coverage model. It is common to find multiple

crosses sharing common coverpoints as shown in the examples in this paper. Most probably the coverage model

captures the combinations of a group of common coverpoints with one or two unique coverpoints. In other cases,

multiple crosses share exactly the same coverpoints where the differentiating metric for each cross can be one of the

following:
1) Some combinations are marked illegal/ignored in one cross
2) The coverpoint itself is used to bank a part of a bus/memory using enable signal (ex. read/write signal)
3) The bins of each cross are grouped in a different way
In these cases, analyzing the holes of each cross individually may be tricky as the ignored or illegal bins can mislead

the results since similar combinations are excluded from coverage calculations. Multi-cross hole analysis on such

overlapping crosses gives more precise results.
Applying hole analysis techniques on multiple crosses sharing common coverpoints can identify larger holes and

help in guiding further analysis of selected crosses. The combined analysis leads to more accurate results on the

selected coverpoints and is much more efficient than analyzing each cross independently. Additionally, we define a

new metric, hole effect, that gives the user insight into the optimistic ripple effect on the coverage if the identified

hole is covered.

mailto:mennatallah_amer@mentor.com
mailto:amr_hany@mentor.com

Debugging cover crosses is a tedious task due to the number of possible bins. The papers described in [1, 2, 3],

tackle this problem. The work in [2] described coverage views and how defining such views allows users to focus on

certain aspects of coverage data. In [3], the authors describe the technique of automatic hole detection. Different

algorithms like partitioning, projection, and aggregation are described. This work is concluded in [1] by defining

automatic, interactive coverage analysis, quasi-hole analysis for lightly covered areas, and coverage query which is a

mix of automatic and interactive analysis. These methodologies enable the extraction of useful salient holes that can

be the seed for other coverage driven tools in the verification tool chain. The approaches described in the literature so

far are applied on a single cover cross at a time and do not consider searching for larger holes by exploring multiple

crosses sharing common properties. In case of many holes in the coverage model, the verification engineers rely on

their semantic knowledge of the coverage model, system constraints and illegal combinations in order to begin their

debugging effort.
There are other techniques in the literature aiming at discovering holes in the coverage model generally and not just

in the functional coverage model. The authors of [6], use Inductive language programming for test directive

generation, clustering is used to group holes according to the coverage model. A code coverage variant for hole

analysis is introduced in [7]. It leverages Substring analysis of source code elements mapped to certain functionalities.
There are several tools that can leverage the output of advanced hole analysis to generate new tests or formally

prove reachability. The technique used by the authors in [4] extracts the holes in the cross coverage model together

with a set of constraints extracted by data-mining techniques on the simulation trace in order to feed back the data into

the intelligent test generator. Each of the extracted holes is passed to the formal engine in order to verify its

reachability. The author in [5] built a feedback link between the coverage data and random stimuli in order to avoid

redundant stimuli and accelerate coverage closure. The author implemented an API to extract holes but didn’t add any

ranking to the obtained holes. The work in this paper adds sorting to coverage holes according to the coverage increase

resulting from fixing the holes. By starting with resolving the larger holes, the coverage closure is accelerated since

the design's bigger problems are targeted first.

The rest of paper is organized as follows, a review of single cross hole analysis is presented in section II. The

technique is outlined on an illustrative example that will be used in the following section as well. The novel multi-

cross hole analysis technique is described in section III, together with the associated metric hole effect that can pinpoint

covergroup specific holes. Section IV presents the application of our proposed technique on a real processor

covergroup, highlighting the various insights that the user can extract. Section V contains the conclusion, whilst

section VI describes the possible extensions

II. HOLE ANALYSIS

In the reference [2], the authors identified various techniques to view cover cross data. One of the most useful

operations they identified is projection, where you can decrease the number of bins you are currently analyzing by

simply projecting the results onto certain coverpoints. That means that a combination of the selected coverpoints map

to more than one bin combination in the actual cross. Those number of bins could be either covered or uncovered.

Hence a metric is defined, the density, as the ratio of the covered to the total bins available in the selected combination.

This enables the users to only focus on a subset of the results instead of going through the complete cross space.

To better understand the benefits of Hole Analysis technique let us consider the following simple example of a data

processing unit coverage model. The model consists of seven coverpoints representing the different attributes of data

transaction as illustrated in Table 1. The number of bins can be deduced from the values of each coverpoint. The

number of bins starts to be a problem when the Cartesian product of coverpoints is evaluated in the coverage crosses.

The cross coverage of this coverage model is represented by the following coverage crosses in Table 2. Note that some

of the cross bins contain illegal combinations resulting in a smaller total bin size.

TABLE 1

DATA TRANSACTION COVERAGE MODEL

Attribute Values

Burst single, incr, wrap4, incr4, wrap8, incr8, wrap16, incr16

Access unlocked, locked

RW Read, Write

Size 4, 8, 16, 32, 64

Prot opcode, data, user, private

Resp OK, Error

Secure Yes, No

TABLE 2

COVERAGE CROSSES

Cross Coverpoints Hits Bins Coverage

cross_1 cvp_burst, cvp_secure, cvp_rw, cvp_access 16 32 50.00%

cross_2 cvp_burst, cvp_rw, cvp_size 60 60 100.00%

cross_3 cvp_burst, cvp_rw, cvp_access 24 32 75.00%

cross_4 cvp_burst, cvp_rw, cvp_prot 48 64 75.00%

cross_5 cvp_rw, cvp_prot, cvp_resp 14 16 87.50%

cross_6 cvp_burst, cvp_rw, cvp_access, cvp_resp 48 64 75.00%

cross_7 cvp_burst, cvp_prot, cvp_resp 56 64 87.50%

Simulating the model shows a covergroup coverage of 89%. All coverpoints that represent the model’s attributes

score 100%, so the problem lies within cover crosses as some combinations are not hit. Analyzing all combinations

of each cross is a tedious task even for this simple example. Typical coverage reports lists all combinations annotated

with coverage score. For this simple example, the total number of combinations is 357. The Hole Analysis technique

[1] can help manage and debug any single cross in the coverage model. Hole analysis enables the user to gain more

insight by outlining salient holes. In the following subsections, we will outline the results of the single hole analysis

techniques applied on cross_3.

A. Single Cross Projection

By Projecting the 32 combinations of cross_3 onto a subset of the coverpoints namely cvp_rw and cvp_access, it

ends up with only 4 combinations that are used for illustration in Table 3.

With every projection in this case, 8 bins are actually mapped to a single combination and hence [3] defines a new

metric, density, that would capture the coverage of the bins having that combination. By creating that view, the user

can automatically infer that the problem is when cvp_rw is “Write” and hence we can cut down the search space by

half from the first glance.

B. Single Cross Hole Detection

Automatic hole detection can further be used in order to detect larger contiguous holes promptly. Applying

projected hole analysis followed by an aggregation yields all the 12 missed bins in one descriptive line:

<cvp_burst, cvp_rw, cvp_access>=<{incr, incr4, incr8, incr16}, Write, *>.

The projected hole analysis inferred that for all combinations of “incr*” and “Write” all the bins are missed. Then

doing a recursive aggregation for holes that have a Manhattan distance less than one yields a single large hole

representing all the missed combinations.

To analyze the rest of the covergroup, single hole analysis has to be applied on each individual cross. In the above

example, if the user selected cross_1, which has the least coverage as the seed for the first analysis steps, the

resulting hole would be:

<cvp_burst, cvp_secure, cvp_rw, cvp_access>=<*,No,*,*>

The user can start debugging the issue in cvp_secure first. It will be shown later that this should not be the

primary focus of the verification engineer for two reasons:

1) Solving that hole in that cross would not result in the highest covergroup coverage gain.

2) cvp_secure is only present in cross_1 and hence guiding the focus of the user to it is not ideal.

III. MULTI-CROSS HOLE ANALYSIS

Single hole analysis is a powerful technique, but even in the simple example it can be inefficient, tedious and time

consuming. In the simple example, Fig. 1 shows the number of crosses that each coverpoint is contributing to. We can

see that five of the coverpoints are contributing to at least three crosses and two coverpoints are contributing to six out

of the seven crosses. A visualization is shown in Fig. 2 that presents the relation between the coverpoints and crosses.

In order to capture the overlap between the various crosses in a better way, each of the cross pairs can be examined to

see the size of the overlap. In this example, there are 7 crosses which form 21 possible combinations. Plotting the

degree of overlap with the number of cover cross pairs is shown in Fig. 3.

TABLE 3

SINGLE-CROSS HOLE ANALYSIS

cvp_rw cvp_access hits bins Density

Write locked 4 8 50%

Write unlocked 4 8 50%

Read locked 8 8 100%

Read unlocked 8 8 100%

Figure 1. Coverpoints contributing to number of crosses

Figure 2. Relation between coverpoints and crosses

Figure 3. Degree of overlap of cross pairs

It is highlighted that there are three cross pairs that have three coverpoints in common (cross_1, cross_3), (cross_1,

cross_6) and (cross_3, cross_6). Hence taking a global view and generalizing the approach for multiple crosses can

save invaluable debugging time.

A. Multi-Cross Projection

Coverpoints appearing in more than one cross are intuitively important coverpoints and hence projecting the

coverage of the crosses on those coverpoints give a top level summary of the likely common problems in the crosses

space. From Fig. 2, we can see that cvp_burst and cvp_rw occur in six out of the seven crosses. In fact the two

coverpoints occur together in five out of the seven crosses: cross_1, cross_2, cross_3, cross_4, and cross_6.

Collectively projecting the crosses on both coverpoints would yield the snippet in Table 4.

TABLE 4

MULTI-CROSS HOLE ANALYSIS

cvp_rw cvp_burst hits bins density

Write incr 0 10 0.00%

Read incr 15 15 100.00%

Write single 17 19 89.47%

Read single 17 19 89.47%

Write incr4 0 10 0.00%

By simply sorting by the density you can see that the problem is in <Write, incr*> for all five crosses.

B. Multi-Cross Hole Detection

Generalizing the automatic hole detection techniques on the combined crosses is also possible. However simply

using the number of missed bins as an indicator of the hole size is not enough. The effect of the hole size on the cross

coverage depends on the total bins of that cross. Consider a hole of size 10 in two crosses with 20 and 100 total bins

respectively. The effect of the hole on the cross coverage of the first small cross is 50%, whilst that of the larger cross

is only 10%. Additionally SystemVerilog covergroup coverage is a weighted average of the constituents of the

covergroup and hence various cover crosses can have higher impact on the covergroup coverage.

For each hole, the expected coverage increase in a cross can be computed as the number of missed bins in that hole

over the total number of bins in the cross, as shown in equation (1). The hole effect of the analyzed crosses is then

computed as the weighted average of the coverage increase in each individual cross in the set as depicted in equation

(2).

𝑐𝑜𝑣𝐼𝑛𝑐𝑐 =
𝑚𝑖𝑠𝑠𝑐

𝑏𝑖𝑛𝑐
 (1)

𝐻𝑜𝑙𝑒𝐸𝑓𝑓𝑒𝑐𝑡𝐶 =
∑ 𝑤𝑐∙𝑐𝑜𝑣𝐼𝑛𝑐𝑐𝑐𝜖𝐶

∑ 𝑤𝑐𝑐𝜖𝐶
 (2)

Here C is used to denote the set of crosses being analyzed, c is used to denote the individual crosses. 𝑚𝑖𝑠𝑠𝑐,𝑏𝑖𝑛𝑠𝑐 ,

𝑤𝑐 are used to denote the number of missed bins in the hole for that cross, the total number bins of the cross and the

cross weight respectively.

That score can be computed for each of the extracted holes, providing the user with the ability to rank the holes

based on largest effect on the cover group coverage. The assumption is that if the verification engineer is able to fully

target the identified hole, the average coverage of the selected crosses will increase by the hole effect. This is a really

optimistic assumption since a large hole is usually broken up into smaller holes upon increasing the test stimuli. Note

that the hole effect is meant to compare the results of the holes in the concurrently analyzed crosses. To generalize

that to all the covergroup reports, the denominator of the equation (2) should be equal to the total weight of the

covergroup constituents.

Automatic Hole Analysis can either be applied on the coverpoints that are present in all or some of the analyzed

crosses. Applying hole analysis on the coverpoints that are present in all of the crosses is quiet optimistic and you

might not be able to view all if any of the holes. Allowing coverpoints that are contributing in some of the crosses

gives more granularity and can capture more holes. The only caveat is that due to the exponential nature of the hole

analysis algorithm in the number of coverpoints, there is an upper limit to the number of coverpoints that can be used

in the combined analysis. This can be achieved by performing projection on the crosses on the target coverpoints. We

can apply both upward and/or downward projection as we will describe in the next paragraphs.

In the simple example, multi-cross hole detection can be applied on all coverpoints and crosses resulting in the

results shown in Table 5. Since we have only 7 coverpoints we can afford to analyze all the cover cross bins relative

to it. That would mean that we need to perform upward projection on all the cross bins to the seven coverpoints. This

operation is performed by setting the missing coverpoints to value "*". For example a bin in cross_3 (<cvp_rw,

cvp_burst, cvp_access>) having the value of <Write, incr, locked> would be mapped to the entry of <cvp_burst,

cvp_rw, cvp_secure, cvp_prot, cvp_resp, cvp_access, cvp_size>=<incr, Write,*,*,*,locked,*>. That simple operation

enables us to detect all the holes in the seven crosses with one hole analysis run. Hence, by analyzing multiple crosses

together we can avoid missing holes that might be masked by illegal combination of a single cross and accelerate the

coverage analysis process.

More generally applying multi-cross hole detection on a subset of the coverpoints can also shed some light into the

problematic combinations in a computationally feasible time. To apply this technique on all the crosses in the simple

example using the five coverpoints <cvp_access, cvp_burst, cvp_rw, cvp_secure, cvp_resp>, we need to both project

up and down each of the crosses depending on its nature. cross_1, which does not have cvp_resp, would have all its

leaf level combinations equivalent to having all values of cvp_resp “*”. In contrast cross_2, which has cvp_size that

is not present in selected coverpoints, then the projection of the remaining contributing coverpoints cvp_burst and

cvp_rw would be present as leaf level combinations of that cross with the remaining coverpoints set to “*”. Applying

combined hole analysis for that case would result in the results shown in Table 6. In Table 6, all holes that are present

in all crosses are projected on only five coverpoints. This projection captures the top two holes in Table 5 and missing

the last one due to the coverpoint selection.

In more complex examples, the algorithm may flag different orthogonal holes. This is where the hole effect would

differ than the number of missed bins. The following section contains the results of a real processor.

Another degree of flexibility and abstraction can be added through detecting quasi, non-pure, holes. Non-pure

holes point to areas that are lightly covered whilst pure holes pure to areas which have zero coverage. Working on a

subset of coverpoints more likely detects quasi holes as it is hard to capture pure holes due to the loss of information

associated with projecting onto lower dimensions.

IV. USAGE EXAMPLES

In order to show the real power of the multi-hole analysis technique, a covergroup from a real ALU design is

used. The selected covergroup contained a total of 202 crosses, 138 coverpoints and a total of 45,991 bins of which

only 30.78% are hit, leaving almost 70% of the bins missed. Like the simple example, all the coverpoints have a

100% coverage and hence the problem is in the cover crosses. To characterize the degree of overlap between the

crosses, the number of cross pairs is displayed in Fig. 4. It is shown that there are 229 cross pairs sharing six

coverpoints which shows a large degree of overlap.

The verification engineer can select the overlapping crosses to start analysis. There are 22 overlapping crosses that

share up to six coverpoints. The selected crosses top holes are shown in Table 7.

Most of the crosses have low coverage which indicates a common problem across these related crosses, the

average coverage of 22 crosses is 13.4%. Those crosses contribute to approximately 10% of the covergroup

coverage. So instead of analyzing a single cross at a time, this approach can identify the biggest common hole in a

single step incurring the cost of a single hole analysis run and reducing the amount of data that the verification

engineer should amalgamate manually. As evident in Table 7, each cross has varying number of total bins,

supporting the notion of adopting the hole effect metric rather than the number of missed bins in the hole.

Analyzing the crosses on five contributing coverpoints, four of which are present in all 22 crosses and hstr is

present in 21 of the crosses. The selection of coverpoints on which the analysis is performed could be based on its

frequency among the crosses set, or guided through the semantic meaning of the coverpoints. The results of the top

five holes extracted by the multi-hole analysis is presented in Table 8.

TABLE 5

MULTI-CROSS HOLE DETECTION-ALL COVERPOINTS (CVP_ACCESS, CVP_SIZE ARE ALL * AND REMOVED FOR COMPACTION)

cvp_burst cvp_rw cvp_secure cvp_prot cvp_resp miss Hole Effect

incr* Write * * * 40 10.71%

* * No * * 16 7.14%

* * * private error 10 3.57%

TABLE 6

MULTI-CROSS HOLE ANALYSIS-SELECTED COVERPOINTS

cvp_burst cvp_rw cvp_secure cvp_access cvp_resp Missed Hole Effect

incr* Write No * * 40 10.71%

* * No * * 16 7.14%

Figure 4. Degree of overlap of cross pairs in ALU example

TABLE 7

OVERLAPPING CROSSES

Crosses Coverpoints Hits Bins Coverage

mcr opcode, priv, debug, reg, en, tpm, hstr, excp, tpmcr 16 480 3.3%

tpm opcode, priv, debug, reg, en, tpm, hstr, excp 158 2856 5.5%

ttlb opcode, priv, debug, reg, hstr, excp, ttlb 18 312 5.7%

tid2 opcode, priv, debug, reg, hstr, excp, tid2 26 224 11.6%

tvm opcode, priv, debug, reg, hstr, excp, tvm 166 1152 14.4%

TABLE 8

MULTI-CROSS HOLE ANALYSIS

hstr reg debug excp priv Missed Hole Effect

* allis, asidis, vais 1 * * 20671 34.19%

1 * 1 * * 12878 24.94%

1 * * * krnl, priv 7539 14.87%

* * 1 * n_user, mon 7905 14.68%

* allis, asidis, vais * * mon 7302 12.9%

As illustrated in the table, the common coverpoints have some missing combinations. The holes identified by

these combinations affect each cross within the analyzed ones. The holes are ranked according to hole effect, the top

hole identified by the algorithm occur due to a missing combination between “debug == 1” && “reg == allis || asidis

|| vais”. Resolving this hole leads to average coverage increase of 34.19% over the analyzed crosses. We can also

note that the 3rd top hole is ranked higher than 4th hole, even though it has a smaller number of missed bins.

The proposed technique applied to these crosses reduces the number of missed bins into 60 distinct buckets. For

an even higher level view, each hole can be allowed to contain some covered items. This can be achieved through

applying the quasi hole detection of lightly covered areas. The user needs to vary a threshold that would allow for

some impurity in the extracted holes. Setting the threshold is particularly useful since the projection is lousy. By

setting the threshold to 10%, 25 holes are generated instead, which are outlined in Table 9. It can be inferred that the

second top hole in Table 8 got absorbed into the top hole of Table 9, which has a hole effect of 47.12%. This top

hole identifies “hstr==1” as the most problematic bin in all of the crosses. Similarly, the top hole in Table 8 got

absorbed into the large 2nd top hole in Table 9.

TABLE 9

MULTI-CROSS QUASI HOLE ANALYSIS

hstr reg debug excp priv Missed Total Density Hole Effect

1 * * * * 25260 25994 2.82% 47.12%

* allis, asidis, vais, biall,.... * * * 34092 36092 5.38% 36.06%

* scr, sder, nsacs, mvbar,... 1 * * 7677 7809 1.69% 28.15%

* * * * ns_mon 7786 7830 0.56% 13.99%

* * * data_abort,hvc * 4642 4689 1.39% 10.87%

V. CONCLUSION

Applying multi-cross hole analysis on real coverage models showed a great value by quickly and directly pointing

to the problematic combinations of significant holes among the selected crosses. By selecting crosses that share

semantic meaning or simply sharing coverpoints, salient problems can be uncovered directly saving the time and

effort of analyzing the complete coverage data of each of the crosses independently. Our approach provides metrics

such as the number of missed bins and hole effect to direct the verification engineer to which issue to debug first.

The approach can equally work on coverpoints shared by all crosses or a subset of the crosses which enables the

user to control the granularity of his holes. Quasi hole analysis also comes into play to capture lightly covered areas

which might have resulted from the downward projection of a cross on the target coverpoints. The combination of

user guided and automatic analysis ensures the most productive use of our precious man hours.

VI. FUTURE WORK

The starting point of our proposed algorithm is a user-selected subset of cover crosses and target coverpoints. This

step can be automatically learned from the coverage data model through applying clustering algorithms. That would

guide the user to the top holes without having to wait for the human-driven factor. This should bridge the gap

between the complex covergroups and our analysis engine.

REFERENCES
[1] H. Azatchi, L. Fournier, E. Marcus, S. Ur, A. Ziv and K. Zohar, "Advanced Analysis Techniques for Cross-Product Coverage," in IEEE

Transactions on Computers, vol. 55, no. 11, pp. 1367-1379, Nov. 2006.

[2] S. Asaf, E. Marcus and A. Ziv, "Defining coverage views to improve functional coverage analysis," Proceedings. 41st Design Automation
Conference, 2004, San Diego, CA, USA, 2004, pp. 41-44.

[3] O. Lachish, E. Marcus, S. Ur and A. Ziv, "Hole analysis for functional coverage data," Proceedings 2002 Design Automation Conference

(IEEE Cat. No.02CH37324), 2002, pp. 807-812.
[4] E. E. Mandouh and A. G. Wassal, "Guiding intelligent testbench automation using data mining and formal methods," 2015 10th International

Design & Test Symposium (IDT), Amman, 2015, pp. 60-65.

[5] A. Yehia, "Faster coverage closure: Runtime guidance of Constrained Random stimuli by collected," 2013 Saudi International Electronics,
Communications and Photonics Conference, Fira, 2013, pp. 1-6.

[6] H. w. Hsueh and K. Eder, "Test Directive Generation for Functional Coverage Closure Using Inductive Logic Programming," 2006 IEEE

International High Level Design Validation and Test Workshop, Monterey, CA, 2006, pp. 11-18.
[7] Y. Adler et al., "Code coverage analysis in practice for large systems," 2011 33rd International Conference on Software Engineering (ICSE),

Honolulu, HI, 2011, pp. 736-745.

