
TEMPLATE DESIGN © 2008

www.PosterPresentations.c
om

De-mystifying synchronization between various verification components by

employing novel UVM classes
Name : Pushpal Nautiyal Name : Gaurav Chugh

Email ID: pushpal@synopsys.com Email ID: cgaurav@synopsys.com

Mobile no: +919717705649 Mobile no: +919871800685

Synchronizing Verification Components

UVM class-based test benches have

become as complex as the hardware under

test [DUV] , and are evolving into large

object oriented software designs

This poster is an attempt to lift the veil on

sorely underutilized UVM classes such as

following:

1) uvm_event/uvm_event_pool

2) uvm_barrier/ uvm_barier_pool,

3) uvm_heartbeat

4) Grab/Ungrab

UVM_EVENT/ UVM_EVENT_POOL

Synchronization of Global “Reset” Event

UVM_BARRIER /UVM_BARRIER_POOL :

Its assets come to the fore when a user

wishes to block desired number of

processes until a threshold/synchronization

point is achieved.

The uvm_barrier_pool classes make it

easier to manage components that share

the same barriers as they also can be

accessed globally just as uvm_events .

UVM BARRIER

One of the most active areas where it can

be easily be employed is when multiple

sequences are getting executed in parallel

and one needs to wait for completion of all

the sequences to go forward

The most prevalent API’s for uvm_barrier

class are :

1) wait_for : Will block until completion of

processes to reach the barrier

2) set_threshold : Determines numbers of

processes who would wait on the barrier

before they resume

3) get_num_waiters: Queries the number of

processes currently waiting at the barrier

Employing Barriers to Check for Link UP

UVM_HEARTBEAT :

The UVM Heartbeat behaves as a watchdog

timer and is quite powerful. It watches for

activity in the test bench components and if

it finds that there isn’t the right amount of

activity in that window - will issue a fatal

message and end the simulation. This can

catch a simulation lock-up early on – even

before the global timeout kicks in, potentially

saving a significant amount of time.

Here are few of the scenarios of interest in

ceasing a simulation rather than

UVM_TIMEOUT being called out :

1) Absent Connections between the

Verification Components

2) Simulation Hang in State Machines

To employ the UVM heart beat we need to

associate a specific objection object , and

the heartbeat object must raise (or drop) the

synchronizing objection during the heartbeat

window

UVM HEARTBEAT

The most prevalent API’s for uvm_hearbeat

class are :

1) set_mode: Sets or retrieves the

heartbeat mode:

The heartbeat can be configured so that all

components (UVM_ALL_ACTIVE), exactly

one (UVM_ONE_ACTIVE), or any

component (UVM_ANY_ACTIVE) must

trigger the objection in order to satisfy the

heartbeat condition.

2) Add/remove: Add/Removes a single

component to the set of components to be

monitored

3) set_heartbeat: Sets the target list of

components that are required to be

monitored and setting of the heartbeat

event. Soon after invocation of this

monitoring is initiated

GRAB /UNGRAB

GRAB /UNGRAB :

This mechanism provides the sequence with

exclusive access to the driver and will allow

a sequence to complete its operation

without any other sequence operations in

between them . The grab() method requests

a lock on the specified sequencer. A grab()

request is put in front of the arbitration

queue. It will be arbitrated before any other

requests.

This mechanism is highly recommended in

scenarios when a virtual sequencer requires

full control over its sub/child sequencers for

a limited time and then lets the original

sequences continue working.

From an implementation perspective it will

be highly useful in generating INTERRUPT

Sequences where disabling of sub/child

sequencers is required and highest priority

needs to be given to specific sequences

Psuedo Code :

virtual task body();

// Grab the cpu sequencer if not virtual.

if (sequencer.cpu_seqr != null)

p_sequencer.cpu_seqr.grab(this);

// Execute a sequence.

`uvm_do_on(intrpt_seq,sequencer.cpu_seqr)

// Ungrab.

if (sequencer.cpu_seqr != null)

sequencer.cpu_seqr.ungrab(this);

UVM_EVENT/ UVM_EVENT_POOL :

The UVM event class congregates the

richness of System Verilog/Verilog

events and adds a few features of its

own, thus achieving leverage.

Advantages of UVM events:

1) Provides a knob to the user just

before or after the activation of

uvm_events via “trigger_callbacks”

2) Can be used to return status of

uvm_objects on triggering of event

3) Ease of accessibility [Event objects

can be passed around the Test

bench using “uvm_config_db ”

mechanism]

For example in verification environment

two components such as “environment”

and “agent” or [driver & monitor etc]

may depend on single event say

“reset_event” and hence can easily be

shared .

System Verilog

Based Event

UVM Events

“Super set “ of SV

events

Global Reset

Local Reset Local Reset

Top Component

[ENV]

Child Component

[Agent B]

Retrieving Global event :
Uvm_config_db#(uvm_event)::get(uvm_root::get_type(),

“uvm_test_top.env*”,”shared_event” local_reset_event)

Child

Component

[Agent A]

Setting Global event :
Uvm_config_db#(uvm_event)::set(uv

m_root::get_type(),

“uvm_test_top.env*”,”shared_event”

global_reset_event) Device 1

[D1]
Device 2

[D2]

Barrier

Scenario: Devices D1 & D2 are waiting for Link Up and once

that is done then Frame

Transfers should be initiated

Initiate Frame

Transfers

Barrier Threshold is set to 2, Barrier will only

unblock if Link is up for both the devices

Event Trigger : Ensure unblocking of “wait_*trigger*’ calls

such as

1) wait_trigger: Checks for triggering of the Event

2) wait_ptrigger : Checks for triggering of the Event over the time slice

etc …

One can also the provide “data” type argument to feed trigger

related information

<loc_event>.trigger(data); //”data “ will have trigger specific

info
a) get_trigger_data : Retrieves the data if provided during invocation of “trigger”

“Pre_trigger” event_callback :

Can replace tasks that wait on

triggering of event

“Post_trigger”

event_callback: Invoked

after triggering of the

Event

CPU

Interrupt Sequence

Power Down

Memory

Read/Write

Interrupt will be

serviced first

