

Data-Driven Verification: Driving the next wave of productivity improvements

Cadence Presenters

Larry Melling, Director Product Management Chris Komar, Group Director Product Engineering

Sharon Rosenberg, Solutions Architect Michael Young, Group Director Product Management

UltraSoC Presenter Hanan Moller, Systems Architect

The Problem

- Verification cost growing exponentially with complexity
- Finite budget
- Finite resources
- Compromise quality/Increase risk

The Problem

What is Data-Driven Verification?

Use-case-based	 Define legal operations Workload matters: must represent real operation
Data Collection	 Non-intrusive data collection Use the right execution platform
Analysis	 Correlate, filter, learn, predict Anomaly Detection
Goal-based	Verification throughputSmarter bug hunting

Cadence Verification Suite

Bug detection still not as early as possible

Sharon Rosenberg, Solutions Solutions Architect, Cadence

PORTABLE STIMULUS: USE-CASE-BASED VERIFICATION

Portable Stimuli Standard (PSS)

• Behavioral standard language to express scenarios

- Parallelism with fork and join
- Control flow with loops, conditionals
- Data path via memory buffers and streams
- Powerful built-in system-specific semantic for
 - Resource availability and distribution
 - Configuration, and operation modes
- Codified in two equally powerful input formats:
 - C++ library appeals to C++ users
 - PSS a Domain Specific Language (DSL) easier to read and better error messages
- Standard is defined by PSWG in Accellera

Use-case-based	 Define legal operations Workload matters: must represent real operation
Data Collection	Non-intrusive data collectionUse the right execution platform
Analysis	Correlate, filter, learn, predictAnomaly detection
Goal-based	Verification throughputSmarter bug hunting

Capturing Legal Behaviors

Capture test intent, analyze legal paths, generate tests randomizing options

Answer: 11..14

they connected to the same memory, and no restriction prevents that communication (e.g. data size or data kind mismatch)

Capturing Legality Rules

Capture test intent, analyze legal paths, generate tests randomizing options

20

DESIGN AND VERIFICATION

same original request

SYSTEMS INITIATIVE

Test can be Generated to Run on Any Platform

<u>My first test</u>: load the memory with data and use the DMA to copy it to a different location

PSS Impact on Stimulus

Existing stimulus

Post- silicon	 Generally OS based tests. Long test consume valuable r Longer debug time Failures are difficult to bring to emulation or simulation fo 	CONFERENCE AND EXHIBITION	Stimulus with PSS
Pre-silicon SoC Pre-silicon	 Simple directed feature tests Difficult to manually create complex scenarios Long run time for complex scenarios Excellent UVM based constrained random testbench IP initialization sequences not easily portable to FW or portable to FW or	Post-silicon	 Smaller deterministic bare-metal tests Compose complex scenarios Easily bring debug to Emulation Generate large set of tests for regression
IP	IP level tests lack system context	Pre-silicon So	 Describe test intent with PSS Automation helps with complex scenario composition Reuse tests post-silicon
Excerpt from	AMD DVCON presentation	Pre-silicon IP	 Reuse SoC scenarios Export initialization sequences to firmware and post-silicon Export IP specific scenarios to SoC

Renesas Performance Verification with Pespec Generated Use-cases

- Leading industrial and automotive MCUs
 - Number of integrated IPs is increasing
 - Switched interconnect
 - Configuration has big impact on performance
- Interconnect Workbench performance analysis
 - Early performance characterization
 - Interconnect tuning to optimize performance
 - Use case performance validation
- Palladium Z1 with Perspec use cases
 - Bring-up the entire design and software
 - Perspec generating use case tests
 - Reduce from 50 hour simulations to 12 minutes

Why PSS is Great for Data-Driven?

- Captures the verification flows
 - Allows focusing on intent
 - Abstracts away implementation details
- Automated traffic to close the coverage gap
 - UVM gives a fresh stream per seed but virtual sequences are highly directed
 - Accomplishing a goal may require coming up with different timing or test topology
 - The power of the PSS random schedule capability
- PSS captures the legality rules
 - "Don't move the furniture and don't clean the dog"
- Portability
 - Coverage filling task may cross platform borders
 - May not have enough cycles to be closed in a single platform
- PSS solve the entire scenario in one time
 - Can leverage data before running the simulation

Data-Driven with with vManager and Perspec

Implications:

- Reduced number of \cap machines and farm size
- Less human efforts for \cap coverage review and test creation
- Shorter cycles to meet coverage goals and project deadlines

that is added on all

MDV steps!

redundant

acce SYSTEMS INITIATIVE

Perspec and vManager Revolution

- Builds on the vManager flows capability
 - Allows running a multi-steps session
 - Steps can run in parallel to each other (e.g. start launching tests as soon as they are ready)
- Simplified integration scripts using the following user-defined scripts
 - ps_gen_script a script for generating a full perspec regression
 - ps_exec_script a script for running a single test
 - config file lists step names, top-directories and the two scripts above
- Enhanced regression control with test tables
 - The tests to be generated and executed are coming from Perspec test tables (and not VSIF)
 - Include multiple top actions, constraint settings, counts and fill capabilities for each
 - The execution scripts are the gen and exec scripts provided above
- The MDV flow does not force usage of test tables
 - Users can use home grown scripts
 - More automation can be provided on top of test tables

Resolving vManager/Perspec terminology review

Perspec-vManager Solution

										Per	spec	now c	JOHSIS		twos	steps	•			
										Tes	t gen	eratio	n & te	est ex	xecuti	ion w	ith abi	lity to		
								perspec_w	/ith_rank_s	ana	alvze	each								
	rft -									unc		cucii								
		LEANT	Degrees	sian Ea	aslana	1													0.0	0
	n-shubhas:8082	640 [Regress	sion - Se	SSIONS	1								900- 2						
File View Regression	n Help																		cader	nce
						Regress	ion <i>I</i>	Analysis	Tra	acking	Pla	anning								
Launch Import Collect Runs	III All_Flows →	Export	Export Merge	tefresh	E Stop	Stop Auto. Sus	11 spend Resum	e Delete	C Relocate	Open dir S	Session Re Info I	ecalc Char UDA	rt Filter Selected	袭 👻 Rerun Failures	<u> é</u> Edit each 🖇	€ v Metrics	New vPlan	¥ Reports	() Help	
Global Operations	Views							Sessions							Attributes	Analy	ze Plannin	ig Report	Help	
D Flow Sessions																				٠.
Session Status	Name					Total F	Runs	#Passed	#Failed		#Runnin	g #Waiting	:	#Other	Start Tim	e V	Owner	Is Sflow	~	D
(no filter)		(ne) filter)			(n	io filteri	(no filter	r) (no f	filter)	(no filte	er) (no	filter)	(no filter) (no f	filter)	(no filter)	[TRUE]	v	
completed	📑 perspec_flow.st	hubhas.1	9_02_22	_07_14_58	3_051		3	3	0		0	0		0	2/22/19	7:15 AM	shubhas	TRUE	£	B
	_																			Π
<u>ا</u>													Onc	$\sim 2 \pm 1$	oct ic	aono	rated it	tic ad	dod t	to
Showing 2 out of 6 items	Showing 2 out of 6 items Once a test is generated it is added to the execution session									.0										
D Sessions pe																			- ¹	
Session Status	Name						Total Runs)	#Passe	ed	#Failed		#Runnin	g #	Waiting		#Other	Start Ti	me 🗴	
(no filter)			(no fi	lter)			(no	filter)	(no f	filter\	(no) filter)	(no fi	ilter)	(no fi	lter)	(no filter	r) (no filt 🎽	
completed	perspec_e:	xecution.	19_02_22	2_07_17_2	26_2131		10		10		0		0	0			0	2/22/19	97:17 戶	
completed	perspec_g	eneration	1_19_02_2	22_07_15_	_28_864	×0	18 🔤		18		0		0	0			0	2/22/19	97:15.	

fla

conciete

- **1** - **1**

CONFERENCE AND EXHIBITION INITED STATES ImageMagick: multi_transfer_t2_0.jpg (on _ 0 × 9)	Persnec-vManager Solution Regression recipe (test table) Levent Step Levent								
write_data: proc_tag corel_0 copy_data: proc_tag master				y diagram . of the					
transfer: transfer proc_tag coreO_1	g 7 items ns Tes	Link to the UML t. diagram of the test.		entire regress	ion	_	- G		
copy_data_l:copy_data proc_tag core3_0	ur ▼ III Nam	e progress	Status	Duration (sec.)	Top Files	Start Time	v		
transfer proc_tag corel_l	er)	(no filter) /cdn_uart_apbe_tests/data_poll_vir_seq /cdn_uart_apbe_tests/data_poll_vir_seq	(no filter)	(no filter) 18	(no filter) /grid/avs/install/incisiv/10.2/lates /grid/avs/install/incisiv/10.2/lates	(no filter) . 1/4/11 11:22 PM	4		
copy_data_2: copy_data proc_tag core3_1		/cdn_uart_apbe_tests/test_uart /cdn_uart_apbe_tests/test_uart	C failed C failed	17	/grid/avs/install/incisiv/10.2/lates /grid/avs/install/incisiv/10.2/lates	. 1/4/11 11:21 PM . 1/4/11 11:21 PM			
transfer_2: transfer proc_tag master		/cdn_uart_apbe_tests/fill_tx_buffer /cdn_uart_apbe_tests/fill_tx_buffer	Ø passed Ø passed	18 25	/grid/avs/install/incisiv/10.2/lates /grid/avs/install/incisiv/10.2/lates	. 1/4/11 11:20 PM . 1/4/11 11:20 PM			
read_check_data: read_check_data proc_tag core0_1		'cdn_uart_apbe_tests/fill_tx_buffer 'cdn_uart_apbe_tests/fill_tx_buffer 'cdn_uart_apbe_tests/data_poll	💟 passed 🔇 passed 🔇 passed	18 22 22	/grid/avs/install/incisiv/10.2/lates /grid/avs/install/incisiv/10.2/lates /grid/avs/install/incisiv/10.2/lates	. 1/4/11 11:19 PM . 1/4/11 11:19 PM . 1/4/11 11:18 PM			
multi_transfer_t2_0		/cdn_uart_apbe_tests/data_poll /cdn_uart_apbe_tests/data_poll	 passed passed 	24 23	/grid/avs/install/incisiv/10.2/lates /grid/avs/install/incisiv/10.2/lates	. 1/4/11 11:18 PM . 1/4/11 11:17 PM			
7 6 5	() () ()	'cdn_uart_apbe_tests/data_poll 'cdn_uart_apbe_tests/data_poll 'cdn_uart_apbe_tests/data_poll	✓ passed✓ passed✓ passed✓ passed	18 20 19	/grid/avs/install/incisiv/10.2/lates /grid/avs/install/incisiv/10.2/lates /grid/avs/install/incisiv/10.2/lates	. 1/4/11 11:17 PM . 1/4/11 11:17 PM . 1/4/11 11:16 PM			

Execution runs

PSS and Data Driven

- Use-case capture essential for Data driven flows
 - Capturing information and legality rules
 - Revolution in test generation automation
 - Can be applied to any execution platform
- Capabilities exist today
 - Used by multiple users world-wide for both sub and full systems
 - Applications include workloads for performance, power, and coherency testing
- Can feed a data-driven cognitive machine for further analysis

Thank you!

Chris Komar, Product Engineering Group Director, Cadence

DATA-DRIVEN FORMAL VERIFICATION

Data to Drive...

Data to Drive...

Ever-Increasing Amount of Formal Coverage Data

• Formal Coverage models and types continue to expand

Formal-specific Coverage Types

Stimuli Coverage

Formal Setup

DUT

How restrictive is the design behavior under the formal setup? Is the design over-constrained?

Proof Coverage

What coverage is achieved by the proven properties?

accellera systems initiative **Cone-of-Influence (COI) Coverage**

Formal Setup

Properties (Structural COI analysis)

How complete is my property set? Do I cover all design behaviors ?

COI / Proof Core Coverage

Cone-Of-Influence Measurement **Proof Core Measurement** Design fan-in is computed starting from assertion, traversing back to inputs • The union of proof cores from all asserts is reported · The union of COIs from all assertions is reported Anything outside the Proof Core region cannot influence assertion status · Anything outside the COI region cannot influence assertion status · Anything inside the Proof Core region may influence assertion status • Anything inside the COI region may influence assertion status Slower measurement than COI – requires running formal engines • Fast measurement – no formal engines are run Covered Design (In-Proof Core) Design Region Uncovered Uncovered Asse Covered Region (In-COI) Asser Region Region Uncovered (Out-of COI) Region cādence cādence

From COV App Rapid Adoption Kit on http://support.cadence.com

Formal-specific Coverage Types

Stimuli Coverage

Formal Setup

DUT

How restrictive is the design behavior under the formal setup? Is the design over-constrained?

Proof Coverage

What coverage is achieved by the proven properties?

accellera systems initiative Cone-of-Influence (COI) Coverage

Properties (Structural COI analysis)

How complete is my property set? Do I cover all design behaviors ?

What coverage is achieved by bounded proofs? Is the bound enough? How to do better?

SYSTEMS INITIATIVE

Multi-Dimensional Coverage Data

• Coverage data is multiplied by the unique coverage types offered by formal

	•			Coverage N	Models		
^		Branch	Statement	Expression	Toggle	Property	Covergroup
Ser	Reachability	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Typ(Deadcode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
age	COI	\checkmark	\checkmark	\checkmark	\checkmark		
over	Proof Core	\checkmark	\checkmark	\checkmark	\checkmark		
Ŭ	Bound	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

How to make sense of the data?

- 1) Abstract to more meaningful metrics
- 2) Provide an intuitive GUI to analyze results
- 3) Intelligent exclusions

34

Meaningful Metrics

	<	Coverage Models									
_		Branch	Statement	Expression	Toggle	Property	Covergroup				
	Reachability	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Stimuli			
λh	Deadcode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Coverage			
a A A B A	COI	\checkmark	\checkmark	\checkmark	\checkmark			Checker			
JAAL	Proof Core	\checkmark	\checkmark	\checkmark	\checkmark			Coverage			
	Bound	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Bound Analysis			

Stimuli Coverage Checker Coverage **Bound Analysis**

Stimulus exists that explores all code

Sufficient assertions exist that checks all code

accellera

SYSTEMS INITIATIVE

Meaningful Metrics

	<			Coverage N					
^		Branch	Statement	Expression	Toggle	Property	Covergroup		
Types	Reachability	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Stimuli	
	Deadcode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Coverage	Formal
age	СОІ	\checkmark	\checkmark	\checkmark	\checkmark			Checker	Coverage
Cover	Proof Core	\checkmark	\checkmark	\checkmark	\checkmark			Coverage	
	Bound	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Bound Analysi	is

Formal Coverage Code cover item can be exercised by the environment/inputs AND Has been checked by the assertions

Intuitive GUI

م run_cov.tcl (sessior	1_0)	- JasperGold Ap	ps (/pp_c	ov/jgproject) - Main		_ = ×	
File Edit View Design Reports Application Windo	w <u>F</u>	lelp					cādence	
🚓 Coverage 📑						V_ 23/(23) 🔿 🌀 😃	
File Coverage Setup Coverage Setup	C	overage Measurement	-Search					
🚔 🐼 🖻 🔻 🚅 🐄 🕅 🐙 🖻 🔻 🔂 🗟 🐼 🕶 🗊 🔻 🎓 🎓 🧐 👘 🖉 🛛 🖉 🖉 🖉								
Coverage Analysis Assort Analysis Waiver Table Concele								
Coverage Analysis Asset Analysis Walver lable Collsole B ×								
Task(s) <embedded> Exclud</embedded>	les 🚺	Waived, Reset		Ţ Cł	necker Settings	Proof Core + C	xoi 🔽 🔠 🚹	
Coverage Models: 1 S C C								
Instance	Ex.	Formal Coverage	0	Stimuli Coverag	e Ø	Checker Cover	age 🕐	
	\oslash	2813/300	8 (93.52%)	2888/3	3008 (96.01%)	926/1	113 (83.20%)	
🗄 🗄 ig_parse (pp_ig_parse)	Ø	116/135 (85.93%)	119/13	35 (88.15%)	116/1	35 (85.93%)	
⊕ ः ः foute_ctrl (pp_route_ctrl:(PTR_W=3))	\oslash	152/176 (86.36%)	160/17	76 (90.91%)	152/1	76 (86.36%)	
🕀 🗄 payload_mem (pp_payload_mem:(PTR_W=3))	Ø	162/186 (87.10%)	168/18	36 (90.32%)	161/1	.85 (87.03%)	
	Ø	177/199 (88.94%)	178/19	99 (89.45%)	176/1	.98 (88.89%)	
	Ø	100/111 (90.09%)	100/11	L1 (90.09%)	100/1	11 (90.09%)	
drop_ctrl (pp_drop_ctrl:(PTR_W=3))	Ø	50/56 (89	.29%)	50/56	(89.29%)	50/56	6 (89.29%)	
	Ø	67/76 (88	.16%)	67/76	(88.16%)	67/76	6 (88.16%)	
	Ø	47/108 (4	3.52%)	98/108	3 (90.74%)	47/10	8 (43.52%)	
□ I intr ctrl (pp intr:(PTR W=3))	0	57/68 (83	.82%)	63/68	(92.65%)	57/68	3 (83.82%)	
□ I fv env:(DATA MEM SIZE=8,DYNAMI	_	1885/189	3 (99.58%)	1885/1	1893 (99.58%)	0/0 (0	0.00%)	
Summary Detailed								
		No p	roofs running	Console i	nput ready	No error in con	isole	

Intuitive Analysis

- Top-down navigation
 - Summary views reflect the progress of bug-hunting or signoff efforts
 - Quickly analyze the source of remaining gaps

	1		П	 1	
Name 🖤	Total CI's	Formal	ك	26	<pre>module pp_intr #(</pre>
cfg_thr_almost_full_level	4	0/4 (0.00%)		 27	parameter $PTR_W = 6$,
cfg_auto_assign	1	0/1 (0.00%)		 28	parameter NUM_IHK = 4,
cfg auto assign thr	2	0/2 (0.00%)	-	 30	
cfg intr mask	32	32/32 (100.00%)	5	31	input bit clk,
cfg intr clear	32	32/32 (100.00%	5	 32	input bit rstn,
intr status	32	11/32 (34 38%)		33	input hit (DTD WeQl at a suci)
intr the ompty the	2	0/2 (0 00%)	•	35	input bit [NUM THR-1:0][PTR W:0]
intr_thr_empty_thr	2	0/2 (0.00%)	╶┼━━┛	36	input bit checksum error,
intr_thr_almost_empty_thr	2	0/2 (0.00%)		37	input bit new_packet,
intr_thr_almost_full_thr	2	0/2 (0.00%)		38	<pre>input bit list_init_done,</pre>
intr	1	1/1 (100.00%)		39	<pre>input bit thr_init_done,</pre>
cfa ca en	1	1/1 (100.00%)	-	40	
ofg_updated	1	1/1 (100.00%)	-	41	<pre>input bit [PTR_W:0] cfg_list_almo</pre>
crg_updated	1	1/1 (100.00%)		42	input bit [PTR_W:0] cfg_list_almo
•)	·	43	input bit [PIR_W:0] ctg_thr_almos
Total: 36 Filtered	: 36	Selected: 1		44	input bit [Pik_w:0] cig_thr_atmos
				46	input bit cfg auto assign,
N •• •				47	input bit [THR_W-1:0] cfg_auto_as
Ex 🔻 Formal 🖗 Stimuli 🖇	Checker	Source Location		48	
		(51,21)-(51,32)		49	input bit [31:0] cfg_intr_mask,
		(51,21)-(51,32)		51 🖻	> output bit [31:0] intr status.
		(51,21) (51,32)	-	52	output bit [THR W-1:0] intr thr e
		(51,21)-(51,52)	- 1	53	output bit [THR_W-1:0] intr_thr_a
		(51,21)-(51,32)	_	54	output bit [THR_W-1:0] intr_thr_a
		(51,21)-(51,32)		55	
		(51,21)-(51,32)		56	output bit intr,
		(51,21)-(51,32)		58	input hit ofa ca en
		(51,21)-(51,32)		59	input bit cfg updated
		(51.21)-(51.32)		 60);
		(51,21)-(51,32)		61	
		(51 21)-(51 32)	-	63	bit [1:0] ptr_avail_coggle;
		(51,21) (51,32)		64	bit thr packets toggle;
	(51,21)-(51,32)		Ľ	65	<pre>bit [NUM_THR-1:0] thr_packets_q;</pre>
		<u>_</u>		66	<pre>bit list_init_done_toggle;</pre>
Iotal: 246 Filtered	: 32	Selected: 1		67	<pre>bit list init done q;</pre>

Intelligent Exclusions Save Effort

- Auto-exclude certain covers to reduce noise
 - Reset-related unreachable covers
 - Constant-related unreachable covers
 - Deadcode
- Advanced Waiver Capability
 - Persistent waivers tolerant of design changes
 - Avoids re-analyzing previously waived items
 - Waive-multiple by expression greatly reduces the number of user actions

Data to Drive...

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Need ability to learn from previous runs, to optimize subsequent proofs and smartly react to changes introduced to the design/environment

Property Packer/Proof Flow

Adaptive Regression (Cache "Miss")

Adaptive Regression Example

 Learn best configuration on future runs, optimize continuously according to outcome

Prop	Status	Engine	Time		Prop	Status	AR inferred engine	Time	Parallel exploration with other engines	Time
p1	determined	A,B, C	35		p1	determined	С	50	A,B, D ,E	60
p2	determined	A,B, C	10		p2	determined	С	15	A,B,D,E	15
р3	undetermined	A,B,C	60		р3	determined	В	20	A,C,D, E	20
p4	determined	A, <mark>B</mark> ,C	30		p4	determined	В	30	A,C,D,E	30
р5	determined	A ,B,C	10		р5	determined	Α	10	B,C,D,E	10
р6	undetermined	A,B,C	60	JGIS	р6	undetermined	А	60	B,C,D,E	60
	Run	Х		Run Y						
	Design changes									

Speedup: select best engine and proof time per property based on previous runs
 Convergence: use saved up time to explore properties with additional engines

SYSTEMS INITIATIVE

- Data to enable
 - User productivity
 - Analyze issues, measure formal verification progress/signoff when complemented with JasperGold COV GUI
 - Tool efficiency
 - Improve throughput and overall verification productivity with smart ML-based regression capability

Michael Young, Director Product Management, Cadence

DATA-DRIVEN EMULATION

Data-Driven Emulation with Palladium

Use-case-based	 Define legal operations Workload matters: must represent real operation
Data Collection	Non-intrusive data collectionUse the right execution platform
Analysis	Correlate, filter, learn, predictAnomaly detection
Goal-based	Verification throughputSmarter bug hunting

- Why emulate?
 - Palladium enables users to verify and test with directed, pseudo-random, random, lab-based, real-case scenarios that are typically not practical with other verification platforms especially during heavy HW/SW integration and co-debugging stages
- Emulation trends
 - Scalable models: IP to billion-class design
 - Ease of migration: simulation, prototype, etc.
 - Multi-chip and benchmark

accellera systems initiative

Customers Need the Fastest Engines

- Ever-increasing verification requirements driven by growing hardware and software complexity
- Fast time to results is essential to ensure projects can meet schedules
- **Right tools for the right job**: Combination of formal, simulation, emulation, and FPGA prototyping

Cadence Verification solution

Verification Acceleration

Congruency between core engines

Xcelium-Palladium congruency

- Hybrid: Accelerate software bring-up
- UVM acceleration / hot swap
- Software driven verification and debug

Platform Congruency: Game Changer

Reducing bring-up time with Multi-fabric Compiler

Palladium-Protium congruency

- Common Front-end
- Multi-fabric Compiler
- Combination enables debug and speed

Palladium Z1: core value proposition

Bridging the Productivity GAP

Debug with Palladium

Using Dynamic Probes (DYNP)

SW driven HW verification

- Specify time window & capture up to 80M samples
- Vary sample size & probe depth
- Dynamically (at run time) choose the signals to capture
- Recompile design to change depth versus width

100%

Debug with Palladium

Software

SW driven HW verification

- During the Prepare session
 - Use all the normal commands for the run
 - Snapshots captured at user specified intervals automatically
 - Primary inputs / memory outputs are continuously captured
- Support included by default, just user enabled at run time
- Use in either Fullvision or Dynamic Probes mode
- Supported in all modes except with dynamic targets

Debug with Palladium

Software

SW driven HW verification

<u>Using Infinitrace – Observe (Replay)</u>

- Jump to time window of interest using a specific time or a trigger
- Move forward and backward in time to capture window of interest
- Targets and testbench not used during the Observe session, just their recorded inputs are needed

State Description Language (SDL) - Intro

- SDL is the language you use to define a Trigger State machine. It has all the capabilities of commercial logic analyzers plus more.
- When user-defined logic conditions are met, logic analyzer will "trigger"
 - In all modes, stop collection of trace data
 - In all modes except Logic Analyzer (LA) mode, stop the running design
 - In LA mode, trace data collection stops but design keeps running
- Trigger is like a simulation breakpoint
 - But can be more powerful, because triggering can be determined by a state machine that you define during debug
- Trigger state machine can be changed dynamically during a debug session, all signals available to SDL without recompiling the design

SDL – Basic Properties

- SDL tracks sequences of events by monitoring design objects such as signals, assertions, CPF/UPF objects using a state machine description
- Multiple instances of SDL can be used to track multiple independent sequences of events
- Each SDL instance has its own hardware resources:
 - One state machine
 - Expression evaluators (can be used inside state machines, or independently)
 - 2 general purpose counters (for counting events)
- Each SDL instance can perform, on a cycle by cycle basis, any of the following actions:
 - ACQUIRE: decide whether an individual probe sample should be acquired or rejected
 - TRIGGER: stop design clocks and/or waveform acquisition (depends on settings)
 - EXEC: Execute a TCL/XEL command/proc
 - DISPLAY: print out a formatted message, including time and signal values
 - Control internal SDL resources (go to a different state, increment/decrement/load counters, etc.)

SDL – Execution Model

- At the beginning of the run we are in the first state of the SDL program
- At each FCLK, SDL program can only be in one state
- If in a certain FCLK we are in state S1 and we execute "Goto S2", then in the next FCLK we will be in state S2
- At each FCLK,
 - First, all signals in the design are updated
 - Then, all the tests in the SDL for current state are evaluated concurrently
 - Then, (depending on the test results) 0 or more actions are executed concurrently

SDL – Extended Example

Trigger the first time signal A remains high for at least 5 consecutive FCLK cycles.

Dynamic RTL – DRTL

Alternative and Complement to SDL

- New runtime monitor functionality
 - Constructed using standard Verilog/VHDL RTL design
 - Loaded and instantiated at runtime. Fully dynamic and independent of compile.
 - Can monitor, display, trigger and provide runtime control
- Advantages of DRTL
 - Code complex monitors with state machines in a standard RTL language (Verilog or VHDL)
 - Able to Save and Load DRTL from precompiled files
 - This allows the creation of standard libraries of DRTL monitors
 - Flexible, single module can be instantiated multiple times
 - User only needs to instantiate the DRTL module and connect to the signals of interest
- Complements SDL
 - Easier to write complex logic and state machines
 - Optionally interacts with SDL to provide control of the runtime session

DRTL Independently Controlling and Monitoring

\$display and \$qel used within the DRTL module

DRTL code

- Complex state machine monitoring
- Read-in / compiled at runtime (similar to SDL)
- \$display used to print monitoring messages
- \$qel used for control such as

	<pre>module riscMon(clk, rst, data, ld); input clk, rst;</pre>
r-Test	input [8:0] data;
	input ld;
M	
1	
	always @(posedge clk or negedg

@(posedge clk or negedge rst) begin if (rst == 1'b0) currentState <= STATE INIT; else begin currentState <= nextState; \$display (" PC: %h OP:%h ", PC[5:0], OP[2:0]); if (nextState == STATE FINISH) begin \$qel("trigger");

```
end
end
```

end

```
always @(*)
begin
 case (currentState)
  STATE INIT: begin
    if (Id == 1'b1) begin
      nextState = STATE LOAD;
    end
   end
```


.

L 😤 😳 🔛 🖄 🖹 🖙 📲 SDL Main File: monitorD3. - 🗁 🖌 🔮 (BISC_PROCESSOB rst == 1'b1 SSOR 1d reg == 1'b1) ", monInst.PC[5:0],monInst.0P[2:0]) f (RISC PROCESSOR.id reg -= 1'b0 anto Monito Load Save Loaded 0 Err/Warn << 0 >> 0 Triggers << 0 >> Advanced SDL Control ase use Upload button to upload and display the prob

Design-under-Test

DRTL code

- Complex state machine monitoring
- · Outputs available to SDL

Dynamic RTL Complements SDL

Output ports available to SDL

<pre>module riscMon(clk, rst, data, ld, PC,OP); input clk, rst;</pre>	
input [8:0] data;	state begi
input Id;	
output [5:0] PC;	
output [2:0] OP;	د مەرە
	}
assign PC = rPC;	};
assign OP – TOP,	State Mor
always @(posedge clk or negedge rst, begin	{ tif (RISO
if (rst == 1'b0))
currentState <= STATE_INIT;	display
else	monInst P
currentstate <= nextstate;	goto L
end	}
always @(*)	
begin	}
case (currentState)	
STATE_INIT: begin	
if (ld == 1'b1) begin	
nextState = STATE_LOAD;	
end	C
enu	3
	•
	-

endcase // case (currentState)

end

endmodule

n File Control C PROCESSOR.rst == 1'b1) SDI Eilo Tuo (RISC_PROCESSOR.rst == 1'b1) Monitor; note Monitor (RISC_PROCESSOR.ld_reg == 1 b1) ", nonInst.PC[5:0].monInst.OP[2:0]) 0P:3h nitor (RISC_PROCESSOR.id_reg == 1'b0) C_PROCESSOR.ld_reg == 1'b1 Err/Warn << 0 >> 0 Triggers << 0 >> y(" PC: %h OP:%h C[5:0],monInst.OP[2:0] e use Upload button to upload and display the prol

1. 🚖 😥 🔛 💼

etup Control Bookmark DRTL SDL Probe Memory InfiniTrace Force Clock RTL/Gate

🖙 f

SDL Main File: monitorD3; - 🕒 🖌 🧕

Advanced SDL Control

DL code

- Existing control mechanism for emulator
- Accesses outputs from DRTL state machine ٠

DRTL Usage Example

Data type: coverage example with Palladium

All coverage in simulator and Palladium is scored

UNITED STATES

Data type: coverage example with Palladium

All coverage in Palladium is scored in emulation as well

UNITED STATES

Palladium enterprise emulation platform excels with early HW/SW integration and co-verification with power analysis at the system-level

Hanan Moller, Systems Architect, UltraSoC

POST-SILICON AND IN-LIFE ANALYTICS IN HETEROGENOUS SOCS

Problem statements

- It is not about the ISA(s)
- It is not about the core(s)
 - Compute is largely 'solved'
- The challenge today is systemic complexity, for example:
 - Ad-hoc programming paradigms
 - Processor-processor interactions
 - HW/SW interactions
 - Interconnect, NoC & deadlock
 - System are informally architected
 - Workload details unknown in advance
 - Massive data

UltraSoC Distills Insights from Data

UltraSoC enables *full* visibility of SoC

Actionable Analytics from any Chip for performance, safety, cyber-security

Advanced Debug/Monitoring for the Whole SoC

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Software tools for data-driven insights

Eclipse based UltraDevelop IDE Single step & File Edit Navigate Search Project Run Window UltraDevelop Help । 😁 ▾ 🗒 🍓 🕪 🛍 🖷 🗱 ଅ ଓ ଏହି ଅଥିଲେ । ଦିବେ । 🎋 ▾ 🔕 ▾ ! 🖗 🗐 🗐 😓 ▾ 🖏 ▾ ♥୦ 숙 ▾ ▷ ▾ Quick Access 🔡 😂 😂 🥶 breakpoint 🖻 😫 🔻 🗖 🗖 🕼 crt0.S 🛛 🐵 latch_address_... 🛛 🤓 *qua Project Explore 🗄 Monitor M... 📱 Downstre Monitor Time View 📄 adbinit xbm1^{.0} a quartz_ui_core_0.elf CPU code & 0x70000010 jal \$ra, 0x128 1121611111155866665455444 ltilaunch.launch 3000000 4560409 xbm2 axi monitor por (agent.launch **RISC-V** 4570198 ../src/blocks.c xbm1:1 decoded trace 4610409 vhm2 20:int main(int argc, cha rw_all.udt 4610409 vhm? nonitor por 0x70000138 \$sp, \$sp, **CPU** 4620198 xhm axi monitor por xbm2:0 0x7000013C sw \$ra, 0x2c(\$sp) 30335 t 4660409... vhm2 axi monitor por... 0 0x70000140 sw \$s0, 0x28(\$sp) 2800000 30336 t 4660409... xbm2 axi monitor por... 0 0x70000144 addi \$s0, \$sp, 0x30 % 🐌 🟠 🗢 🖬 🗁 🗆 🗆 30418 t 4670198 xbm⁺ axi monitor por... 0 🎋 Debug 0x70000148 sw \$a0, 0xfffffdc(\$s0) xbm2:1 0x7000014C sw \$a1, 0xfffffd8(\$s0) 30687 4710409... xbm2 axi monitor por... 0 🚵 🐵 riscv-ptrace.start-agent [UltraDebug Agent] 30688 4710409. xbm2 nonitor por... 0 Debug Memory Target 22: seed = 1; 30781 1 4720198 axi monitor por... 0 xbm1 🚚 UltraDebug Agent 31058 t 4760409 xhm2 axi monitor por 📲 Target Communications 0x70000150 lui \$a5, 0x70000 31059 t 4760409 vbm2 avi monitor nor 0 v @riscv-ptrace.riscv [UltraDebug Remote Target] 0x70000154 addi \$a4, \$zero, 1 31147 t 770198... xbm1 0x70000158 sw \$a4, 0x2b4(\$a5) axi monitor por. 2,370,198,586 ;45678901234567890123456 Phread #1 (Running : User Request) draw block(0, 0, 800, 480, 0x00000000); // clea 4,770,198,588 🚚 openocd.exe Go to: Go 🗹 Scroll C:/UltraSoC/demos/2018_03_15/riscv-tools/gdb.exe (7.12.50.2 0x7000015C addi \$a4, \$zero, 0 bus traffic.arm0 (UltraDebug Remote Target) P itor Data 🤓 Traffic Generators 📋 nory 🤓 Configuration 🧟 PTrace 🐵 Virtual Console 👠 🖻 Console 🥂 Error Log **PP**[°] 😳 System Src ID Cha... Packet VC.Channel: vc1.0 Sort By: Hierarchy 20, 0.0006014573 0x0 Y fast N full address 0x0 addr 0x70000004 21.0.0004009715 **Multiple** 22. 0.0002673144 0x0 **VVVNVVVNN** add ill delta branch mai 0y70000174 23. 0.0001782096 full delta 0x70000180 YYYNYYYNN a 24, 0.0001188064 full delta YYYNYYYNN add 0x700001A8 25, 0.0000792043 other full_delta YYYNYYYNN a 0x700001C0 26. 0.0000528028 full delta branch map YYYNYYYNN a 0x700001D0 27, 0.0000352019 full_delta YYYNYYYNN 0x700001F8 28, 0.0000234679 **CPUs** full_delta YYYNYYYNN a 0x70000214 branch man 29, 0.0000156453 YYYNYYYNN ad 0x70000230 full delta branch man **Real-time** 30.0.0000104302 1. flows=0.1.2) full_delta 0x7000023C branch_map Y add 31. 0.0000069535 full addr only addr 0x70000258 full addr only addr 0x7000026C **HW** Data full delta YYYNYYYNN addr 0x1,000 branch man **RISC-V** full delta branch_map Y addr 0x70 SW & HW in full addr only 0.70000250 Insert 1:1 instruction one tool packets

Script based

82

UltraSoC

- A coherent architecture to debug, monitor and provide rich data for run-time analytics
 - RTL IP is highly parameterizable allows customers to trade hardware resources and thus silicon area
 - Hardware resources are configurable at runtime
 - Allows reuse of hardware resources for different scenarios and different algorithms
 - Help with security and safety of systems
 - Hardware provides rich data so CPU load for analysis is small

Analytics throughout Simulation→Emulation→In-Life

In-life Detection

Safety HW "stuck pixel" detection

frame: 3

Security HW-based attack detection **Performance Optimization** Run-time server SW tuning / security

- Non-intrusive: No performance impact
- Hardware: Fast, react at HW timescale; invisible to software
- Visibility: Analyze software and system everywhere in SoC

Non-intrusive stuck pixels detection

Fastest time to detection

Incoming image

Detected stuck pixels

SYSTEMS INITIATIVE

Non intrusive anomaly detection

- Three CPU plots below show CPU cache-like traffic for 3 CPUs configured with different miss rates
- Excessive (anomalous) latencies are shown in red

- Traditional profilers are inadequate:
 - Sampling = miss subtle or fast events (Nyquist)
 - Performance impact/intrusive
 - "Heisenbugs"
- UltraSoC is non-intrusive
- UltraSoC is wirespeed (100% coverage)
- Analytics and automated anomaly detection to make engineer more efficient

Summary

- The challenge today is systemic complexity
 - Architectural and modelling is needed but not enough
- Data analysis critical throughout product life-cycle
 - Focused, non-intrusive data collection
- Need tools that support heterogenous systems
- Complex systems may require autonomous analytics and causality detection in real-time

Data-Driven Verification

Use-case-based	 Define legal operations Workload matters: must represent real operation
Data Collection	 Non-intrusive data collection Use the right execution platform
Analysis	 Correlate, filter, learn, predict Anomaly detection
Goal-based	Verification throughputSmarter bug hunting

VERIFICATION THROUGHPUT

Thank You!

