
Data-Driven Verification: 
Driving the next wave of productivity improvements
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The Problem

• Verification cost growing 
exponentially with complexity

• Finite budget

• Finite resources

• Compromise quality/Increase risk
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The Problem
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What is Data-Driven Verification?
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• Define legal operations
• Workload matters: must represent real operationUse-case-based

• Non-intrusive data collection
• Use the right execution platformData Collection

• Correlate, filter, learn, predict
• Anomaly DetectionAnalysis

• Verification throughput
• Smarter bug huntingGoal-based



VERIFICATION THROUGHPUT
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Cadence Verification Suite
Cadence

Verification Suite
VIP
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MEMORY – PROTOCOLS
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Bug detection still not as early as possible
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to improve verification



PORTABLE STIMULUS: 
USE-CASE-BASED VERIFICATION

Sharon Rosenberg, Solutions Solutions Architect, Cadence
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Portable Stimuli Standard (PSS)
• Behavioral standard language to express scenarios

– Parallelism with fork and join
– Control flow with loops, conditionals
– Data path via memory buffers and streams

• Powerful built-in system-specific semantic for
– Resource availability and distribution
– Configuration, and operation modes

• Codified in two equally powerful input formats:
– C++ library – appeals to C++ users 
– PSS – a Domain Specific Language (DSL) – easier to read 

and better error messages  

• Standard is defined by PSWG in Accellera 

• Define legal operations
• Workload matters: must represent real operationUse-case-based

• Non-intrusive data collection
• Use the right execution platformData Collection

• Correlate, filter, learn, predict
• Anomaly detectionAnalysis

• Verification throughput
• Smarter bug huntingGoal-based



SoC

Bus

consumer

DDR Controller

producer

Capturing Legal Behaviors
Capture test intent, analyze legal paths, generate tests randomizing options

SoC

Bus

consumer

DDR Controller

producer

The consumer can consume buffer of 
size bigger than 10 bytes

The producer can produce a buffer 
size smaller than 15

Question: What will be a proper data 
size to enable communication 
between them?

Answer: 11..14
System assumptions – IPs can be programmed to communicate if 
they connected to the same memory, and no restriction prevents 
that communication (e.g. data size or data kind mismatch) 



Capturing Legality Rules
Capture test intent, analyze legal paths, generate tests randomizing options

buffer data_buff_s {
rand uint[1..20] size;
rand uint data;

};

component producer_c {
action produce {

output data_buff_s buf;
constraint buf.size < 15;

};
};

component consumer_c {
action consume {

input data_buff_s buf;
constraint buf.size > 10;

};
};

PSS allows capturing the 
dependencies in a special flow-object 
struct

Each sub-system model captures it’s 
own dependencies according to it’s 
specificationsA constraint solver solved the 

scenarios to achieve a legal 
programming 

This association of activity to legality 
rule is a revolution!



Capturing Legality Rules
Capture test intent, analyze legal paths, generate tests randomizing options

buffer data_buff_s {
rand uint[1..20] size;
rand uint data;

};

config

Power-
domain B

Power-
domain A

resource
pool

Consume in all legal configuration and 
operation modes to automatically fill 
your coverage goals!



Generating Test Scenarios

Legal peripherals and DMA 
channels were assigned 

DMA actions were added to 
serve the read and write 
requests

Concrete solution 
#1

Concrete solution 
#2

As many as desired solutions 
with different timing can be 
randomized to serve the 
same original request

Initialization action was 
added



Test can be Generated to Run on Any Platform
My first test: load the memory with data and 
use the DMA to copy it to a different location // my first test

int main_core3() 
{

tb_initial_mem(0x5000,my_data);
signal_core(1);
done(1);

}

int main_core1() 
{

wait_for_core(1); 
dma_program(2, 0x5000, 0x700, 20);
dma_start(2);
dma_wait_for_done(2);
done(1);

}

User firmware code

• Tool generated code
• Synchronizations, loops, 

fork and joins, all are done 
by the PSS tool 

This might be a UVM virtual sequence 
creating the same test



PSS Impact on Stimulus

Existing stimulus

Post-
silicon

• Generally OS based tests. Long test consume valuable recourses
• Longer debug time
• Failures are difficult to bring to emulation or simulation for debug
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Pre-silicon 
SoC

• Simple directed feature tests
• Difficult to manually create complex scenarios
• Long run time for complex scenarios

Pre-silicon 
IP

• Excellent UVM based constrained random testbench
• IP initialization sequences not easily portable to FW or post-silicon tests
• IP level tests lack system context

Stimulus with PSS

Post-silicon
• Smaller deterministic bare-metal tests
• Compose complex scenarios
• Easily bring debug to Emulation
• Generate large set of tests for regression
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Pre-silicon SoC
• Describe test intent with PSS
• Automation helps with complex scenario composition
• Reuse tests post-silicon

Pre-silicon IP
• Reuse SoC scenarios
• Export initialization sequences to firmware and post-silicon
• Export IP specific scenarios to SoC

Excerpt from AMD DVCON presentation



Renesas Performance Verification 
with Pespec Generated Use-cases

• Leading industrial and automotive MCUs
– Number of integrated IPs is increasing
– Switched interconnect
– Configuration has big impact on performance

• Interconnect Workbench performance analysis
– Early performance characterization
– Interconnect tuning to optimize performance
– Use case performance validation

• Palladium Z1 with Perspec use cases
– Bring-up the entire design and software
– Perspec generating use case tests
– Reduce from 50 hour simulations to 12 minutes

Mr Makoto Matsumoto



Why PSS is Great for Data-Driven?
• Captures the verification flows

– Allows focusing on intent
– Abstracts away implementation details

• Automated traffic to close the coverage gap
– UVM gives a fresh stream per seed but virtual sequences are highly directed
– Accomplishing a goal may require coming up with different timing or test topology
– The power of the PSS random schedule capability

• PSS captures the legality rules
– “Don’t move the furniture and don’t clean the dog” 

• Portability
– Coverage filling task may cross platform borders

• May not have enough cycles to be closed in a single platform
• PSS solve the entire scenario in one time

– Can leverage data before running the simulation 



Create/Update 
plan

Implement TB 
and Tests 
including 
coverage 
collectors

Launch 
executionsDebug failures

Measure 
Progress against 

the plan

Traditional MDV Flow
18

Coverage can be measured 
only after simulation is done
Manual work to achieve 
100% coverage or 
discovering a value to be 
unreachable

Need to re-do the work in 
case of TB changes or a 
different simulator release 



Create/Update 
plan

Implement TB 
and Tests 
including 
coverage 
collectors

Generate tests 
and Review gen-

time coverage

Launch 
executionsDebug failures

Measure 
Progress against 

the plan

Data-Driven with with vManager and Perspec
.

Noticeably, Perspec adds a 
step of automatic test 
generation

New test topologies are 
automatically produced
Coverage maximization is 
done before running the 
regression per user criteria 
vManager decides if a test is 
contributing for a plan or 
redundant

Implications:
o Reduced number of 

machines and farm size 
o Less human efforts for 

coverage review and 
test creation

o Shorter cycles to meet 
coverage goals and 
project deadlines 

But there is much more 
that is added on all 
MDV  steps!



Data Driven with Perspec and vManager

Create/Update 
plan

Implement TB
And coverage 

model

Generate tests 
and Review gen-

time coverage

Launch 
executions

Debug failures

Measure 
Progress against 

the plan

Use case coverage on the abstracted model
• Easy to implement
• Direct mapping to high level plan
• Contains both SW and HW
• Can be exported to all platforms

Extra step of test generation and gen-
time coverage review
Use case visualization to approve the 
generated scenario

Runtime collection from all platforms
Combine HW and SW coverage items

Coverage on use-cases
Reachability analysis and debug

Abstract debug and use case review

Progress management in terms of 
meaningful test properties

Regression level 
maximization



• Builds on the vManager flows capability
– Allows running a multi-steps session
– Steps can run in parallel to each other (e.g. start launching tests as soon as they are ready)

• Simplified integration scripts using the following user-defined scripts
– ps_gen_script – a script for generating a full perspec regression
– ps_exec_script – a script for running a single test
– config file – lists step names, top-directories and the two scripts above

• Enhanced regression control with test tables 
– The tests to be generated and executed are coming from Perspec test tables (and not VSIF)

• Include multiple top actions, constraint settings, counts and fill capabilities for each
– The execution scripts are the gen and exec scripts provided above

• The MDV flow does not force usage of test tables
– Users can use home grown scripts
– More automation can be provided on top of test tables

Perspec and vManager Revolution



Resolving vManager/Perspec terminology review
Perspec Vmanager Integrated terminology Definition

Scenario specification NA Scenario specification Pure intent, partial specification

Scenario instance NA Scenario instance Fully statically solved scenario 

test test test Code representation of scenario 
instance

NA run run Test execution with a seed

Platform1
Test

instance
R

R

R

R

R

R

run-time 
seed

Test Table

Perspec
solver

Scenario 
specification

Platform2
Test

exec
Gen-time 
seed

Constains Top actions, 
constraints, count/fill

Top partial descriptions, fill per 
command



Perspec-vManager Solution
Perspec flow consists of two steps:
Test generation & test execution with ability to 
analyze each

Once a test is generated it is added to 
the execution session



Perspec-vManager Solution
Generation Steps

Test generation results 
(by top action)

Generation status

Regression recipe
Debug contradictions

View the UML of the 
entire regressionLink to the UML 

diagram of the test

Upon generation the scenario contributed 
coverage is evaluated against the verification 
plan or specific plan section



Perspec-vManager Solution
Execution Step

Execution runs 

Regression recipe 
(test table) Debug execution with 

waveform, smart log,  and 
activity diagram

View the UML of the 
entire regressionLink to the UML 

diagram of the test. 
Reflects the execution 
progress



PSS and Data Driven
• Use-case capture essential for Data driven flows
– Capturing information and legality rules 
– Revolution in test generation automation
– Can be applied to any execution platform

• Capabilities exist today
– Used by multiple users world-wide for both sub and full systems
– Applications include workloads for performance, power, and coherency testing

• Can feed a data-driven cognitive machine for further analysis

Thank you!



DATA-DRIVEN FORMAL VERIFICATION
Chris Komar, Product Engineering Group Director, Cadence
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Data to Drive…
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• Define legal operations
• Workload matters: must represent real operationUse-case-based

• Non-intrusive data collection
• Use the right execution platformData Collection

• Correlate, filter, learn, predict
• Anomaly detectionAnalysis

• Verification throughput
• Smarter bug huntingGoal-based



Data to Drive…
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• Formal Coverage models and types continue to expand

Ever-Increasing Amount of Formal Coverage Data

• Branch
• Statement
• Expression
• Toggle

JasperGold® FPV 
w/Visualize™

Design Coverage App

Code Coverage

• Property (SVA/PSL)
• Covergroup

Functional Coverage

Coverage 
Database

Large number of new covers 
generated



Formal-specific Coverage Types

DUT

Formal Setup

Stimuli Coverage

How restrictive is the design 
behavior under the formal setup?

DUT

Formal Setup

Cone-of-Influence (COI) Coverage

How complete is my property set?
Do I cover all design behaviors ?

Properties
(Structural COI analysis)

DUT

Formal Setup

Proof Coverage

What coverage is achieved by the 
proven properties?

Proven Properties
(Proof Core) 

Is the design over-constrained? 



COI / Proof Core Coverage
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From COV App Rapid Adoption Kit on http://support.cadence.com



Formal-specific Coverage Types

DUT

Formal Setup

Stimuli Coverage

How restrictive is the design 
behavior under the formal setup?

DUT

Formal Setup

Cone-of-Influence (COI) Coverage

How complete is my property set?
Do I cover all design behaviors ?

Properties
(Structural COI analysis)

DUT

Formal Setup

Proof Coverage

What coverage is achieved by the 
proven properties?

Proven Properties
(Proof Core) DUT

Formal Setup

Bounded Proof Coverage

What coverage is achieved by bounded proofs?
Is the bound enough? How to do better?

Bounded Proof 
Analysis?

Is the design over-constrained? 



Multi-Dimensional Coverage Data
• Coverage data is multiplied by the unique coverage types offered by formal
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Branch Statement Expression Toggle Property Covergroup
Reachability ✓ ✓ ✓ ✓ ✓ ✓
Deadcode ✓ ✓ ✓ ✓ ✓ ✓
COI ✓ ✓ ✓ ✓
Proof Core ✓ ✓ ✓ ✓
Bound ✓ ✓ ✓ ✓ ✓ ✓

Coverage Models

Co
ve

ra
ge

 T
yp

es

How to make sense of the data?
1) Abstract to more meaningful metrics
2) Provide an intuitive GUI to analyze results
3) Intelligent exclusions



Meaningful Metrics
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Branch Statement Expression Toggle Property Covergroup
Reachability ✓ ✓ ✓ ✓ ✓ ✓
Deadcode ✓ ✓ ✓ ✓ ✓ ✓
COI ✓ ✓ ✓ ✓
Proof Core ✓ ✓ ✓ ✓
Bound ✓ ✓ ✓ ✓ ✓ ✓

Stimuli 
Coverage

Checker 
Coverage

Bound Analysis

Coverage Models

Co
ve

ra
ge

 T
yp

es

Stimuli Coverage

Checker Coverage

Bound Analysis

Stimulus exists that explores all code

Sufficient assertions exist that checks all code

In the case of an undetermined property, what is/is not covered



Meaningful Metrics
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Branch Statement Expression Toggle Property Covergroup
Reachability ✓ ✓ ✓ ✓ ✓ ✓
Deadcode ✓ ✓ ✓ ✓ ✓ ✓
COI ✓ ✓ ✓ ✓
Proof Core ✓ ✓ ✓ ✓
Bound ✓ ✓ ✓ ✓ ✓ ✓

Stimuli 
Coverage

Checker 
Coverage

Bound Analysis

Coverage Models

Co
ve

ra
ge

 T
yp

es

Code cover item can be exercised by the environment/inputs
AND

Has been checked by the assertions

Formal 
Coverage

Formal 
Coverage



Intuitive GUI

Stimuli Coverage

Checker Coverage

Formal 
Coverage



• Top-down navigation
– Summary views reflect the progress of bug-hunting or signoff efforts
– Quickly analyze the source of remaining gaps

Intuitive Analysis



• Auto-exclude certain covers to reduce noise
– Reset-related unreachable covers
– Constant-related unreachable covers
– Deadcode

• Advanced Waiver Capability
– Persistent waivers tolerant of design changes

• Avoids re-analyzing previously waived items

– Waive-multiple by expression greatly reduces 
the number of user actions

Intelligent Exclusions Save Effort



Data to Drive…
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Problem Statement
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P2
Determined
after 20 min

P1
Determined
after 10 mins

Resource/Engine A

Resource/Engine B

Resource/Engine C

Resource/Engine A

Resource/Engine B

Resource/Engine C

Time/Engine Depth

3 CPUs x 10 mins = 30 mins
3 CPUs x 20 mins = 60 mins

Total CPU time = 90 mins

Run 2: 90 mins
Run 3: 90 mins

… 



Problem Statement
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Determined
after 20 min

Determined
after 10 mins

Resource/Engine A

Resource/Engine B

Resource/Engine C

Resource/Engine A

Resource/Engine B

Resource/Engine C

Time/Engine Depth

3 CPUs x 10 mins = 30 mins
3 CPUs x 20 mins = 60 mins

Total CPU time = 90 mins

Run 2: 90 mins
Run 3: 90 mins

… 

Can we use knowledge from previous 
runs to minimize wasted cycles?

P2

P1



Simple Solutions
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Need ability to learn from previous runs, to optimize subsequent proofs 
and smartly react to changes introduced to the design/environment

JasperGold®

session
JasperGold®

session restoredSave and restore 
flow

Database
If design changes in any 
way, no proof result is 
restored

Cache 
signatures 
directory

Property signatures 
generated by the tool

Proof cache

JasperGold®

session
Formal 
Proof

JasperGold®

session
Formal 
Proof

Proof results restored 
for properties that 
match signatures

Proof starts from 
scratch on unmatched 
properties



Challenge
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P2 Determined
after 20 mins

Resource/Engine C

Resource/Engine B P1 Determined after 10 mins

1 CPUs x 10 mins = 10 mins
1 CPUs x 20 mins = 20 mins

Total CPU time = 30 mins

Run 2: 30 mins
Run 3: 30 mins

… 

Time/Engine Depth

Use knowledge from previous run as a 
hint for subsequent run



Property Packer/Proof Flow
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Parallel 
explorerPacker

Proof cache

Property Packer

Target best engine 
inferred to properties, to 
save up resources

Proof Flow

tim
e

Explore properties with new 
engines, using resources 
freed up by packer

Cache 
unmatched 
properties

P1

P2

P2

P3 P1



Adaptive Regression (Cache “Miss”)
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Existing Metadata for 
Design/Run?

Infer best engine and 
time for each property 

Optimize property 
packing and exploration

Design/
Env

PROOF

No

Yes

JasperGold
Information

Server
(JGIS)



Adaptive Regression Example
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• Learn best configuration on future runs, optimize continuously according to 
outcome

– Speedup: select best engine and proof time per property based on previous runs
– Convergence: use saved up time to explore properties with additional engines

Prop Status Engine Time

p1 determined A,B,C... 35

p2 determined A,B,C... 10

p3 undetermined A,B,C... 60

p4 determined A,B,C... 30

p5 determined A,B,C... 10

p6 undetermined A,B,C... 60

Run X
JGIS

Prop Status AR inferred 
engine

Time Parallel exploration 
with other engines

Time

p1 determined C 50 A,B,D,E… 60

p2 determined C 15 A,B,D,E… 15

p3 determined B 20 A,C,D,E… 20

p4 determined B 30 A,C,D,E… 30

p5 determined A 10 B,C,D,E… 10

p6 undetermined A 60 B,C,D,E… 60

Run Y

Design changes



Results
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0
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0.4

0.6

0.8

1

test16 test20 test27 test28 test29 test30 test33 test37 test40 test43 test45 test49 test54 test56 test57 test59 test61 test62 test63

Baseline Adaptive Regression

6x computational 
efficiency improvement

Efficiency = 

CPU Time for Winning Engines

Total CPU Time



Data-driven Formal Verification Summary
• Data to enable

– User productivity
• Analyze issues, measure formal verification 

progress/signoff when complemented with 
JasperGold COV GUI

– Tool efficiency
• Improve throughput and overall verification 

productivity with smart ML-based 
regression capability 
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DATA-DRIVEN EMULATION
Michael Young, Director Product Management, Cadence
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Data-Driven Emulation with Palladium

• Why emulate?
– Palladium enables users to verify and test with 

directed, pseudo-random, random, lab-based, 
real-case scenarios that are typically not 
practical with other verification platforms 
especially during heavy HW/SW integration 
and co-debugging stages

• Emulation trends
– Scalable models: IP to billion-class design
– Ease of migration: simulation, prototype, etc.
– Multi-chip and benchmark
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• Define legal operations
• Workload matters: must represent real operationUse-case-based

• Non-intrusive data collection
• Use the right execution platformData Collection

• Correlate, filter, learn, predict
• Anomaly detectionAnalysis

• Verification throughput
• Smarter bug huntingGoal-based



Bug detection still not as early as possible
Bu

g 
de

te
ct

io
n 

ra
te

IP 
Verification

SoC
Verification

HW/SW
Development

System Validation /
Certification & Production

Reduce risk & cost 
Find customer-level bugs as 

early as possible in the 
development phase

Simulation catches 
most IP-level bugs

Acceleration / Emulation
catches most SoC-level bugs

Emulation / Prototyping
catches most HW/SW level bugs

Production / Live System Test
catches most customer level bugs

Shift-left strategy is 
consuming the attention 
of many leading-edge 
companies   



Customers Need the Fastest Engines
• Ever-increasing verification requirements driven by growing hardware and software complexity

• Fast time to results is essential to ensure projects can meet schedules

• Right tools for the right job: Combination of formal, simulation, emulation, and FPGA prototyping

Project timeline

Formal

Simulation

FPGA Prototyping

Emulation

Tapeout

M
ai

n 
co

re
 e

ng
in

e 
us

ag
e

Silicon

…

…

…

…



Cadence Verification solution
Cadence

Verification Suite
VIP

VERIFICATION IP
MEMORY – PROTOCOLS

Perspec™

SOC TEST 
GENERATION

vManager™

MULTI-ENGINE
COVERAGE

Indago™

DESIGN & TESTBENCH
DEBUG

Palladium® Z1
EMULATION

Xcelium™
SIMULATION

JasperGold®
FORMAL & STATIC

Protium™ S1
FPGA PROTOTYPE

CLOUD
ENABLED

CLOUD
ENABLEDENABLED

Advanced Flows
MIXED SIGNAL – LOW POWER  – FUNCTIONAL SAFETY



Verification Acceleration
Congruency between core engines

Xcelium-Palladium congruency
§ Hybrid: Accelerate software bring-up
§ UVM acceleration / hot swap
§ Software driven verification and debug

VIP
VERIFICATION IP

Perspec™

SW-DRIVEN TEST
vManager™

METRICS
Indago™

DEBUGUniform multi-engine verification
Verification Fabric

Palladium® Z1
EMULATION

Xcelium™
SIMULATION

JasperGold®
FORMAL & STATIC

Protium™ S1
FPGA PROTOTYPE



Platform Congruency: Game Changer
Reducing bring-up time with Multi-fabric Compiler

Palladium-Protium congruency
§ Common Front-end
§ Multi-fabric Compiler
§ Combination enables debug and speed

VIP
VERIFICATION IP

Perspec™

SW-DRIVEN TEST
vManager™

METRICS
Indago™

DEBUGUniform multi-engine verification
Verification Fabric

Palladium® Z1
EMULATION

Xcelium™
SIMULATION

JasperGold®
FORMAL & STATIC

Protium™ S1
FPGA PROTOTYPE



Palladium Z1: core value proposition
Bridging the Productivity GAP

HW/SW 
Spec

HW/SW 
Spec Prototype / 

Si lab test EmulationChip Field 
test 

# of bugs in 
the design

timeBlock 

Block Chip Prototype Silicon 
lab test Field test 

Traditional
Flow

“Easy” bugs
Bugs that take many cycles
to be uncovered

Bugs that  take many cycles

to be uncovered

Power-aware 
verification & analysis

System bugsHW/SW bugs

System bugs

HW/SW bugs

Analog / RF bugs

Analog/RF bugs

“Easy” bugs

Palladium Z1 finds HW/SW bugs while 
enabling early system-level integration & validation

Sim-Acc

ROM
Content Drivers /  RTOS / ApplicationsDiagnostics

& Firmware

Time to 
market 

advantage 
of 2 to 4 
months



Debug with Palladium
Using FullVision (FV)

2M 
cycles

2M 
cycles

2M 
cycles

2M 
cycles

• Specify time window & capture up to 2M samples (typical)
• Trigger at points of interest
• Full signal depth captured 

Application Specific Components

SoC Interconnect Fabric

CPU Subsystem

3D
GFX

DSP 
A/V

High speed, wired interface peripherals

DDR3

PHY

Other peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low-speed peripheral 

subsystem

Low speed peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Apps
Accel

Modem
C1

L2  cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2,3

PHY

Ethe
r

net

PHY

C1 C2

L2  cache

C2

Cache Coherent Fabric

PHY

HDMI

USB3.0 PCIe
Gen 2,3

PHY

Software
SW driven 

HW verification

Sp
ac

e

100% 
signal 

visibility

100%

Time
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Debug with Palladium
Using Dynamic Probes (DYNP)

80M samples

768 probes 
per domain

Application Specific Components

SoC Interconnect Fabric

CPU Subsystem

3D
GFX

DSP 
A/V

High speed, wired interface peripherals

DDR3

PHY

Other peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low-speed peripheral 

subsystem

Low speed peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Apps
Accel

Modem
C1

L2  cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2,3

PHY

Ethe
r

net

PHY

C1 C2

L2  cache

C2

Cache Coherent Fabric

PHY

HDMI

USB3.0 PCIe
Gen 2,3

PHY

Software

SW driven 
HW verification

• Specify time window & capture up to 80M samples
• Vary sample size & probe depth 
• Dynamically (at run time) choose the signals to capture
• Recompile design to change depth versus width

80M samples

768 probes 
per domain

Tradeoff 
Depth vs 
Width at 

Compile Time

27M 
samples

S
pa

ce

Which signals 
are captured 
can change 
dynamically

Time

100%



• During the Prepare session
• Use all the normal commands for the run
• Snapshots captured at user specified intervals automatically
• Primary inputs / memory outputs are continuously captured

• Support included by default, just user enabled at run time
• Use in either Fullvision or Dynamic Probes mode
• Supported in all modes except with dynamic targets

Debug with Palladium
Using InfiniTrace – Prepare (Record)

Example: 70M cycles 
between snapshots
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Debug with Palladium
Using Infinitrace – Observe (Replay)

Application Specific Components

SoC Interconnect Fabric
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3D
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High speed, wired interface peripherals
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L2  cache
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Software

SW driven 
HW verification

• Jump to time window of interest using a specific time or a trigger
• Move forward and backward in time to capture window of interest
• Targets and testbench not used during the Observe session, just their 

recorded inputs are needed

S
pa

ce

Jump Forward

Jump Backward

Time

100%



State Description Language (SDL) - Intro
• SDL is the language you use to define a Trigger State machine.  It has all the 

capabilities of commercial logic analyzers – plus more.
• When user-defined logic conditions are met, logic analyzer will “trigger”

– In all modes, stop collection of trace data
– In all modes except Logic Analyzer (LA) mode, stop the running design

• In LA mode, trace data collection stops but design keeps running

• Trigger is like a simulation breakpoint
– But can be more powerful, because triggering can be determined by a state machine 

that you define during debug
• Trigger state machine can be changed dynamically during a debug session, all 

signals available to SDL without recompiling the design



SDL – Basic Properties
• SDL tracks sequences of events by monitoring design objects such as signals, assertions, 

CPF/UPF objects using a state machine description
• Multiple instances of SDL can be used to track multiple independent sequences of events
• Each SDL instance has its own hardware resources:

– One state machine
– Expression evaluators (can be used inside state machines, or independently)
– 2 general purpose counters (for counting events)

• Each SDL instance can perform, on a cycle by cycle basis, any of the following actions:
– ACQUIRE: decide whether an individual probe sample should be acquired or rejected
– TRIGGER: stop design clocks and/or waveform acquisition (depends on settings)
– EXEC: Execute a TCL/XEL command/proc
– DISPLAY: print out a formatted message, including time and signal values
– Control internal SDL resources (go to a different state, increment/decrement/load counters, etc.)



SDL – Execution Model
• At the beginning of the run we are in the first state of the SDL program
• At each FCLK, SDL program can only be in one state
• If in a certain FCLK we are in state S1 and we execute “Goto S2”, then in the next FCLK we will be in 

state S2
• At each FCLK,

– First, all signals in the design are updated
– Then, all the tests in the SDL for current state are evaluated concurrently
– Then, (depending on the test results) 0 or more actions are executed concurrently

0 1 2 3 4 5 6 7 8 9

clk

resetn

SDL state s1 s2

Trigger marker

FCLK #

State  s1
{

if ( resetn == ‘b0 ) {
goto s2;

}            
}
State  s2 
{

if ( resetn == ‘b1 ) {
Trigger;

}
}



SDL – Extended Example
State  s1 
{

if ( A == ‘b1 ) {
load counter1 4;
Goto s2;

}           
}
State  s2
{

if ( A == ‘b0) {
goto s1;

} else if (counter1<=0) {
trigger;

} else {
decrement counter1; 

}
}

0 1 2 3 4 5 6 7 8 9

clk

A

SDL state s1 s2

FCLK #

counter1 3 2 1 0?

Trigger marker

Trigger the first time signal 
A remains high for at least 5 
consecutive FCLK cycles.



Dynamic RTL – DRTL
Alternative and Complement to SDL

• New runtime monitor functionality
– Constructed using standard Verilog/VHDL RTL design
– Loaded and instantiated at runtime. Fully dynamic and independent of compile.
– Can monitor, display, trigger and provide runtime control

• Advantages of DRTL
– Code complex monitors with state machines in a standard RTL language (Verilog or VHDL)
– Able to Save and Load DRTL from precompiled files

• This allows the creation of standard libraries of DRTL monitors
– Flexible, single module can be instantiated multiple times 

• User only needs to instantiate the DRTL module and connect to the signals of interest

• Complements SDL 
– Easier to write complex logic and state machines 
– Optionally interacts with SDL to provide control of the runtime session 



module riscMon(clk, rst, data, ld);
input clk, rst;
input [8:0] data;
input       ld;

…..
…..

always @(posedge clk or negedge rst)
begin
if (rst == 1'b0 )
currentState <= STATE_INIT;

else begin
currentState <= nextState;
$display (" PC: %h     OP:%h    ", PC[5:0], OP[2:0] );
if (nextState == STATE_FINISH) begin

$qel("trigger");
end

end
end

always @( * )
begin

case (currentState)
STATE_INIT: begin

if ( ld == 1'b1) begin
nextState =  STATE_LOAD;

end
end

……..
……..

DRTL Independently Controlling and Monitoring
$display and $qel used within the DRTL module

Design-under-Test

M
2

M
1

M
3

DRTL code 
• Complex state machine monitoring
• Read-in / compiled at runtime 

(similar to SDL)
• $display used to print monitoring 

messages
• $qel used for control such as 

triggering



state begin
{

if (RISC_PROCESSOR.rst == 1'b1) 
{

goto Monitor;
}

};

State  Monitor 
{

if ( RISC_PROCESSOR.ld_reg == 1'b1 
) 

{
display(" PC: %h     OP:%h    ", 

monInst.PC[5:0],monInst.OP[2:0] ); 
goto L0;

}

}

module riscMon(clk, rst, data, ld, PC,OP);
input clk, rst;
input [8:0] data;
input       ld;
output [5:0] PC;
output [2:0] OP;

…..
…..
assign PC = rPC;
assign OP = rOP;

always @(posedge clk or negedge rst)
begin
if (rst == 1'b0 )
currentState <= STATE_INIT;

else
currentState <= nextState;

end

always @( * )
begin

case (currentState)
STATE_INIT: begin

if ( ld == 1'b1) begin
nextState =  STATE_LOAD;

end
end

……..
……..
endcase // case (currentState)  

end
endmodule

Dynamic RTL Complements SDL
Output ports available to SDL

Design-under-Test

M
2

M
1

M
3

DRTL code 
• Complex state machine 

monitoring
• Outputs available to SDL SDL code

• Existing control mechanism for emulator
• Accesses outputs from DRTL state machine  



DRTL Usage Example
Monitoring a standard interface

Wrapper

PCIeEP_
inst1

PCIeEP_
inst2

PCIe

PCIe

muxctrl

PCIe

module PCIeMon (state_signal, signal_width, reset,clk); 
input [7:0] state_signal; 
input reset;
input [2:0] signal_width;
reg [7:0] state_signal_prev;
reg [3:0] state, next_state;
input clk;

always@(posedge clk)
begin
state <= next_state;
state_signal_prev <= state_signal;
end

always@(*)
begin

case(state)
BEGIN: begin 

$display("state = BEGIN");

next_state <= UPDATE; 
end

I
O

M
U
X

Two Instances of the 
DRTL PCIe Monitor



Palladium

Data type: coverage example with Palladium
All coverage in simulator and Palladium is scored
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Data type: coverage example with Palladium
All coverage in Palladium is scored in emulation as well
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Additional cycles are needed for system-level power analysis

OFF

SoC Power Analysis Requires “Deep” Cycles
@100MHz for 10 secs à 1 Billion cycles

time

Power

Deep cycles:
Dynamic power profiling calculates average 
power over long run w/  “real” stimulus & SW 
interactions

Identify and analyze peak and average power at system level

Local Max Case:
Simulation captures 
narrow window

Explore the 
‘What if’s to avoid 
‘What now’

On

On On

On

On

On

On

OFF

OFF

OFF
OFF

OFF

OFF OFF

On

OFF
OFF

OnOn

On

On

On

On

OFF

OFF

Component-level
System-level

Simulation Run

Sample frequency

OFF On
Indicates 

Block turns on/off



Data-driven emulation example: Power analysis
Module level

1st Full chip RTL

1st PD trial

JoulesTM

RTL Power Analysis

VoltusTM

Signoff

Final P&R Tape-out

Sign-off

PalladiumTM

DPA
Emulation

Xcelium
Simulation

Power reduction ASIC-level 
Start ave power estimation

Start peak estimation
High correlation 

Power reduction Add placement information to power 
estimation.

Power reduction over RTL and GTL
better peak estimation

Initial testing of signoff flow

Accurate placement information to 
power estimation. Higher accuracy.

Power reduction over GTL.
Pattern selection for signoff

Final power estimation.
Signoff

Power
Info Inputs Work model

Palladium DPA Toggles RTL or  Gates
• Power Analysis (per hierarchy / time)
• Peak detection
• Find window of interest for other tool 

Joules Watts RTL or Gates • RTL Power Analysis and Optimization
• Power estimation

Voltus Watts Gates • Power estimation and  power Integrity
• IR-drop and final Signoff

Data-driven workload can be 
leveraged to extract power profile: 

average and peak power



ARM 968 EJ
ITCM

DTCM

Display I /F

Video IP
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Controller
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SRAM

Boot ROM

Ext Memory
Interface ( SMC)
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AHB Slave

AHB Slave

AHB SlaveOCP

OCP

OCP

Video Out

Software 
Debugger

Hardware
Debugger DPA option

Power Profiler 

Palladium enterprise emulation platform excels with early HW/SW integration and 
co-verification with power analysis at the system-level

Palladium Series
High-performance verification 
platform from RTL acceleration 
to system emulation

SW

Summary: Data driven emulation enables system-level analysis



Hanan Moller, Systems Architect, UltraSoC
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POST-SILICON AND IN-LIFE ANALYTICS IN 
HETEROGENOUS SOCS



Problem statements
• It is not about the ISA(s)
• It is not about the core(s)

– Compute is largely ‘solved’
• The challenge today is systemic complexity, for example:

– Ad-hoc programming paradigms 
– Processor-processor interactions
– HW/SW interactions
– Interconnect, NoC & deadlock
– System are informally architected
– Workload details unknown in advance
– Massive data
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•Define legal operations
•Workload matters: must 
represent real operation

Use-case-
based

•Non-intrusive data collection
•Use the right execution platform

Data 
Collection

•Correlate, filter, learn, predict
•Anomaly detectionAnalysis

•Verification throughput
•Smarter bug huntingGoal-based

UltraSoC Distills Insights from Data

80

Knowledge

Information

Data

UltraSoC delivers 
actionable insights

With system-wide 
understanding

From rich data
across the 
whole SoC

UltraSoC enables full visibility of SoC

Va
lu

e

Actionable Analytics from any Chip for performance, safety, cyber-security



xtensa

Advanced Debug/Monitoring for the Whole SoC
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Interconnect (AXI, ACE, ACE-lite, OCP, NoC)
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Software tools for data-driven insights
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Script based Eclipse based UltraDevelop IDE

RISC-V 
CPU

Multiple
other 
CPUs

SW & HW in 
one tool

Single step & 
breakpoint 
CPU code &

decoded trace

Real-time
HW Data RISC-V 

instruction 
packets



UltraSoC
• A coherent architecture to debug, monitor and provide rich data for 

run-time analytics
– RTL IP is highly parameterizable - allows customers to trade hardware resources 

and thus silicon area
– Hardware resources are configurable at runtime
– Allows reuse of hardware resources for different scenarios and different 

algorithms
– Help with security and safety of systems
– Hardware provides rich data so CPU load for analysis is small 
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Analytics throughout 
SimulationàEmulationàIn-Life
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Simulation Emulation Prototype Lab test Field trial In Life

Tape-out

CPU and 
other IP

GA

etc...

HW/SW bring-up, 
Initial system 
release

Post-processing in software or 
Real-time processing in 
hardware



In-life Detection

Safety
HW “stuck pixel” detection

Performance Optimization
Run-time server SW tuning / security

• Non-intrusive: No performance impact
• Hardware: Fast, react at HW timescale;  invisible to software
• Visibility: Analyze software and system everywhere in SoC

Security
HW-based attack detection

Lab 
test

Field 
trial

In 
Life



Non-intrusive stuck pixels detection
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Commercial in Confidence         UL-002502-PT

Incoming image Detected stuck pixels

Fastest time to detection



Non intrusive anomaly detection
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• Three CPU plots below show CPU cache-like traffic for 3 CPUs 
configured with different miss rates

• Excessive (anomalous) latencies are shown in red



Non-intrusive profiling with anomaly detection

88

• Traditional profilers are 
inadequate:
– Sampling = miss subtle or fast 

events (Nyquist)
– Performance impact/intrusive
– “Heisenbugs”

• UltraSoC is non-intrusive
• UltraSoC is wirespeed (100% 

coverage)
• Analytics and automated 

anomaly detection to make 
engineer more efficient



Summary
• The challenge today is systemic complexity
– Architectural and modelling is needed but not enough

• Data analysis critical throughout product life-cycle
– Focused, non-intrusive data collection

• Need tools that support heterogenous systems
• Complex systems may require autonomous analytics and causality 

detection in real-time

89



Data-Driven Verification
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• Define legal operations
• Workload matters: must represent real operationUse-case-based

• Non-intrusive data collection
• Use the right execution platformData Collection

• Correlate, filter, learn, predict
• Anomaly detectionAnalysis

• Verification throughput
• Smarter bug huntingGoal-based



VERIFICATION THROUGHPUT

Multi-Level Abstraction

Smart Bug Hunting

Coverage
& Metrics
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Cycles per $ per day

Bugs per $ per day



Thank You!
• Q&A
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