
TEMPLATE DESIGN © 2008

www.PosterPresentations.c
om

assert property (@posedge clk)

s_eventually (design_state !=

`SOME_PARTICULAR_STATE);

 Good for proving the absence of deadlock

 If it is not possible to stay in a particular

state even when you want to, it’s certainly

not possible to get stuck in that state

 Troublesome for finding deadlock

 Will first find (many) Case B examples

(escape is actually possible), before

finding Case A (unescapable traps)

 Must constrain away each Case B

occurrence, and iterate again

 Tedious and, depending on number of

iterations, not necessarily practical

Deadlock Verification For Dummies –

The Easy Way of Using SVA and Formal

Mark Eslinger Jeremy Levitt Joe Hupcey III
Mentor, A Siemens Business, Fremont, CA

Abstract

RTL simulation cannot directly tell if a digital

system is deadlocked — you can only observe

that nothing has happened for a long time, and

this is highly dependent on the “right” stimulus

being applied.

In contrast, Formal verification has the ability to

find deadlock conditions in your design.

However, the traditional iterative approach

using written liveness and safety properties in

combination with manually written constraints

can be time consuming and error prone even in

expert hands. While there are nonstandard

assertion languages that can be used, these

are reserved for academic practitioners and not

useful for the typical RTL-aware design and

verification engineers who use industry

standard System Verilog Assertions (SVA).

In this paper we will show how combining the

above concepts using normal SVA liveness

properties allows for RTL engineers to achieve

the benefit of formal deadlock analysis without

the iterative component or learning a non-

standard assertion language. Deadlock

verification for dummies!

Limitations of Simulation

Simple FSM Example

Two Foundational Formal Concepts

Translate Deadlock Into Formal Properties

New Approach: Combine CTL/LTL Results

Some CTL / Case A Complications

Solution: Simultaneously Leverage Case (B)

Summary

System deadlock is virtually impossible to

detect with RTL VHDL or Verilog simulations!

 Simulation cannot directly detect if the

design is deadlocked

 Can only observe that nothing’s

happened for a long time

 How long is too long?

 Simulation cannot differentiate between

cases A and B

 True system lockup vs. potentially

poor stimulus

 Simulation is dependent on users

generating the “right” stimulus

 This of course is how all bugs are missed

with simulation, but particularly so for

bugs that require a number of specific,

synchronized interactions

 The risk of a design going into deadlock is

nearly impossible to detect with RTL

simulation; hard to do with traditional formal

 Combining “LTL” and “CTL” analysis results,

leveraging standard SVA syntax, and using

new & more powerful CTL engines, enables

regular engineers to effectively utilize

CTL analysis

 Detecting RTL deadlock is now easier with

Mentor’s PropCheck using these advanced

algorithms under-the-hood

Find System Deadlock Issues Faster

 This is literally what formal was invented for!

 Simulation is uncertain and inefficient in

comparison

 Escape waveforms simplify analysis of LTL

counterexamples

 Missing constraints easier/faster to

identify

 Typically, the number of illegal escape paths

is small

 Once these are constrained away, CTL-

analysis is focused on finding bugs

 For formal experts: CTL-analysis does not

need “fairness constraints”

Two Deadlock Cases

A. Can your design get into a state from which it

can never escape?

B. Can your design get into a state in which you

can stay as long as you like (by avoiding

opportunities to escape)?

module dut (input logic clk, rstn, [1:0] din,

output logic [3:0] cnt);

typedef enum logic [1:0] { IDLE, INCR,

INCR_2X } State;

State st;

always_ff @(posedge clk or negedge rstn)

if (~rstn) cnt <= 0;

else cnt <= (st == IDLE) ? cnt :

(st == INCR) ? cnt + din :

/* st == INCR_2X */ cnt + 2*din ;

always_ff @(posedge clk or

negedge rstn)

if (~rstn) st <= IDLE;

else

case (st)

IDLE: st <= INCR;

INCR: st <= (din == 2'b10) ?

INCR_2X : INCR;

INCR_2X: st <= (cnt == 0) ?

IDLE : INCR_2X;

endcase // case (st)

endmodule // dut

“Safety”

Formally prove something bad will never happen

“Liveness”
Formally prove something good will

eventually happen

Traditionally formal verification engineers would

manually try to employ these to verify deadlock.

** Requires expertise; tedious and unreliable **

A. Not expressible with either SVA or PSL

– Can be described with computational

tree logic (CTL)

AG EF (design_state !=

`SOME_PARTICULAR_STATE)

× CTL is too “academic” for regular engineers to use

× CTL is not supported by commercial tools

B. Standard SVA liveness property

– Linear Temporal Logic (LTL) semantics

assert property (@posedge clk)

s_eventually (design_state !=

`SOME_PARTICULAR_STATE);

!Req

!Rst

!Req !Req !Req !Req !Req !Req !Req

!Req

AckRst

!Ack

Req && !Rst

!Ack !Ack !Ack !Ack !Ack !Ack !Ack !Ack !AckRst

SVA Deadlock Properties

 CTL Analysis

Infer CTL property from SVA description

No need for engineers to write CTL properties

Directly target “real” deadlock situations
Enabled by new & improved formal engines

 LTL Analysis

Continuity with existing tool behavior

Leverage CTL analysis to expose escape

routes

Results shown in easy to understand format

LTL CTL

Case A Property and CEX (FSM Example)
a_deadlock_chk_INCR_2X: assert property

(s_eventually st != INCR_2X);

Case B Property and CEX (FSM Example)
a_deadlock_chk_INCR: assert property

(s_eventually st != INCR);

CTL deadlock counterexample

(once in a loop state it is not possible to ever see

“Ack”, regardless of inputs)

 Good for finding “real” deadlocks

 Not so good for proving there are

no deadlocks

 Can prove that there are no deadlocks to

be found

 But, proof does not necessarily mean that

your system is deadlock-free !?

 (This is why SVA/PSL are based on LTL

and not CTL!)

Proof of Case (A) != deadlock-free

 Here is the catch

 Addition of constraints can expose type-A

deadlocks in a system that

does not otherwise have them

 Simple example: Reset -- if the design

can always be reset, then type-A

deadlock is not possible – asserting reset

is always an escape option

 Case (A) is for bug hunting

 Makes it much easier to find deadlocks

 If you find a counterexample, you have

deadlock in your design

 But, bugs might be hidden due to

missing constraints

!Ack

Req && !Rst

!Ack !Ack !Ack !Ack !Ack !Ack !Ack !Ack !AckRst

LTL deadlock counterexample

(could loop forever, but might also

be able to exit and see “Ack”)

 If Case (A) is proven, case (B)

counterexample (CEX) will be shown with

escape routes

 There must be an escape route,

otherwise CEX would be a case (A) CEX

 Add constraints on the escape routes

 Example: if reset used to escape,

constrain reset to not assert after design

initialization (normally done automatically)

 Poster FSM Example: Constrain “din” to

eventually equal the value of 2

 For a complete proof, iterate thru escape

routes and add new constraints until:

 There are no more type-B CEX –

congrats, your system is deadlock-free!

OR

 There IS a type-A CEX – meaning there is

deadlock situation, and you have a CEX

from formal analysis to debug/correct it

!Ack

Req && !Rst

!Ack !Ack !Ack !Ack !Ack !Ack !AckRst

Ack

X

Example Deadlock Properties

Properties typically take one of two forms:
s_eventually(condition)

gating |-> s_eventually(condition)

req/ack type:
s_eventually(ack) or

mode == `READ && no_intr && req

|-> s_eventually(ack)

Bus type:
s_eventually(pready) (APB4)

s_eventually(awready) (AXI4 AW)

Arbiter type:
s_eventually(~gnt[0])

Note: Full property syntax not shown

This is analogous to the trapped warehouse

worker mentioned in the paper

This is analogous to the couch potato

mentioned in the paper

In the above waveform, if the value of “cnt” is odd when the FSM transitions to

the INCR_2X state, the FSM is in true deadlock since “cnt” can never equal 0.

In the above waveform, the FSM state INCR is deadlocked if the input “din”

never equals 2. The escape path is when the input “din” equals 2. Constraining

the input to eventually be that value would result in a proof, showing no

deadlock is possible for the FSM state INCR.

