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assert property (@posedge clk) 

s_eventually (design_state != 

`SOME_PARTICULAR_STATE);

 Good for proving the absence of deadlock

 If it is not possible to stay in a particular 

state even when you want to, it’s certainly 

not possible to get stuck in that state

 Troublesome for finding deadlock

 Will first find (many) Case B examples 

(escape is actually possible), before 

finding Case A (unescapable traps)

 Must constrain away each Case B 

occurrence, and iterate again

 Tedious and, depending on number of 

iterations, not necessarily practical
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Abstract

RTL simulation cannot directly tell if a digital 

system is deadlocked — you can only observe 

that nothing has happened for a long time, and 

this is highly dependent on the “right” stimulus 

being applied. 

In contrast, Formal verification has the ability to 

find deadlock conditions in your design. 

However, the traditional iterative approach 

using written liveness and safety properties in 

combination with manually written constraints 

can be time consuming and error prone even in 

expert hands. While there are nonstandard 

assertion languages that can be used, these 

are reserved for academic practitioners and not 

useful for the typical RTL-aware design and 

verification engineers who use industry 

standard System Verilog Assertions (SVA). 

In this paper we will show how combining the 

above concepts using normal SVA liveness 

properties allows for RTL engineers to achieve 

the benefit of formal deadlock analysis without 

the iterative component or learning a non-

standard assertion language. Deadlock 

verification for dummies! 

Limitations of Simulation

Simple FSM Example

Two Foundational Formal Concepts 

Translate Deadlock Into Formal Properties

New Approach: Combine CTL/LTL Results

Some CTL / Case A Complications

Solution: Simultaneously Leverage Case (B)

Summary

System deadlock is virtually impossible to 

detect with RTL VHDL or Verilog simulations!

 Simulation cannot directly detect if the 

design is deadlocked

 Can only observe that nothing’s 

happened for a long time

 How long is too long?

 Simulation cannot differentiate between 

cases A and B

 True system lockup vs. potentially 

poor stimulus

 Simulation is dependent on users 

generating the “right” stimulus

 This of course is how all bugs are missed 

with simulation, but particularly so for 

bugs that require a number of specific, 

synchronized interactions

 The risk of a design going into deadlock is 

nearly impossible to detect with RTL 

simulation; hard to do with traditional formal

 Combining “LTL” and “CTL” analysis results, 

leveraging standard SVA syntax, and using 

new & more powerful CTL engines, enables 

regular engineers to effectively utilize 

CTL analysis

 Detecting RTL deadlock is now easier with 

Mentor’s PropCheck using these advanced 

algorithms under-the-hood

Find System Deadlock Issues Faster

 This is literally what formal was invented for!

 Simulation is uncertain and inefficient in 

comparison

 Escape waveforms simplify analysis of LTL 

counterexamples

 Missing constraints easier/faster to 

identify

 Typically, the number of illegal escape paths 

is small

 Once these are constrained away, CTL-

analysis is focused on finding bugs

 For formal experts: CTL-analysis does not 

need “fairness constraints”

Two Deadlock Cases

A. Can your design get into a state from which it 

can never escape?

B. Can your design get into a state in which you 

can stay as long as you like (by avoiding 

opportunities to escape)?

module dut (input logic clk, rstn, [1:0] din, 

output logic [3:0] cnt);

typedef enum logic [1:0] { IDLE, INCR, 

INCR_2X } State;

State st;

always_ff @(posedge clk or negedge rstn)

if (~rstn) cnt <= 0;

else cnt <= (st == IDLE)    ? cnt : 

(st == INCR)    ? cnt + din :

/* st == INCR_2X */ cnt + 2*din ;

always_ff @(posedge clk or 

negedge rstn )

if (~rstn) st <= IDLE;

else 

case (st)

IDLE: st <= INCR;

INCR: st <= (din == 2'b10) ? 

INCR_2X : INCR;

INCR_2X: st <= (cnt == 0) ? 

IDLE : INCR_2X;

endcase // case (st)

endmodule // dut

“Safety”

Formally prove something bad will never happen

“Liveness”
Formally prove something good will 

eventually happen

Traditionally formal verification engineers would 

manually try to employ these to verify deadlock.

** Requires expertise; tedious and unreliable **

A. Not expressible with either SVA or PSL

– Can be described with computational 

tree logic (CTL)

AG EF (design_state != 

`SOME_PARTICULAR_STATE)

× CTL is too “academic” for regular engineers to use 

× CTL is not supported by commercial tools 

B. Standard SVA liveness property

– Linear Temporal Logic (LTL) semantics

assert property (@posedge clk) 

s_eventually (design_state != 

`SOME_PARTICULAR_STATE);
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SVA Deadlock Properties

 CTL Analysis

Infer CTL property from SVA description

No need for engineers to write CTL properties

Directly target “real” deadlock situations
Enabled by new & improved formal engines 

 LTL Analysis

Continuity with existing tool behavior

Leverage CTL analysis to expose escape 

routes

Results shown in easy to understand format

LTL CTL

Case A Property and CEX (FSM Example)
a_deadlock_chk_INCR_2X: assert property  

(s_eventually st != INCR_2X);

Case B Property and CEX (FSM Example)
a_deadlock_chk_INCR: assert property  

(s_eventually st != INCR);

CTL deadlock counterexample

(once in a loop state it is not possible to ever see 

“Ack”, regardless of inputs)

 Good for finding “real” deadlocks

 Not so good for proving there are 

no deadlocks

 Can prove that there are no deadlocks to 

be found

 But, proof does not necessarily mean that 

your system is deadlock-free !?

 (This is why SVA/PSL are based on LTL 

and not CTL!)

Proof of Case (A) != deadlock-free

 Here is the catch

 Addition of constraints can expose type-A 

deadlocks in a system that 

does not otherwise have them

 Simple example: Reset -- if the design 

can always be reset, then type-A 

deadlock is not possible – asserting reset 

is always an escape option

 Case (A) is for bug hunting

 Makes it much easier to find deadlocks

 If you find a counterexample, you have 

deadlock in your design

 But, bugs might be hidden due to 

*missing* constraints
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LTL deadlock counterexample

(could loop forever, but might also 

be able to exit and see “Ack”)

 If Case (A) is proven, case (B) 

counterexample (CEX) will be shown with 

escape routes

 There must be an escape route, 

otherwise CEX would be a case (A) CEX

 Add constraints on the escape routes

 Example: if reset used to escape, 

constrain reset to not assert after design 

initialization (normally done automatically)

 Poster FSM Example: Constrain “din” to 

eventually equal the value of 2

 For a complete proof, iterate thru escape 

routes and add new constraints until:

 There are no more type-B CEX –

congrats, your system is deadlock-free!

OR

 There IS a type-A CEX – meaning there is 

deadlock situation, and you have a CEX 

from formal analysis to debug/correct it
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Example Deadlock Properties

Properties typically take one of two forms:
s_eventually(condition)

gating |-> s_eventually(condition)

req/ack type:
s_eventually(ack)   or

mode == `READ && no_intr && req

|-> s_eventually(ack)

Bus type:
s_eventually(pready)    (APB4)

s_eventually(awready)   (AXI4 AW)

Arbiter type:
s_eventually(~gnt[0])

Note: Full property syntax not shown 

This is analogous to the trapped warehouse 

worker mentioned in the paper

This is analogous to the couch potato 

mentioned in the paper

In the above waveform, if the value of “cnt” is odd when the FSM transitions to 

the INCR_2X state, the FSM is in true deadlock since “cnt” can never equal 0.  

In the above waveform, the FSM state INCR is deadlocked if the input “din” 

never equals 2. The escape path is when the input “din” equals 2. Constraining 

the input to eventually be that value would result in a proof, showing no 

deadlock is possible for the FSM state INCR.


