

Abstract

Various studies have shown that a significant amount of engineering time and effort for a project is typically spent on debug. For a low-power design and verification, these debug challenges are further complicated as a result of the sophisticated power management architectures and techniques that are used. Moreover the traditional debug technology and methods focus on issues found in a design working in always-on mode and fails to address the new and complex power-related issues thereby consuming more engineering time. In this paper, we will provide an in-depth analysis of various debug challenges and problems faced in low-power design and verification. By taking relevant examples we will demonstrate how these issues can be either avoided or solved. We will also highlight some of the common pitfalls that low-power designers can avoid which otherwise can lead to complex low-power issues that are difficult to debug at later stages of the design cycle.

Problems in Power Intent Specification

UPF 2.0 Migration Issues

Problem: UPF supplies default to OFF state with UPF 2.0: **Solution:** Utilize UPF package functions to explicitly turn on all necessary supplies

module tb; import UPF::*;

initial begin supply_on ("tb/dut_inst/VDD", 1.1); supply_on ("tb/dut_inst/GND", 0.0); end

dut dut_inst (...)

endmodule

Wildcard expansion issues

Problem: HDL/IP block placed in incorrect power domain HDL : module dut;

Ip_module my_ip1(); Ip_module my_ip2(); Ip_module my_ip3(); // my_ip3 is powered separately from my_ip1 and my_ip2 endmodule

UPF: create_power_domain pd_dut -elements {my_ip*}

Solution: Use save_upf command to create interpreted UPF code or use find_objects command to print out expanded TCL variable

Incorrect or missing VCT Specification Problem: HDL GND pin driven to a logic "1" when connected to UPF GND supply

Solution: Use proper VCT option connect_supply_net command OR Use set_port_attribute command to designate HDL GND pin as primary_ground

connect_supply_net upf_GND -ports {hm_inst/GND} -vct UPF_GNDZERO2SV_LOGIC set_port_attributes -pg_type primary_ground -ports {hm_inst/GND}

Debug Challenges in Low-Power Design and Verification Durgesh Prasad, Madhur Bhargava, Jitesh Bansal, Chuck Seeley Mentor Graphics Corp. 8005 SW Boeckman Rd. Wilsonville, OR 97070

Power UP Failures

Missing or Incorrect isolation/level shifter

Problem: X Values represent floating inputs whose voltage values can cause undesirable design behavior **Solution:** Utilize vendors static checks to verify UPF contains the proper isolation/level_shfiter constructs

Initial block Re-evaluation

Problem: For certain models, such as a ROM memory, initial block may need to be re-executed on power –up after time 0 **Solution:** Utilize vendors individual solutions to specify which modules or blocks need to have initial blocks re-executed at power up or exclude object from PA semantics

module rom_mem (input [7:0] addr, input re, clk, output reg[7:0] data_out);

reg[7:0] mem[255:0];

initial begin \$readmemh("rom.mem", mem); end

assign data_out = (re == 1) ? mem[addr] : 8'hzz;

endmodule

Incorrect or Missing Retention or incorrect Retention Protocol

Problem: Registers remain X after power-up. Could be missing retention in UPF or non-retention register needing reset on power-up **Solution:** Utilize vendors automated retention assertion to detect incorrect retention protocol or non-retention registers that need to be reset

Error: (vsim-8912) MSPA_NRET_ASYNCFF: Time: 12 ns, Asynchronous (set/reset) control for the following flop(s) of power domain 'PD1' is not asserted at power up:

/tb/top_inst/out1odule rom_mem (input [3:0] addr, input re, clk, output reg[1:0] data_out);

Error: (vsim-8903) MSPA_RET_OFF_PSO: Time: 64 ns, Retention control (0) for the following retention elements in scope '/tb/top_vl' of power domain 'pd' is not asserted during power shut down:

Determining Sources of Unwanted X Values

Problem: Is X value on a signal due to power domain corrupting

Solution: Use Waveform highlighting to distinguish X value is caused by power domain corruption

Problem: Is X value on a signal due to missing UPF inserted logic or is power to the UPF inserted logic not turned on **Solution:** Trace drivers in schematic/dataflow window

Problem: Low power simulation failures occur after power up of a domain

Solution: Use Waveform compare feature to easily detect simulation differences where X values remain after power up also enable low power messages and or assertion checks

Problem: Power control signals are unexpectedly getting corrupted when certain domains are powered down **Solution:** Ensure that any buffers on these "always on" nets have PA semantics disabled via:

- Manually exclude these cells using vendor specific exclusion mechanism such a exclude files or setting DON'T_TOUCH attributes on them
- 2. Leverage Liberty files which contain always_on attributes to auto exclude them from corruption

** Note: Power Aware simulation semantics disabled for chip_top/u_hm_top_0/u_ip_1

Problem: How to ensure that unwanted power State and power state transitions don't occur **Solution**: Leverage UPF 2.0 add_power_state and describe_state_transition commands to declare illegal power states and state transitions

add_power_state PD_ALU_SS -state ON4 { -logic_expr { !pwr_alu && !pwr_ram } -simstate CORRUPT -illegal}

** Error: UPF_ILLEGAL_STATE_REACHED: Time: 129 ns, Supply set 'PD_ALU_SS' reached an illegal power state 'ON4'. # File: src/parser_test22/demo.upf, Line: 73, Power state:ON4

Coverage of Power States Problem: How to ensure that desired power State and power state transitions occur during simulation **Solution**: Leverage vendors capabilities in displaying and reporting power state and power state transition coverage data

Problem: How to ensure coverage closure for power specific items Solution: Utilize vendors solutions to report, display, and track all coverage data including PA coverage data

🚖 Verification I	Managem
▼ Sec#	Testp
0	- *
1	
1.1	
1.1.1	
1.1.1.1	
1.1.1.2	
1.1.1.2.1	
1.1.2	
1.1.3	
1.1.3.1	
1.1.3.1.1	
1.1.3.1.2	
1.1.3.2	
1.1.3.3	

Power States

Illegal Power States

Achieving PA Coverage Data Closure

