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Abstract—In today’s complex System on Chip (SOC) designs, multiple asynchronous clock domains are increasingly 

getting deployed. More and more data are transacted from one unit to another, crossed different clock domains. 

Hence, formal verification (FV) methodologies are required for exhaustive verification. The traditional formal 

property verification (FPV) is not ideally suited for data-path intensive designs. Additionally, FPV is highly 

dependent on the quality of the coded properties. Thus, instead of going by the usual flow of assertion based FPV, we 

explored the use of pre-tested, automated and data-path optimized FV Proof Accelerators (PAs) provided by the 

EDA FV tool. Use of these PAs expedite the verification of Clock Domain Crossing (CDC) based designs by 

empowering the user to do quick setup of the formal environment, by providing increased proof convergence and by 

eliminating the risk of human errors by automating property generation. The formal approach described here is 

generic enough to be easily applied to a wide range of CDC-based designs. 
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I.  INTRODUCTION 

The solution is used to verify end-to-end data integrity across the data path. In case of applying traditional 

FPV for such kind of checking, usually the properties themselves require a large memory to verify the design 

intent. The Scoreboard is designed to overcome these types of problems and make formal verification possible 

in situations that would otherwise be hard to approach with formal techniques. 

 

 
Figure 1. Formal score board solution for verification data path 

 

The figure 1 shows the formal scoreboard solution for verification of data path. The DUT (Design Under 

Test) is bind with scoreboard via a Verilog wrapper. The scoreboard will verify that data will be transmitted 

properly. In the wrapper there is a clock frequency jitter, which could generate two different clock signals driving 

the two clock domains of DUT. In the DUT the original sync-register is replaced with an async-CDC modelling 

block. The async-CDC modelling block can emulate the situation of signal crossing the two clock domains.  In 
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order to speed up the proof, the accelerator modules are applied in the DUT to replace the buffer and counter 

units.  

In this solution contents many Verilog components beside DUT.  There are three types of the modules for 

modelling, verifying, and accelerating.  The modelling modules emulate the behaviors of function of design and 

environment, similar as assumption. The verification modules are in charge of checking of the correctness of data 

transmission. The accelerating modules will replace the original part of DUT, abstract the function of the original 

one in order to decrease proof time. In each type there are several modules available to adapt different 

design/verification requirements.  

Modelling modules: async-CDC, async-CDC-wire, async-CDC-reg, clock-frequency-jitter ,etc. 

Verifying modules: scoreboard, scoreboard-priority, etc. 

 Accelerator modules: fifo, fifo-priority, memory, multiplier, etc. 

  

II. DATA PATH VERIFICATION WITH FORMAL SCOREBOARD 

A. Verifying Modules : Formal Scoreboard 

The formal scoreboard is embedded with all the required assertions for verification of end-to-end data 

integrity across a data path. In this type of verification problem, the properties themselves require a large memory 

in order to verify the design intent. For instance, to verify that packets are never corrupted across a data path, the 

requirement needs a FIFO to keep track of the incoming data to compare that data with the observed emitted data 

at the other end. The solution is designed to overcome these types of problems and make formal verification 

possible in situations that would otherwise be hard to approach with formal techniques. 

The following error conditions are identified with this Verification Component:  

1) Dropped Data Packets 

When two tagged data packets enter the DUV but only one of the data packets exits, then data was dropped. 

2) Duplicated Data Packets 

When only one tagged data packet enters the DUV but two such data packets exit, then data was duplicated.  

3) Out-of-Order Data Packets 

When tagged data packets enter the DUV in a given order but exit in a different order, then data sequencing 

was not respected.  

4) Corrupted Data Packets 

When a tagged data packet enters the DUV but this data packet exits with a different value, then data integrity 

was violated. 

The correctness of the transactions across the DUT means the packet faithful transmission, maintaining the 

order, data duplication and corruption. Validating the design would require plugging in the scoreboard to the 

DUV and connecting it to the corresponding interface signals. All the required checks are embedded in the binary 

and wouldn’t need any specific assertions to be coded by the validator. There are sanity checks enabled as cover 

points to assist the validation closure. 
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Figure 1. Bind example of Scoreboard 

The Figure 2 shows the example of binding the simple formal score board with a 8-bit serial to parallel 

receiver.   The instantiation for VHDL DUT could be like: 

 

After loading of the score board and DUT in tool, the following assertions/covers will be generated:  

 

Table I. Formal score board assertions 

Assertions Description 

Packet_sanity Verify the data path cannot dead lock 

Packet_no_extra Data packets is transferred without duplication 

Packet_integrity Data packets is transferred without corruption (dropped, duplicated, out of order) 

 

Table II. Formal score board sanity checks 

Sanity Check Description 

Packet_sanity At least one packets are pushed and popped 

Reset active Reset signal is active 

Reset toggle Reset signal toggles at least once 

 

dp : Formal_scoreboard  

generic map ( PKT_LATENCY => 65, LOG_PKT_LATENCY => 7 

)  

port map (  

clk1 => clk, clk2 => clk,  

rst1N => ( rstN and not tx_error ),  

rst2N => ( rstN and not tx_error ),  

incoming_sop => ( 0 => valid_in, others => '0' ),  

incoming_eop => ( 0 => valid_in, others => '0' ),  

incoming_vld => ( 0 => valid_in, others => '0' ),  

incoming_data0 => ( data_in ),  

outgoing_sop => ( others => valid_out ),  

outgoing_eop => ( others => valid_out ),  

outgoing_vld => ( others => valid_out ),  

outgoing_data0 => ( data_out(0) ),  

outgoing_data1 => ( data_out(1) ),  

outgoing_data2 => ( data_out(2) ),  

outgoing_data3 => ( data_out(3) ),  

outgoing_data4 => ( data_out(4) ),  

outgoing_data5 => ( data_out(5) ),  

outgoing_data6 => ( data_out(6) ),  

outgoing_data7 => ( data_out(7) )  

); 
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B. Modelling modules 

The architecture for verification includes modelling counters and buffers along with the asynchronous clock 

domain crossing modelling. The clock frequency jittering mechanism does allow frequencies to be changed 

during verification which helps in covering a wide range of clock ratios. The async-CDC module can exhibit non-

deterministic behavior when the active edge of the input domain clock lines up with the active edge of the output 

domain clock. 

1) Async-CDC: 

This module is instantiated once for each flop (or bus of flops) that are in the fanin of flops immediately after 

the CDC. The figure 3 illustrate the non-deterministic behavior of the sync-flop.  The ansyc-CDC module will 

replace the original flop to model this behavior 

 

Figure 3. the non-deterministic behavior 

 

The instantiation example of Async-CDC module 

 

 

2) Frequency jitter 

The frequency jitter is used to model the effects of frequency jitter when proving assertions in a design under 

verification (DUV) that includes multiple clock domains. Using this module makes it possible for the ratio 

between fast and slow clocks to vary within a defined range instead of always being locked at the same value. 

R1_model: formal_model_async_cdc  

generic map ( SIG_WIDTH => 8 )  

port map (  

clk => clk1,  

rstN => not rst,  

sig_in => S1,  

sig_en => (others => ’1’),  

sig_out => new_R1 ); 
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Figure 4. the example of bind clock frequency jitter with DUT 

 

Figure 4 shows the connection of frequency jitter with DUT.  By modification of the parameters of frequency 

jitter, the clock frequency and ratio of the clocks will be changed. The frequency relationship has a three-value 

range. An additional parameter specifies the number of cycles the system takes to recover after frequencies 

deviate from their nominal relationship.  

Table III. Formal score board sanity checks 

Parameter Description 

RATIO_LOW Lowest ratio value between fast clock and slow clock 

RATIO_LOW Median ratio value between fast clock and slow clock 

RATIO_LOW Highest ratio value between fast clock and slow clock 

RECOVERY_CYCLE Number of cycles the DUV takes to recover from a frequency glitch 

 

As Table III shows, we don’t need to redefine the clock and elaborate; we can get the clock signals with three 

different frequencies on the given ratio of the fastest clock.   It help us to emulate the async-clocks environment.  

 

 

C. Accelerator modules FIFO 

By application of formal property verification there are always buffers, memory or mathematic 

multiplication/divide units in our design. These structures are rarely of interest in the overall verification of the 

design since they are well understood and seldom contain bugs. However, these structures can become major 

performance bottlenecks for formal verification tools due to the huge state space they can introduce.  In this paper 

we will only show the example how we use the abstract FIFO to replace the original one accelerate the proof 

speed.  

Our EDA vendor enable safe abstraction of FIFOs and memories while preserving sufficient information 

across these structures to ensure that the Formal Scoreboard provides accurate results, both in terms of valid 

proofs and meaningful counterexamples. These modules make it possible to fully verify end-to-end data integrity 

properties that would otherwise be impossible to handle with formal technology. 

The usage of abstract FIFO is very simple. User need to replace the driver of the output signal of the DUV's 

FIFO with abstract FIFO output, and connect the signals with the DUT. Below is the example of instantiation of 

abstract FIFO of VHDL design 
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III. PROJECT FEEDBACK 

The scoreboard is deployed in the IMC project team. Compare traditional simulation method, it saves about 

80% time by validation of an async-FIFO block (exact data will be given in final submission) compare the 

dynamic method. Compare the FPV method about 50% time is saved.  With tool we get the code coverage of 

94%. 

 

IV. SUMMARY 

 

The formal verification is applied more and more in recent year. We can find the static formal verification in 

every corner of hardware verification.  With the development of the tools and the methods, the hardware 

validators have more chance to use formal method solve the problem, find the bug in their design.  This 

scoreboard method fills another application area with many advantages:  

Very adaptable:  the element of the whole method could be applied separately. The score board method is not 

only to verify the FIFO data path. It can also be applied in any type of data path verification. The abstract 

modeling method can be applied separately; it can be deployed in FPV or other type of formal verification 

applications, to increase the proof speed. The clock frequency jitter can be used to emulate the multi clock 

environment.  

Easy to implement:  this method is very easy to use. Not much formal knowhow is required.  The beginner of 

the formal verification can also handle with it.  It only needs the basic System Verilog knowhow.  

Very efficient: compare the traditional simulation method, the score board shows its powerful efficiency in 

project task. So far the flow is setup, the running time/proof time is relative short. For module level it normally 

takes only minutes to verify the data path.  
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fifo_model: formal_model_fifo  

generic map ( PTR_WIDTH => 5, DATA_WIDTH => 1, DATA_REG_WIDTH => 4 )  

port map (  

clk1 => clk,  

clk2 => clk,  

rst1N => not rst,  

rst2N => not rst,  

datain => din(32 downto 32),  

datain_reg => din(64 downto 61),  

push => wr,  

pop => rd,  

empty => empty,  

full => full,  

pkt_vld => '1',  

polarity => polarity,  

dataout => dout,  

dataout_reg => dout_reg  

); 

 


