
Data-Driven Verification:
Driving the next wave of productivity improvements

1

Cadence Presenters
Larry Melling, Director Product Management Sharon Rosenberg, Solutions Architect
Chris Komar, Group Director Product Engineering Michael Young, Group Director Product Management

UltraSoC Presenter
Hanan Moller, Systems Architect

The Problem

• Verification cost growing
exponentially with complexity

• Finite budget

• Finite resources

• Compromise quality/Increase risk

2

11
0

100

200

300

400

500

600

65nm 40nm 28nm 22nm 16nm 10nm 7nm 5nm
IP qualification Architecture Physical Verification Software

2N

The Problem

3

Complexity
Data Size
Compile
Runtime
DebugIn

cr
ea
si
ng

What is Data-Driven Verification?

4

• Define legal operations
• Workload matters: must represent real operationUse-case-based

• Non-intrusive data collection
• Use the right execution platformData Collection

• Correlate, filter, learn, predict
• Anomaly DetectionAnalysis

• Verification throughput
• Smarter bug huntingGoal-based

VERIFICATION THROUGHPUT

Multi-Level Abstraction

Smart Bug Hunting

Coverage
& Metrics

Formal
& Lint Debug

Raw Performance

Optimization
Algorithms

Scalable
Architecture

RTL
Level

Software
Level

Transistor
Level

Gate
Level

Bare Metal
Compute

Automatic
Test GenVIP

Data-Driven

Cycles per $ per day

Bugs per $ per day

Cadence Verification Suite
Cadence

Verification Suite
VIP

VERIFICATION IP
MEMORY – PROTOCOLS

Perspec™

SOC TEST
GENERATION

vManager™

MULTI-ENGINE
COVERAGE

Indago™

DESIGN & TESTBENCH
DEBUG

Palladium® Z1
EMULATION

Xcelium™
SIMULATION

JasperGold®
FORMAL & STATIC

Protium™ S1
FPGA PROTOTYPE

CLOUD
ENABLED

CLOUD
ENABLED

ARM
ENABLED

CLOUD
ENABLED

Advanced Flows
MIXED SIGNAL – LOW POWER – FUNCTIONAL SAFETY

Bug detection still not as early as possible
Bu

g
de

te
ct

io
n

ra
te

IP
Verification

SoC
Verification

HW/SW
Development

System Validation /
Certification & Production

Feedback post silicon data
to improve verification

PORTABLE STIMULUS:
USE-CASE-BASED VERIFICATION

Sharon Rosenberg, Solutions Solutions Architect, Cadence

8

Portable Stimuli Standard (PSS)
• Behavioral standard language to express scenarios

– Parallelism with fork and join
– Control flow with loops, conditionals
– Data path via memory buffers and streams

• Powerful built-in system-specific semantic for
– Resource availability and distribution
– Configuration, and operation modes

• Codified in two equally powerful input formats:
– C++ library – appeals to C++ users
– PSS – a Domain Specific Language (DSL) – easier to read

and better error messages

• Standard is defined by PSWG in Accellera

• Define legal operations
• Workload matters: must represent real operationUse-case-based

• Non-intrusive data collection
• Use the right execution platformData Collection

• Correlate, filter, learn, predict
• Anomaly detectionAnalysis

• Verification throughput
• Smarter bug huntingGoal-based

SoC

Bus

consumer

DDR Controller

producer

Capturing Legal Behaviors
Capture test intent, analyze legal paths, generate tests randomizing options

SoC

Bus

consumer

DDR Controller

producer

The consumer can consume buffer of
size bigger than 10 bytes

The producer can produce a buffer
size smaller than 15

Question: What will be a proper data
size to enable communication
between them?

Answer: 11..14
System assumptions – IPs can be programmed to communicate if
they connected to the same memory, and no restriction prevents
that communication (e.g. data size or data kind mismatch)

Capturing Legality Rules
Capture test intent, analyze legal paths, generate tests randomizing options

buffer data_buff_s {
rand uint[1..20] size;
rand uint data;

};

component producer_c {
action produce {

output data_buff_s buf;
constraint buf.size < 15;

};
};

component consumer_c {
action consume {

input data_buff_s buf;
constraint buf.size > 10;

};
};

PSS allows capturing the
dependencies in a special flow-object
struct

Each sub-system model captures it’s
own dependencies according to it’s
specificationsA constraint solver solved the

scenarios to achieve a legal
programming

This association of activity to legality
rule is a revolution!

Capturing Legality Rules
Capture test intent, analyze legal paths, generate tests randomizing options

buffer data_buff_s {
rand uint[1..20] size;
rand uint data;

};

config

Power-
domain B

Power-
domain A

resource
pool

Consume in all legal configuration and
operation modes to automatically fill
your coverage goals!

Generating Test Scenarios

Legal peripherals and DMA
channels were assigned

DMA actions were added to
serve the read and write
requests

Concrete solution
#1

Concrete solution
#2

As many as desired solutions
with different timing can be
randomized to serve the
same original request

Initialization action was
added

Test can be Generated to Run on Any Platform
My first test: load the memory with data and
use the DMA to copy it to a different location // my first test

int main_core3()
{

tb_initial_mem(0x5000,my_data);
signal_core(1);
done(1);

}

int main_core1()
{

wait_for_core(1);
dma_program(2, 0x5000, 0x700, 20);
dma_start(2);
dma_wait_for_done(2);
done(1);

}

User firmware code

• Tool generated code
• Synchronizations, loops,

fork and joins, all are done
by the PSS tool

This might be a UVM virtual sequence
creating the same test

PSS Impact on Stimulus

Existing stimulus

Post-
silicon

• Generally OS based tests. Long test consume valuable recourses
• Longer debug time
• Failures are difficult to bring to emulation or simulation for debug

4

Pre-silicon
SoC

• Simple directed feature tests
• Difficult to manually create complex scenarios
• Long run time for complex scenarios

Pre-silicon
IP

• Excellent UVM based constrained random testbench
• IP initialization sequences not easily portable to FW or post-silicon tests
• IP level tests lack system context

Stimulus with PSS

Post-silicon
• Smaller deterministic bare-metal tests
• Compose complex scenarios
• Easily bring debug to Emulation
• Generate large set of tests for regression

5

Pre-silicon SoC
• Describe test intent with PSS
• Automation helps with complex scenario composition
• Reuse tests post-silicon

Pre-silicon IP
• Reuse SoC scenarios
• Export initialization sequences to firmware and post-silicon
• Export IP specific scenarios to SoC

Excerpt from AMD DVCON presentation

Renesas Performance Verification
with Pespec Generated Use-cases

• Leading industrial and automotive MCUs
– Number of integrated IPs is increasing
– Switched interconnect
– Configuration has big impact on performance

• Interconnect Workbench performance analysis
– Early performance characterization
– Interconnect tuning to optimize performance
– Use case performance validation

• Palladium Z1 with Perspec use cases
– Bring-up the entire design and software
– Perspec generating use case tests
– Reduce from 50 hour simulations to 12 minutes

Mr Makoto Matsumoto

Why PSS is Great for Data-Driven?
• Captures the verification flows

– Allows focusing on intent
– Abstracts away implementation details

• Automated traffic to close the coverage gap
– UVM gives a fresh stream per seed but virtual sequences are highly directed
– Accomplishing a goal may require coming up with different timing or test topology
– The power of the PSS random schedule capability

• PSS captures the legality rules
– “Don’t move the furniture and don’t clean the dog”

• Portability
– Coverage filling task may cross platform borders

• May not have enough cycles to be closed in a single platform
• PSS solve the entire scenario in one time

– Can leverage data before running the simulation

Create/Update
plan

Implement TB
and Tests
including
coverage
collectors

Launch
executionsDebug failures

Measure
Progress against

the plan

Traditional MDV Flow
18

Coverage can be measured
only after simulation is done
Manual work to achieve
100% coverage or
discovering a value to be
unreachable

Need to re-do the work in
case of TB changes or a
different simulator release

Create/Update
plan

Implement TB
and Tests
including
coverage
collectors

Generate tests
and Review gen-

time coverage

Launch
executionsDebug failures

Measure
Progress against

the plan

Data-Driven with with vManager and Perspec
.

Noticeably, Perspec adds a
step of automatic test
generation

New test topologies are
automatically produced
Coverage maximization is
done before running the
regression per user criteria
vManager decides if a test is
contributing for a plan or
redundant

Implications:
o Reduced number of

machines and farm size
o Less human efforts for

coverage review and
test creation

o Shorter cycles to meet
coverage goals and
project deadlines

But there is much more
that is added on all
MDV steps!

Data Driven with Perspec and vManager

Create/Update
plan

Implement TB
And coverage

model

Generate tests
and Review gen-

time coverage

Launch
executions

Debug failures

Measure
Progress against

the plan

Use case coverage on the abstracted model
• Easy to implement
• Direct mapping to high level plan
• Contains both SW and HW
• Can be exported to all platforms

Extra step of test generation and gen-
time coverage review
Use case visualization to approve the
generated scenario

Runtime collection from all platforms
Combine HW and SW coverage items

Coverage on use-cases
Reachability analysis and debug

Abstract debug and use case review

Progress management in terms of
meaningful test properties

Regression level
maximization

• Builds on the vManager flows capability
– Allows running a multi-steps session
– Steps can run in parallel to each other (e.g. start launching tests as soon as they are ready)

• Simplified integration scripts using the following user-defined scripts
– ps_gen_script – a script for generating a full perspec regression
– ps_exec_script – a script for running a single test
– config file – lists step names, top-directories and the two scripts above

• Enhanced regression control with test tables
– The tests to be generated and executed are coming from Perspec test tables (and not VSIF)

• Include multiple top actions, constraint settings, counts and fill capabilities for each
– The execution scripts are the gen and exec scripts provided above

• The MDV flow does not force usage of test tables
– Users can use home grown scripts
– More automation can be provided on top of test tables

Perspec and vManager Revolution

Resolving vManager/Perspec terminology review
Perspec Vmanager Integrated terminology Definition

Scenario specification NA Scenario specification Pure intent, partial specification

Scenario instance NA Scenario instance Fully statically solved scenario

test test test Code representation of scenario
instance

NA run run Test execution with a seed

Platform1
Test

instance
R

R

R

R

R

R

run-time
seed

Test Table

Perspec
solver

Scenario
specification

Platform2
Test

exec
Gen-time
seed

Constains Top actions,
constraints, count/fill

Top partial descriptions, fill per
command

Perspec-vManager Solution
Perspec flow consists of two steps:
Test generation & test execution with ability to
analyze each

Once a test is generated it is added to
the execution session

Perspec-vManager Solution
Generation Steps

Test generation results
(by top action)

Generation status

Regression recipe
Debug contradictions

View the UML of the
entire regressionLink to the UML

diagram of the test

Upon generation the scenario contributed
coverage is evaluated against the verification
plan or specific plan section

Perspec-vManager Solution
Execution Step

Execution runs

Regression recipe
(test table) Debug execution with

waveform, smart log, and
activity diagram

View the UML of the
entire regressionLink to the UML

diagram of the test.
Reflects the execution
progress

PSS and Data Driven
• Use-case capture essential for Data driven flows
– Capturing information and legality rules
– Revolution in test generation automation
– Can be applied to any execution platform

• Capabilities exist today
– Used by multiple users world-wide for both sub and full systems
– Applications include workloads for performance, power, and coherency testing

• Can feed a data-driven cognitive machine for further analysis

Thank you!

DATA-DRIVEN FORMAL VERIFICATION
Chris Komar, Product Engineering Group Director, Cadence

27

Data to Drive…

28

100%

75%

50%

25%

0%

Si
gn

of
f

M
et

ric
s

time

Formal signoff
of an IP

Optimized
runtime, results
and resources

• Define legal operations
• Workload matters: must represent real operationUse-case-based

• Non-intrusive data collection
• Use the right execution platformData Collection

• Correlate, filter, learn, predict
• Anomaly detectionAnalysis

• Verification throughput
• Smarter bug huntingGoal-based

Data to Drive…

29

100%

75%

50%

25%

0%

Si
gn

of
f M

et
ric

s

time

Formal signoff
of an IP

• Formal Coverage models and types continue to expand

Ever-Increasing Amount of Formal Coverage Data

• Branch
• Statement
• Expression
• Toggle

JasperGold® FPV
w/Visualize™

Design Coverage App

Code Coverage

• Property (SVA/PSL)
• Covergroup

Functional Coverage

Coverage
Database

Large number of new covers
generated

Formal-specific Coverage Types

DUT

Formal Setup

Stimuli Coverage

How restrictive is the design
behavior under the formal setup?

DUT

Formal Setup

Cone-of-Influence (COI) Coverage

How complete is my property set?
Do I cover all design behaviors ?

Properties
(Structural COI analysis)

DUT

Formal Setup

Proof Coverage

What coverage is achieved by the
proven properties?

Proven Properties
(Proof Core)

Is the design over-constrained?

COI / Proof Core Coverage

32

From COV App Rapid Adoption Kit on http://support.cadence.com

Formal-specific Coverage Types

DUT

Formal Setup

Stimuli Coverage

How restrictive is the design
behavior under the formal setup?

DUT

Formal Setup

Cone-of-Influence (COI) Coverage

How complete is my property set?
Do I cover all design behaviors ?

Properties
(Structural COI analysis)

DUT

Formal Setup

Proof Coverage

What coverage is achieved by the
proven properties?

Proven Properties
(Proof Core) DUT

Formal Setup

Bounded Proof Coverage

What coverage is achieved by bounded proofs?
Is the bound enough? How to do better?

Bounded Proof
Analysis?

Is the design over-constrained?

Multi-Dimensional Coverage Data
• Coverage data is multiplied by the unique coverage types offered by formal

34

Branch Statement Expression Toggle Property Covergroup
Reachability ✓ ✓ ✓ ✓ ✓ ✓
Deadcode ✓ ✓ ✓ ✓ ✓ ✓
COI ✓ ✓ ✓ ✓
Proof Core ✓ ✓ ✓ ✓
Bound ✓ ✓ ✓ ✓ ✓ ✓

Coverage Models

Co
ve

ra
ge

 T
yp

es

How to make sense of the data?
1) Abstract to more meaningful metrics
2) Provide an intuitive GUI to analyze results
3) Intelligent exclusions

Meaningful Metrics

35

Branch Statement Expression Toggle Property Covergroup
Reachability ✓ ✓ ✓ ✓ ✓ ✓
Deadcode ✓ ✓ ✓ ✓ ✓ ✓
COI ✓ ✓ ✓ ✓
Proof Core ✓ ✓ ✓ ✓
Bound ✓ ✓ ✓ ✓ ✓ ✓

Stimuli
Coverage

Checker
Coverage

Bound Analysis

Coverage Models

Co
ve

ra
ge

 T
yp

es

Stimuli Coverage

Checker Coverage

Bound Analysis

Stimulus exists that explores all code

Sufficient assertions exist that checks all code

In the case of an undetermined property, what is/is not covered

Meaningful Metrics

36

Branch Statement Expression Toggle Property Covergroup
Reachability ✓ ✓ ✓ ✓ ✓ ✓
Deadcode ✓ ✓ ✓ ✓ ✓ ✓
COI ✓ ✓ ✓ ✓
Proof Core ✓ ✓ ✓ ✓
Bound ✓ ✓ ✓ ✓ ✓ ✓

Stimuli
Coverage

Checker
Coverage

Bound Analysis

Coverage Models

Co
ve

ra
ge

 T
yp

es

Code cover item can be exercised by the environment/inputs
AND

Has been checked by the assertions

Formal
Coverage

Formal
Coverage

Intuitive GUI

Stimuli Coverage

Checker Coverage

Formal
Coverage

• Top-down navigation
– Summary views reflect the progress of bug-hunting or signoff efforts
– Quickly analyze the source of remaining gaps

Intuitive Analysis

• Auto-exclude certain covers to reduce noise
– Reset-related unreachable covers
– Constant-related unreachable covers
– Deadcode

• Advanced Waiver Capability
– Persistent waivers tolerant of design changes

• Avoids re-analyzing previously waived items

– Waive-multiple by expression greatly reduces
the number of user actions

Intelligent Exclusions Save Effort

Data to Drive…

40

100%

75%

50%

25%

0%

Si
gn

of
f M

et
ric

s

time

Optimized
runtime, results
and resources

Formal signoff
of an IP

Problem Statement

41

P2
Determined
after 20 min

P1
Determined
after 10 mins

Resource/Engine A

Resource/Engine B

Resource/Engine C

Resource/Engine A

Resource/Engine B

Resource/Engine C

Time/Engine Depth

3 CPUs x 10 mins = 30 mins
3 CPUs x 20 mins = 60 mins

Total CPU time = 90 mins

Run 2: 90 mins
Run 3: 90 mins

…

Problem Statement

42

Determined
after 20 min

Determined
after 10 mins

Resource/Engine A

Resource/Engine B

Resource/Engine C

Resource/Engine A

Resource/Engine B

Resource/Engine C

Time/Engine Depth

3 CPUs x 10 mins = 30 mins
3 CPUs x 20 mins = 60 mins

Total CPU time = 90 mins

Run 2: 90 mins
Run 3: 90 mins

…

Can we use knowledge from previous
runs to minimize wasted cycles?

P2

P1

Simple Solutions

43

Need ability to learn from previous runs, to optimize subsequent proofs
and smartly react to changes introduced to the design/environment

JasperGold®

session
JasperGold®

session restoredSave and restore
flow

Database
If design changes in any
way, no proof result is
restored

Cache
signatures
directory

Property signatures
generated by the tool

Proof cache

JasperGold®

session
Formal
Proof

JasperGold®

session
Formal
Proof

Proof results restored
for properties that
match signatures

Proof starts from
scratch on unmatched
properties

Challenge

44

P2 Determined
after 20 mins

Resource/Engine C

Resource/Engine B P1 Determined after 10 mins

1 CPUs x 10 mins = 10 mins
1 CPUs x 20 mins = 20 mins

Total CPU time = 30 mins

Run 2: 30 mins
Run 3: 30 mins

…

Time/Engine Depth

Use knowledge from previous run as a
hint for subsequent run

Property Packer/Proof Flow

45

Parallel
explorerPacker

Proof cache

Property Packer

Target best engine
inferred to properties, to
save up resources

Proof Flow

tim
e

Explore properties with new
engines, using resources
freed up by packer

Cache
unmatched
properties

P1

P2

P2

P3 P1

Adaptive Regression (Cache “Miss”)

46

Existing Metadata for
Design/Run?

Infer best engine and
time for each property

Optimize property
packing and exploration

Design/
Env

PROOF

No

Yes

JasperGold
Information

Server
(JGIS)

Adaptive Regression Example

47

• Learn best configuration on future runs, optimize continuously according to
outcome

– Speedup: select best engine and proof time per property based on previous runs
– Convergence: use saved up time to explore properties with additional engines

Prop Status Engine Time

p1 determined A,B,C... 35

p2 determined A,B,C... 10

p3 undetermined A,B,C... 60

p4 determined A,B,C... 30

p5 determined A,B,C... 10

p6 undetermined A,B,C... 60

Run X
JGIS

Prop Status AR inferred
engine

Time Parallel exploration
with other engines

Time

p1 determined C 50 A,B,D,E… 60

p2 determined C 15 A,B,D,E… 15

p3 determined B 20 A,C,D,E… 20

p4 determined B 30 A,C,D,E… 30

p5 determined A 10 B,C,D,E… 10

p6 undetermined A 60 B,C,D,E… 60

Run Y

Design changes

Results

48

0

0.2

0.4

0.6

0.8

1

test16 test20 test27 test28 test29 test30 test33 test37 test40 test43 test45 test49 test54 test56 test57 test59 test61 test62 test63

Baseline Adaptive Regression

6x computational
efficiency improvement

Efficiency =

CPU Time for Winning Engines

Total CPU Time

Data-driven Formal Verification Summary
• Data to enable

– User productivity
• Analyze issues, measure formal verification

progress/signoff when complemented with
JasperGold COV GUI

– Tool efficiency
• Improve throughput and overall verification

productivity with smart ML-based
regression capability

49

DATA-DRIVEN EMULATION
Michael Young, Director Product Management, Cadence

50

Data-Driven Emulation with Palladium

• Why emulate?
– Palladium enables users to verify and test with

directed, pseudo-random, random, lab-based,
real-case scenarios that are typically not
practical with other verification platforms
especially during heavy HW/SW integration
and co-debugging stages

• Emulation trends
– Scalable models: IP to billion-class design
– Ease of migration: simulation, prototype, etc.
– Multi-chip and benchmark

51

• Define legal operations
• Workload matters: must represent real operationUse-case-based

• Non-intrusive data collection
• Use the right execution platformData Collection

• Correlate, filter, learn, predict
• Anomaly detectionAnalysis

• Verification throughput
• Smarter bug huntingGoal-based

Bug detection still not as early as possible
Bu

g
de

te
ct

io
n

ra
te

IP
Verification

SoC
Verification

HW/SW
Development

System Validation /
Certification & Production

Reduce risk & cost
Find customer-level bugs as

early as possible in the
development phase

Simulation catches
most IP-level bugs

Acceleration / Emulation
catches most SoC-level bugs

Emulation / Prototyping
catches most HW/SW level bugs

Production / Live System Test
catches most customer level bugs

Shift-left strategy is
consuming the attention
of many leading-edge
companies

Customers Need the Fastest Engines
• Ever-increasing verification requirements driven by growing hardware and software complexity

• Fast time to results is essential to ensure projects can meet schedules

• Right tools for the right job: Combination of formal, simulation, emulation, and FPGA prototyping

Project timeline

Formal

Simulation

FPGA Prototyping

Emulation

Tapeout

M
ai

n
co

re
 e

ng
in

e
us

ag
e

Silicon

…

…

…

…

Cadence Verification solution
Cadence

Verification Suite
VIP

VERIFICATION IP
MEMORY – PROTOCOLS

Perspec™

SOC TEST
GENERATION

vManager™

MULTI-ENGINE
COVERAGE

Indago™

DESIGN & TESTBENCH
DEBUG

Palladium® Z1
EMULATION

Xcelium™
SIMULATION

JasperGold®
FORMAL & STATIC

Protium™ S1
FPGA PROTOTYPE

CLOUD
ENABLED

CLOUD
ENABLEDENABLED

Advanced Flows
MIXED SIGNAL – LOW POWER – FUNCTIONAL SAFETY

Verification Acceleration
Congruency between core engines

Xcelium-Palladium congruency
§ Hybrid: Accelerate software bring-up
§ UVM acceleration / hot swap
§ Software driven verification and debug

VIP
VERIFICATION IP

Perspec™

SW-DRIVEN TEST
vManager™

METRICS
Indago™

DEBUGUniform multi-engine verification
Verification Fabric

Palladium® Z1
EMULATION

Xcelium™
SIMULATION

JasperGold®
FORMAL & STATIC

Protium™ S1
FPGA PROTOTYPE

Platform Congruency: Game Changer
Reducing bring-up time with Multi-fabric Compiler

Palladium-Protium congruency
§ Common Front-end
§ Multi-fabric Compiler
§ Combination enables debug and speed

VIP
VERIFICATION IP

Perspec™

SW-DRIVEN TEST
vManager™

METRICS
Indago™

DEBUGUniform multi-engine verification
Verification Fabric

Palladium® Z1
EMULATION

Xcelium™
SIMULATION

JasperGold®
FORMAL & STATIC

Protium™ S1
FPGA PROTOTYPE

Palladium Z1: core value proposition
Bridging the Productivity GAP

HW/SW
Spec

HW/SW
Spec Prototype /

Si lab test EmulationChip Field
test

of bugs in
the design

timeBlock

Block Chip Prototype Silicon
lab test Field test

Traditional
Flow

“Easy” bugs
Bugs that take many cycles
to be uncovered

Bugs that take many cycles

to be uncovered

Power-aware
verification & analysis

System bugsHW/SW bugs

System bugs

HW/SW bugs

Analog / RF bugs

Analog/RF bugs

“Easy” bugs

Palladium Z1 finds HW/SW bugs while
enabling early system-level integration & validation

Sim-Acc

ROM
Content Drivers / RTOS / ApplicationsDiagnostics

& Firmware

Time to
market

advantage
of 2 to 4
months

Debug with Palladium
Using FullVision (FV)

2M
cycles

2M
cycles

2M
cycles

2M
cycles

• Specify time window & capture up to 2M samples (typical)
• Trigger at points of interest
• Full signal depth captured

Application Specific Components

SoC Interconnect Fabric

CPU Subsystem

3D
GFX

DSP
A/V

High speed, wired interface peripherals

DDR3

PHY

Other peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low-speed peripheral

subsystem

Low speed peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Apps
Accel

Modem
C1

L2 cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2,3

PHY

Ethe
r

net

PHY

C1 C2

L2 cache

C2

Cache Coherent Fabric

PHY

HDMI

USB3.0 PCIe
Gen 2,3

PHY

Software
SW driven

HW verification

Sp
ac

e

100%
signal

visibility

100%

Time

23
04

pr

ob
es

 p
er

do

m
ai

n

FullVision

Debug with Palladium
Using Dynamic Probes (DYNP)

80M samples

768 probes
per domain

Application Specific Components

SoC Interconnect Fabric

CPU Subsystem

3D
GFX

DSP
A/V

High speed, wired interface peripherals

DDR3

PHY

Other peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low-speed peripheral

subsystem

Low speed peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Apps
Accel

Modem
C1

L2 cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2,3

PHY

Ethe
r

net

PHY

C1 C2

L2 cache

C2

Cache Coherent Fabric

PHY

HDMI

USB3.0 PCIe
Gen 2,3

PHY

Software

SW driven
HW verification

• Specify time window & capture up to 80M samples
• Vary sample size & probe depth
• Dynamically (at run time) choose the signals to capture
• Recompile design to change depth versus width

80M samples

768 probes
per domain

Tradeoff
Depth vs
Width at

Compile Time

27M
samples

S
pa

ce

Which signals
are captured
can change
dynamically

Time

100%

• During the Prepare session
• Use all the normal commands for the run
• Snapshots captured at user specified intervals automatically
• Primary inputs / memory outputs are continuously captured

• Support included by default, just user enabled at run time
• Use in either Fullvision or Dynamic Probes mode
• Supported in all modes except with dynamic targets

Debug with Palladium
Using InfiniTrace – Prepare (Record)

Example: 70M cycles
between snapshots

Application Specific Components

SoC Interconnect Fabric

CPU Subsystem

3D
GFX

DSP
A/V

High speed, wired interface peripherals

DDR3

PHY

Other peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low-speed peripheral

subsystem

Low speed peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Apps
Accel

Modem
C1

L2 cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2,3

PHY

Ethe
r

net

PHY

C1 C2

L2 cache

C2

Cache Coherent Fabric

PHY

HDMI

USB3.0 PCIe
Gen 2,3

PHY

Software
SW driven

HW verification

Time

Sp
ac

e

Arbitrarily long
Prepare window

100%

Debug with Palladium
Using Infinitrace – Observe (Replay)

Application Specific Components

SoC Interconnect Fabric

CPU Subsystem

3D
GFX

DSP
A/V

High speed, wired interface peripherals

DDR3

PHY

Other peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low-speed peripheral

subsystem

Low speed peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Apps
Accel

Modem
C1

L2 cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2,3

PHY

Ethe
r

net

PHY

C1 C2

L2 cache

C2

Cache Coherent Fabric

PHY

HDMI

USB3.0 PCIe
Gen 2,3

PHY

Software

SW driven
HW verification

• Jump to time window of interest using a specific time or a trigger
• Move forward and backward in time to capture window of interest
• Targets and testbench not used during the Observe session, just their

recorded inputs are needed

S
pa

ce

Jump Forward

Jump Backward

Time

100%

State Description Language (SDL) - Intro
• SDL is the language you use to define a Trigger State machine. It has all the

capabilities of commercial logic analyzers – plus more.
• When user-defined logic conditions are met, logic analyzer will “trigger”

– In all modes, stop collection of trace data
– In all modes except Logic Analyzer (LA) mode, stop the running design

• In LA mode, trace data collection stops but design keeps running

• Trigger is like a simulation breakpoint
– But can be more powerful, because triggering can be determined by a state machine

that you define during debug
• Trigger state machine can be changed dynamically during a debug session, all

signals available to SDL without recompiling the design

SDL – Basic Properties
• SDL tracks sequences of events by monitoring design objects such as signals, assertions,

CPF/UPF objects using a state machine description
• Multiple instances of SDL can be used to track multiple independent sequences of events
• Each SDL instance has its own hardware resources:

– One state machine
– Expression evaluators (can be used inside state machines, or independently)
– 2 general purpose counters (for counting events)

• Each SDL instance can perform, on a cycle by cycle basis, any of the following actions:
– ACQUIRE: decide whether an individual probe sample should be acquired or rejected
– TRIGGER: stop design clocks and/or waveform acquisition (depends on settings)
– EXEC: Execute a TCL/XEL command/proc
– DISPLAY: print out a formatted message, including time and signal values
– Control internal SDL resources (go to a different state, increment/decrement/load counters, etc.)

SDL – Execution Model
• At the beginning of the run we are in the first state of the SDL program
• At each FCLK, SDL program can only be in one state
• If in a certain FCLK we are in state S1 and we execute “Goto S2”, then in the next FCLK we will be in

state S2
• At each FCLK,

– First, all signals in the design are updated
– Then, all the tests in the SDL for current state are evaluated concurrently
– Then, (depending on the test results) 0 or more actions are executed concurrently

0 1 2 3 4 5 6 7 8 9

clk

resetn

SDL state s1 s2

Trigger marker

FCLK #

State s1
{

if (resetn == ‘b0) {
goto s2;

}
}
State s2
{

if (resetn == ‘b1) {
Trigger;

}
}

SDL – Extended Example
State s1
{

if (A == ‘b1) {
load counter1 4;
Goto s2;

}
}
State s2
{

if (A == ‘b0) {
goto s1;

} else if (counter1<=0) {
trigger;

} else {
decrement counter1;

}
}

0 1 2 3 4 5 6 7 8 9

clk

A

SDL state s1 s2

FCLK #

counter1 3 2 1 0?

Trigger marker

Trigger the first time signal
A remains high for at least 5
consecutive FCLK cycles.

Dynamic RTL – DRTL
Alternative and Complement to SDL

• New runtime monitor functionality
– Constructed using standard Verilog/VHDL RTL design
– Loaded and instantiated at runtime. Fully dynamic and independent of compile.
– Can monitor, display, trigger and provide runtime control

• Advantages of DRTL
– Code complex monitors with state machines in a standard RTL language (Verilog or VHDL)
– Able to Save and Load DRTL from precompiled files

• This allows the creation of standard libraries of DRTL monitors
– Flexible, single module can be instantiated multiple times

• User only needs to instantiate the DRTL module and connect to the signals of interest

• Complements SDL
– Easier to write complex logic and state machines
– Optionally interacts with SDL to provide control of the runtime session

module riscMon(clk, rst, data, ld);
input clk, rst;
input [8:0] data;
input ld;

…..
…..

always @(posedge clk or negedge rst)
begin
if (rst == 1'b0)
currentState <= STATE_INIT;

else begin
currentState <= nextState;
$display (" PC: %h OP:%h ", PC[5:0], OP[2:0]);
if (nextState == STATE_FINISH) begin

$qel("trigger");
end

end
end

always @(*)
begin

case (currentState)
STATE_INIT: begin

if (ld == 1'b1) begin
nextState = STATE_LOAD;

end
end

……..
……..

DRTL Independently Controlling and Monitoring
$display and $qel used within the DRTL module

Design-under-Test

M
2

M
1

M
3

DRTL code
• Complex state machine monitoring
• Read-in / compiled at runtime

(similar to SDL)
• $display used to print monitoring

messages
• $qel used for control such as

triggering

state begin
{

if (RISC_PROCESSOR.rst == 1'b1)
{

goto Monitor;
}

};

State Monitor
{

if (RISC_PROCESSOR.ld_reg == 1'b1
)

{
display(" PC: %h OP:%h ",

monInst.PC[5:0],monInst.OP[2:0]);
goto L0;

}

}

module riscMon(clk, rst, data, ld, PC,OP);
input clk, rst;
input [8:0] data;
input ld;
output [5:0] PC;
output [2:0] OP;

…..
…..
assign PC = rPC;
assign OP = rOP;

always @(posedge clk or negedge rst)
begin
if (rst == 1'b0)
currentState <= STATE_INIT;

else
currentState <= nextState;

end

always @(*)
begin

case (currentState)
STATE_INIT: begin

if (ld == 1'b1) begin
nextState = STATE_LOAD;

end
end

……..
……..
endcase // case (currentState)

end
endmodule

Dynamic RTL Complements SDL
Output ports available to SDL

Design-under-Test

M
2

M
1

M
3

DRTL code
• Complex state machine

monitoring
• Outputs available to SDL SDL code

• Existing control mechanism for emulator
• Accesses outputs from DRTL state machine

DRTL Usage Example
Monitoring a standard interface

Wrapper

PCIeEP_
inst1

PCIeEP_
inst2

PCIe

PCIe

muxctrl

PCIe

module PCIeMon (state_signal, signal_width, reset,clk);
input [7:0] state_signal;
input reset;
input [2:0] signal_width;
reg [7:0] state_signal_prev;
reg [3:0] state, next_state;
input clk;

always@(posedge clk)
begin
state <= next_state;
state_signal_prev <= state_signal;
end

always@(*)
begin

case(state)
BEGIN: begin

$display("state = BEGIN");

next_state <= UPDATE;
end

I
O

M
U
X

Two Instances of the
DRTL PCIe Monitor

Palladium

Data type: coverage example with Palladium
All coverage in simulator and Palladium is scored

Testbench DUT
UVC

Sequencer Driver

Monitor Collector

UVC

Sequencer Driver

Monitor Collector

Functional
coverage

Functional
coverage

Accelerated
Scored in Palladium

Vi
rt

ua
l

Se
qu

en
ce

r

Functional
coverage

Functional
coverage

Simulated
Scored in Xcelium

Code
coverage

Code
coverage

Code
coverage

Data type: coverage example with Palladium
All coverage in Palladium is scored in emulation as well

Windows OS

Usbxhci.sys

Ucx01000.sys

Usbhub3.sys

Usbehci.sys Usbohci.sys

Usbport.sys

Usbhub.sys

U
SB

 D
riv

er
St

ac
k

La
ye

r

Winusb.sys Usbccgp.sys

Client Driver

Usbd.sys

U
SB

 c
lie

nt
D

riv
er

 L
ay

er
U

se
r M

od
e

Winusb.dll Client Driver

Application

Linux OS
Other OS

SpeedBridgeDesktop PC
With device driver
for emulated ASIC

Palladium

DUT

Emulated
Scored in Palladium

Functional
coverage

Code
coverage

Code
coverage

Code
coverage

Additional cycles are needed for system-level power analysis

OFF

SoC Power Analysis Requires “Deep” Cycles
@100MHz for 10 secs à 1 Billion cycles

time

Power

Deep cycles:
Dynamic power profiling calculates average
power over long run w/ “real” stimulus & SW
interactions

Identify and analyze peak and average power at system level

Local Max Case:
Simulation captures
narrow window

Explore the
‘What if’s to avoid
‘What now’

On

On On

On

On

On

On

OFF

OFF

OFF
OFF

OFF

OFF OFF

On

OFF
OFF

OnOn

On

On

On

On

OFF

OFF

Component-level
System-level

Simulation Run

Sample frequency

OFF On
Indicates

Block turns on/off

Data-driven emulation example: Power analysis
Module level

1st Full chip RTL

1st PD trial

JoulesTM

RTL Power Analysis

VoltusTM

Signoff

Final P&R Tape-out

Sign-off

PalladiumTM

DPA
Emulation

Xcelium
Simulation

Power reduction ASIC-level
Start ave power estimation

Start peak estimation
High correlation

Power reduction Add placement information to power
estimation.

Power reduction over RTL and GTL
better peak estimation

Initial testing of signoff flow

Accurate placement information to
power estimation. Higher accuracy.

Power reduction over GTL.
Pattern selection for signoff

Final power estimation.
Signoff

Power
Info Inputs Work model

Palladium DPA Toggles RTL or Gates
• Power Analysis (per hierarchy / time)
• Peak detection
• Find window of interest for other tool

Joules Watts RTL or Gates • RTL Power Analysis and Optimization
• Power estimation

Voltus Watts Gates • Power estimation and power Integrity
• IR-drop and final Signoff

Data-driven workload can be
leveraged to extract power profile:

average and peak power

ARM 968 EJ
ITCM

DTCM

Display I /F

Video IP
DDR2

Controller
DDR2

S
D
R
A
M

AH
B

M
a tr ix

DMA

SRAM

Boot ROM

Ext Memory
Interface (SMC)

AHB ó APB
Bridge

APB

I 2 C Interrupt
Controller

Timer GPIO UART Power
Control SPI

USB 2.0
HS OTG

DMA

Flash
MemorySRAM

AHB Slave

AHB Slave

AHB Slave

AHB Slave

AHB Slave

AHB Slave

AHB Master

AHB Master

AHB 20 CP

AHB Slave

AHB Slave

AHB SlaveOCP

OCP

OCP

Video Out

Software
Debugger

Hardware
Debugger DPA option

Power Profiler

Palladium enterprise emulation platform excels with early HW/SW integration and
co-verification with power analysis at the system-level

Palladium Series
High-performance verification
platform from RTL acceleration
to system emulation

SW

Summary: Data driven emulation enables system-level analysis

Hanan Moller, Systems Architect, UltraSoC

78

POST-SILICON AND IN-LIFE ANALYTICS IN
HETEROGENOUS SOCS

Problem statements
• It is not about the ISA(s)
• It is not about the core(s)

– Compute is largely ‘solved’
• The challenge today is systemic complexity, for example:

– Ad-hoc programming paradigms
– Processor-processor interactions
– HW/SW interactions
– Interconnect, NoC & deadlock
– System are informally architected
– Workload details unknown in advance
– Massive data

79

•Define legal operations
•Workload matters: must
represent real operation

Use-case-
based

•Non-intrusive data collection
•Use the right execution platform

Data
Collection

•Correlate, filter, learn, predict
•Anomaly detectionAnalysis

•Verification throughput
•Smarter bug huntingGoal-based

UltraSoC Distills Insights from Data

80

Knowledge

Information

Data

UltraSoC delivers
actionable insights

With system-wide
understanding

From rich data
across the
whole SoC

UltraSoC enables full visibility of SoC

Va
lu

e

Actionable Analytics from any Chip for performance, safety, cyber-security

xtensa

Advanced Debug/Monitoring for the Whole SoC

81

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPUDRAM
controller

Custom
Logic

Bus
Mon

Trace
Receiver PAM PAM Trace

Encoder PAM Static
Instrumentation DMA Status

Monitor

Message Engine Message Engine Message Engine

Message Engine

AXI
Comm

JTAG
Comm

USB
Comm

Universal
Streaming

Comm

Portfolio of
Analytic
Modules

Family of
Communicators

Flexible &
Scalable

Message Fabric

System Block

UltraSoC IP

DSP

System
Memory

Buffer

Analytics
System

Software tools for data-driven insights

82

Script based Eclipse based UltraDevelop IDE

RISC-V
CPU

Multiple
other
CPUs

SW & HW in
one tool

Single step &
breakpoint
CPU code &

decoded trace

Real-time
HW Data RISC-V

instruction
packets

UltraSoC
• A coherent architecture to debug, monitor and provide rich data for

run-time analytics
– RTL IP is highly parameterizable - allows customers to trade hardware resources

and thus silicon area
– Hardware resources are configurable at runtime
– Allows reuse of hardware resources for different scenarios and different

algorithms
– Help with security and safety of systems
– Hardware provides rich data so CPU load for analysis is small

83

Analytics throughout
SimulationàEmulationàIn-Life

84

Simulation Emulation Prototype Lab test Field trial In Life

Tape-out

CPU and
other IP

GA

etc...

HW/SW bring-up,
Initial system
release

Post-processing in software or
Real-time processing in
hardware

In-life Detection

Safety
HW “stuck pixel” detection

Performance Optimization
Run-time server SW tuning / security

• Non-intrusive: No performance impact
• Hardware: Fast, react at HW timescale; invisible to software
• Visibility: Analyze software and system everywhere in SoC

Security
HW-based attack detection

Lab
test

Field
trial

In
Life

Non-intrusive stuck pixels detection

86

Commercial in Confidence UL-002502-PT

Incoming image Detected stuck pixels

Fastest time to detection

Non intrusive anomaly detection

87

• Three CPU plots below show CPU cache-like traffic for 3 CPUs
configured with different miss rates

• Excessive (anomalous) latencies are shown in red

Non-intrusive profiling with anomaly detection

88

• Traditional profilers are
inadequate:
– Sampling = miss subtle or fast

events (Nyquist)
– Performance impact/intrusive
– “Heisenbugs”

• UltraSoC is non-intrusive
• UltraSoC is wirespeed (100%

coverage)
• Analytics and automated

anomaly detection to make
engineer more efficient

Summary
• The challenge today is systemic complexity
– Architectural and modelling is needed but not enough

• Data analysis critical throughout product life-cycle
– Focused, non-intrusive data collection

• Need tools that support heterogenous systems
• Complex systems may require autonomous analytics and causality

detection in real-time

89

Data-Driven Verification

90

• Define legal operations
• Workload matters: must represent real operationUse-case-based

• Non-intrusive data collection
• Use the right execution platformData Collection

• Correlate, filter, learn, predict
• Anomaly detectionAnalysis

• Verification throughput
• Smarter bug huntingGoal-based

VERIFICATION THROUGHPUT

Multi-Level Abstraction

Smart Bug Hunting

Coverage
& Metrics

Formal
& Lint Debug

Raw Performance

Optimization
Algorithms

Scalable
Architecture

RTL
Level

Software
Level

Transistor
Level

Gate
Level

Bare Metal
Compute

Automatic
Test GenVIP

Data-Driven

Cycles per $ per day

Bugs per $ per day

Thank You!
• Q&A

92

