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ABSTRACT 
Given the operational constraints that low power products face, 

designs must manage every joule of available energy with the utmost 

care. Furthermore, as chips move to progressively smaller nodes, it is 

critical to create circuitry whose role is to minimize the effects of 

leakage current and other such power-stealing phenomena. This 

circuitry presents a sophisticated verification challenge which needs 

to be addressed by an equally sophisticated solution. 

 

This paper describes an approach that was used to create a complete 

low power verification methodology. This methodology verifies the 

power control logic embedded in the SoC firmware in concert with 

the SoC‟s power control hardware so that it includes all of the low 

power control feature in the SoC. This methodology then back-

annotates low power verification results into a verification plan to 

dynamically track progress and quantitatively measure the 

verification results. All aspects of low power verification are 

integrated into this methodology including verifying control signal 

behavior, low power intent of the design and then tying simulation 

results back into a verification plan to measure verification results. 

We started with a Common Power Format (CPF) file, which was 

used to generate a compatible Universal Verification Methodology 

(UVM) Verification Component (UVC) and PSL assertions devoted 

to verification of power domain isolation & retention. We then 

extended these verification components to include other power 

related features such as clock gating and firmware control. This 

methodology has cut design and verification cycle times by 50%, 

while simultaneously significantly increasing the probability of an 

error-free design. The code created by this approach: the UVCs and 

assertions, can easily be reused on successive design projects. 
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B.5.2 [REGISTER-TRANSFER-LEVEL IMPLEMENTATION]: 

Design Aids –optimization, simulation, verification 

 

General Terms 
Hardware Description Languages, Optimization, Simulation, 

Verification 
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1. INTRODUCTION 
The pressure put on today‟s SoC designs to conserve power has 

resulted in new, complex design circuitry related to power control. 

Verification of these power control features presents equally complex 

challenges to the Verification and Design teams, such as: Do all 

device features work correctly when portions of the device are in a 

low power mode? Does the device transition correctly from one 

power mode to another? How can we be sure that all hardware and 

firmware interactions related to low power have been verified before 

design manufacture? 

 

 
Figure 1. The low power verification challenge 

 

A complete low power verification solution is needed to address 

these challenges and reduce the complexity and manual effort 

required to verify a low power SoC design. There are three 

components to a complete solution: 

 Verify proper operation of the power control signals. These 

signals must be shown to reach the proper state in the 

proper order at all times. 

 Verify the low power “intent” of the design. The design 

must be shown to transition to all low power states only 

when expected. 

 Simulation results must be quantified and show that all 

possible combinations of low power behavior have been 

executed. 

 

A complete solution can be reached in an accelerated manner with 

less manual effort by automating significant parts of the verification 

process. We did this by capturing the low power intent of the design 

in a Common Power Format (CPF) file and using this file to 

automatically drive much of the verification effort. Whereas using the 

CPF file to drive portions of the low power verification effort is an 

extremely helpful and time saving strategy, it is by no means 

complete. There is much that remained to be done to augment the 

verification code that was generated from the CPF file to insure an 

error-free low power implementation. 
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This paper will show that verification code that can be directly 

derived from the CPF file in an automated fashion. It will go into 

detail to show how this code was then augmented by us to greatly 

enhance the quality of the low power verification effort. The paper 

will describe four aspects of the verification flow: 

 Generation of PSL assertions to check power control 

signals and power mode behavior. Augmentation of these 

with custom assertions to create a more complete low 

power checking strategy will be described. 

 Inclusion of CPF file constructs in waveform viewers for 

debug. 

 Creation of an „e‟ language compatible UVM Verification 

Component to capture low power feature coverage in 

dynamic simulations. The paper will demonstrate how the 

automatically generated UVC can be extended to include 

low power concepts that are not defined in the CPF file 

such as clock gating and to add checking for low power 

behavior. 

 Generation of a low power verification plan for inclusion in 

the chip or system verification plan. This plan can then be 

used to tie simulation results back to the verification plan 

and provide low power feature coverage traceability. 

 

 
Figure 2. The complete low power verification solution 

 

2. CREATING A CPF FILE HIERARCHY FOR 

SIMULATION 
A CPF file is very closely associated with its corresponding design 

and contains hierarchical references to structures within the RTL. 

Tools used for place and route and formal verification require all 

design references to use the top level module of the design as the root 

of these references. The simulator, however, requires the addition of 

a testbench to instantiate the top level design module. This will have 

the effect of throwing off all of the hierarchical references within the 

CPF file. 

 

The solution to this problem is to create a second CPF file for use in 

simulation only. Don‟t panic, it is not necessary to duplicate the 

information contained in the design CPF file. Instead, the simulation 

CPF file simply identifies the testbench module name and refers to 

the design CPF file. The simulator then inserts the testbench module 

into the hierarchical references called out in the design CPF file. 

 

 

 

Below is an example of the content of a simulation CPF file: 

 

set_cpf_version 1.1 

set_hierarchy_separator “/” 

 

set_design testbench -testbench 

    set_instance soc_design_top 

    include soc_design.cpf 

end_design testbench 

 

As you can see, there is not much to it and all of the key low power 

information remains in the design CPF file. 

 

3. GENERATING PSL ASSERTIONS 
Low-power assertions were written as well as auto-generated to 

provide a portion of the needed checking for the low power feature of 

the design. Assertion Based Verification (ABV) is a general 

verification technique that can be used to provide temporal checking 

of potentially any design behavior. In our case, we used these 

assertions to verify proper temporal power control signal and power 

mode behavior.  

 

3.1 Assertions Generated from the CPF File 
Table 1 contains a list of the power control signal assertions that are 

created for each power domain defined in the CPF file. These 

assertions will serve to verify proper power control signal temporal 

behavior as the design drives them throughout the simulation.  

 

Assertion Name Description 

Always_isolated_when_shutoff The isolation signal is always 

asserted whenever shutoff is 

asserted. 

Isolate_off_follows_pwrup The isolation signal is eventually 

de-asserted following power up. 

Isolation_signal_not_x The isolation signal never goes 

unknown. 

Shutoff_follows_isolate The shutoff signal is eventually 

asserted following assertion of the 

isolate signal. 

Shutoff_signal_not_x The shutoff signal is never 

unknown. 

*Always_save_before_restore When the save signal is asserted it 

is eventually followed by 

assertion of the restore signal. 

*No_restore_while_shutoff The restore signal is never 

asserted while the shutoff signal is 

asserted. 

*No_save_while_shutoff The save signal is never asserted 

while the shutoff signal is 

asserted. 

*Restore_signal_not_x The restore signal never goes 

unknown. 

*Save_signal_not_x The save signal never goes 

unknown. 

*Shutoff_follows_save The shutoff signal is eventually 

asserted following assertion of the 

save signal. 

*This assertion is only included if save and restore signals are 

defined for the power domain. 

Table 1. Assertions generated automatically from the CPF file 

 



3.2 Custom Low Power Assertions 
Whereas the auto-generated assertions do a good job of covering the 

temporal relationships between the power control signals, the 

assertions do not form a complete low power verification scheme. 

For instance, there is no assertion which verifies that when the power 

shutoff control signal is asserted for a given power domain that the 

power within the domain actually shuts off.  In order to close this 

gap, it is necessary to augment the automatically generated assertions 

with additional, designer created assertions and pull them into a 

simulation. There are two assertions which can be added for every 

power domain: 

 Whenever the power shutoff signal is asserted, the power 

net in the corresponding power domain shall be powered 

down 

 Whenever the power shutoff signal is de-asserted, the 

power net in the corresponding domain shall be powered up 

 

Below is an example vunit for a power domain module which 

contains the assertions described above. 

 

vunit my_design_module_vunit (my_design_module) { 

 

// if power shutoff is asserted then power net is off (1‟bX) 

LPV_POWER_NET_OFF : assert always ({power_ctrl == 1} |-> 

{power_net === 1'bx}) @ (posedge(system_clk)); 

 

// if power shutoff is de-asserted then power net is on (1‟b1) 

LPV_POWER_NET_ON : assert always ({power_ctrl == 0} |-> 

{power_net === 1'b1}) @ (posedge(system_clk)); 

 

} 

 

The behavioral model used in simulation for a power domain may or 

may not be designed to be sensitive to the value driven onto the 

power net. In other words, depending on how the behavioral model is 

written, it may operate in simulation independently of the power net 

value in simulation. This means in operates in the same fashion 

whether the power for the domain is turned on or not. If the 

behavioral model description is independent of the power net value, it 

is possible for a bug in the power shutoff feature to go unrecognized 

in simulation. The only way to catch it under these circumstances is 

with the custom assertions described above. 

 

4. VIEWING CPF FILE CONSTRUCTS IN A 

WAVEFORM VIEWER 
We were able to view some of the low power constructs associated 

with the CPF file in a waveform viewer. These include the low power 

assertions and power domain state information. This is a powerful 

tool and a vital step in debugging errant power control behavior. 

 

First, when running the simulation we probed the low power 

information. This can be done by either waving the entire design or 

by waving the ALPV_MODEL module which is created by inclusion 

of the CPF file. This module appears at the same level of hierarchy as 

the top level of the design. 

 

Analyzing the simulation results using post-processing, we started the 

waveform viewer and loaded the waveform database as per usual.  

The twist for low power analysis was to also load a simulation 

snapshot in order for the low power state information to be loaded 

into the waveform viewer.  

 

Once inside the simulation tool, the power mode and power domain 

information is loaded into a hierarchical, tree view display. See 

Figure  which shows the power display for a project. 

 

 

 
Figure 3. Low power information displayed in a design browser 

window 

 

To load the state information for one of the domains, right click on a 

domain listed in the “Power Domain Information” panel and select 

“Send to waveform Window”. There is a great deal of information 

recorded for each power domain, including information on many of 

the signals in the domain related to isolation, save and restore. What 

we found most helpful were the State, Mode, Nominal_Condition and 

Voltage entries. Figure  shows this information being displayed for 

the PDMDSP and PDFLASH domains of a design. Each of the 

domains is being shut off then turned back on again in the figure. 

 

 
Figure 4. Key low power information displayed in ta waveform 

window 

 

It is also possible to view the low power assertions in an assertion 

browser window.  Specifically, all of the probed assertions in the 

design will be listed in the assertion browser window. We were able 



to see the number of times each assertion passed and failed.  As 

shown in Figure 3 below, filtering by “*LPV*” will generate the 

complete list for the PDHOST domain. This can be very a very useful 

strategy to identify and debug low power failures, particularly in the 

early stages of design.  

 

 

 
Figure 5. CPF file assertions displayed in an assertion browser 

window 

. 

5. CREATING LOW POWER COVERAGE 

AND VERIFICATION CODE 
By using a utility program available from our tool vendor, we were 

able to generate verification code to create coverage on low power 

state behavior defined by the CPF file. We then manually extended 

this code to create coverage on low power states that are not a default 

part of the CPF file such as “SLEEP‟ mode. Finally, we used the 

code as part of a UVM compatible verification environment to verify 

the low power behavior of a design. 

 

5.1 Generate Low Power Coverage Code 
A script program (create_code.sh) was used to generate „e‟ code for 

dynamic simulations. The generated „e‟ code contains constructs such 

as an agent, monitor and structure definitions used to monitor and 

capture feature coverage power domain behavior as defined in the 

CPF file. The „e‟ code testbench is mated to the design hierarchy by 

using signal references embedded within the CPF file. 

 

5.2 Extending power Mode Coverage  
Currently, the CPF v2.0 standard has definitions for the “ON” and 

“OFF” power states for a given power domain and not much else. 

Power states such as “SLEEP” where the power remains on but the 

clock has been gated are not included nor covered in the 

automatically generated verification code. However, by manually 

creating extensions to the verification code, power states such as 

“SLEEP” can be accounted for and verified in simulation. 

 

For example, here is a piece of code using the „e‟ verification 

language which extends the pre-defined power state definitions to 

include some custom power states. In this case, the concept of a 

“SLEEP” power state has been added along with several others. 

 

extend uvm_lp_state_t : [SLEEP, STOP, DEEP_PD, ARRAY_RET, 

ARRAY_RET_LOW, ARRAY_SHUT, PERIPH_SHUT]; 

 

Next, it is necessary to create a mechanism which will detect these 

newly defined low power states in the design. To accomplish this, we 

created event ports in the testbench and connected them to signals in 

the RTL which indicated the power state of a particular power 

domain. A method was created which was always running for the 

length of simulation which was responsible for detecting changes in 

the power state of a domain and indicating new states to the 

scoreboard via an event. As discussed in section 5.3.3, the low power 

scoreboard then records the power transition and ultimately uses it to 

provide checking that the power transition was indeed expected to 

happen. Below is some code for a domain which has many unique 

power states defined.  

 

// Definition of ports connected to RTL state indicator signals 

port_lp_control_e : list of in event_port is instance; 

keep port_lp_control_e.size() == 6; 

keep soft port_lp_control_e.hdl_path() == "lp_control"; 

 

// This method watches for changes in the RTL which indicate 

// a change in low power state and emits a corresponding event 

// used by the low power scoreboard 

state_watcher_lp_control() @clock is { 

        var int_lp_control: uint; 

        var valid_state: bool; 

 

        while TRUE { 

            message(HIGH,"Waiting for any change on the lp control 

  bus."); 

            wait (@port_lp_control_e); 

            message(HIGH,"Detected a change on the lp control bus”); 

 

            // wait for all control signals to settle to their steady state 

            wait [550]*cycle; 

            message(HIGH,”Sampling lp control bus."); 

 

            int_lp_control = port_lp_control$; 

 

            message(HIGH,"The new lp control bus state is ",  

  int_lp_control); 

 

            valid_state = TRUE; // default value 

            case int_lp_control { 

                0x04: { power_state_lp = ON; }; 

                0x14: { power_state_lp = ARRAY_RET; }; 

                0x16: { power_state_lp = ARRAY_RET_LOW; }; 

                0x10: { power_state_lp = ARRAY_SHUT; }; 

                0x18: { power_state_lp = PERIPH_SHUT; }; 

                default: { 

                    valid_state = FALSE; 

                    dut_error("Unidentified power state [", power_state_lp, 

   "]."); 

                }; 

            }; 

            if valid_state { emit lp_state_change;}; 

        }; 

    }; 

}; 

 

Next, we added logic which tracks the power state of each domain 

and creates coverage to record how many times each power state was 

reached. Transition coverage can also be added to record all 

transitions from one power state to the next. This code will ultimately 

be used to measure which power modes and power transitions have 

been exercised in simulation. Below is an example of a coverage 

statement used on one power domain: 

 



cover lp_power_domain is { 

        // Covering power modes reached 

        item power_state : uvm_lp_state_t = power_state  

        using ignore = (power_state not in [ON, OFF, SLEEP]); 

         

        // Covering power transitions made 

        transition power_state using ignore = ( 

            // only transitions to and from the state of ON are allowed 

            (prev_power_state == ON and power_state == ON) or 

            (prev_power_state != ON and power_state != ON) 

        ); 

    }; 

 

5.3 Extending Low Power Checking 
The CPF file does drive some verification directly via the PSL 

assertions that are used in the course of dynamic simulations. These 

assertions primarily verify proper control signal behavior in that the 

signals are verified to be asserted and de-asserted by the SoC design 

in the proper order and never take on a value of unknown. While this 

is helpful, it is definitely not the entire verification needed to insure 

correct behavior of the low power feature. For example, the 

assertions do not answer questions like: When the system was 

required to transition into a low power mode, did it correctly do so? If 

the system did make a power transition, was it expected? 

 

However, once again, we extended the verification code that was 

automatically generated in section 5.1 to add this functionality. In 

order to get this done, we needed to build a UVM verification 

environment with a few key components: 

 A way to drive device firmware and generate/detect 

stimulus that will change the power state of the device. 

 A way to generate/detect power state changes in the RTL. 

In our case, we used hardware IRQ signals to force power 

state changes. 

 A mechanism to monitor the low power state of the device 

 A checking mechanism that will verify each expected 

power state transition eventually happens and that each 

transition that does happen was expected. 

 

A simplified diagram showing the UVM compatible low power 

verification environment is shown in Figure 4. 

 
Figure 6. Diagram of the UVM low power verification 

environment 

 

5.3.1 Creating a Firmware UVC 
In order to extend low-power checking, it was important to drive the 

verification from firmware.  With this capability, we were able to 

execute firmware instructions which drive the device into low power 

modes using the same mechanisms that the “real” firmware would 

use. Using software extensions available from some EDA tool 

vendors, it is possible to create firmware routines that can be “driven” 

onto a microprocessor in a SoC much in the same way a testbench 

might drive a signal pin on the SoC in hardware. We created a 

firmware UVC capable of driving and monitoring firmware low 

power instructions. A Sequence generator was created which injects 

power related instructions into a processor at random intervals. The 

constrained random nature of the stimulus allowed us to simulate 

unforeseen, but valid, combinations of firmware and hardware state 

that the design might reach after manufacturing in the real world. A 

monitor mechanism was created to detect and communicate the 

power expectations via a method port to a scoreboard checking 

mechanism. 

 

 
Figure 7. The Firmware UVC 

 

Below is one example of a low power sequence, 

LP_PDHOST_WFI_GEN, which is executed at constrained random 

intervals by the verification environment. This sequence drives the 

processor firmware to enable a transition to a low power state. This 

sequence randomly generates a Boolean value that will be used to 

select a child sequence which then sets a value written into a system 

control register by firmware. When set, the processor will be 

configured to enter a „Deep Sleep‟ or power off mode after the next 

interrupt has been serviced. When this variable is cleared, the 

processor will be configured to enter „Sleep‟ mode, where power 

remains on but the clock to the domain is gated. 

 
extend mdt_ngmcu_sw_sequence_kind_t : [LP_PDHOST_WFI_GEN]; 

extend LP_PDHOST_WFI_GEN mdt_ngmcu_sw_sequence { 
    !poweroff_wfi_seq: LP_PDHOST_POWER_OFF_WFI 

mdt_ngmcu_sw_sequence; 

    !clockoff_wfi_seq: LP_PDHOST_CLOCK_OFF_WFI 
mdt_ngmcu_sw_sequence; 

    deep_sleep: bool; 

 
    body() @driver.clock is only { 

        // execute the WFI instruction 

        if deep_sleep { 
            message(LOW, "ISX: LP: LP_PDHOST_WFI_GEN: About to 

execute a poweroff_wfi sequence."); 

            do poweroff_wfi_seq; // WFI will not complete until the next IRQ 
because CPU is asleep 

            message(LOW, "ISX: LP: LP_PDHOST_WFI_GEN: poweroff_wfi 

sequence complete."); 
        } else { 



            message(LOW, "ISX: LP: LP_PDHOST_WFI_GEN: About to 

execute a clockoff_wfi sequence."); 
            do clockoff_wfi_seq; // WFI will not complete until the next IRQ 

because CPU is asleep 

            message(LOW, "ISX: LP: LP_PDHOST_WFI_GEN: clockoff_wfi 
sequence complete."); 

        }; 

    }; 
}; 

 

The child sequence, LP_PDHOST_POWER_OFF_WFI or 

LP_PDHOST_CLOCK_OFF_WFI, sets the system control register 

as desired and then executes a WFI (Wait For Interrupt) firmware 

command on the processor. An example of one of these sequences is 

shown below: 

 
extend mdt_ngmcu_sw_sequence_kind_t : 
[LP_PDHOST_POWER_OFF_WFI]; 

extend LP_PDHOST_POWER_OFF_WFI mdt_ngmcu_sw_sequence { 

    !sys_control_reg_seq: LP_PDHOST_WRITE_SYS_CONTROL_REG 
mdt_ngmcu_sw_sequence; 

    !wfi_seq: WFI mdt_ngmcu_sw_sequence; 

    lp_change: mdt_lp_change_s; 
    keep lp_change.domain == PDHOST; 

    keep lp_change.state == OFF; 

    keep lp_change.trigger == SOFTWARE; 
    keep lp_change.required == TRUE; 

    keep lp_change.time_stamp == 0; 

 
    body() @driver.clock is only { 

        message(LOW,"ISX: LP: LP_PDHOST_POWER_OFF_WFI: Turning 

CPU power off.") {}; 
        do sys_control_reg_seq keeping { 

            it.sleepdeep == TRUE; 

            it.sleeponexit == FALSE; 
        }; 

        driver.lp_change_out$(lp_change); 

        do wfi_seq; 
        message(LOW,"ISX: LP: LP_PDHOST_POWER_OFF_WFI: Sequence 

complete.") {}; 
    }; 

}; 

 

The sequence also creates a structure, lp_change, and places it on a 

scoreboard through a method port. The structure is used by the low 

power scoreboard to identify an expected power change in the 

PDHOST domain. Later in this document I will show how the 

scoreboard uses these items to provide low power verification by 

comparing these expected power transitions with actual power 

transitions observed in the hardware model. 

 

The example sequences in this section show a portion of the low 

power sequences for the PDHOST domain. It is necessary to create 

similar sequences for all of the power domains in the design. 

 

5.3.2 Creating an IRQ UVC 
Another component required by the low power verification 

environment was a UVC which will drive IRQ lines that trigger low 

power state transitions. In the real world, IRQ events are not 

coordinated with the current activity of the processor or firmware. In 

order to model this type of interaction in simulation, the UVC needed 

to be capable of driving interrupts at constrained-random intervals 

completely independent from the firmware UVC. The UVC included 

a monitor that would detect IRQs and communicate the events to a 

scoreboard mechanism via a method port. The scoreboard would use 

these events to record the expected power state transitions for the 

SoC design. 

 

 
Figure 8. The IRQ UVC 

 

Below is an example of a sequence used by the testbench to drive the 

IRQ line at constrained-random intervals in our design. The IRQ line 

is asserted for a random time interval between 400us and 10us. 

 
extend mdt_ngmcu_sw_sequence_kind_t : [LP_ASSERT_GPIO0_IRQ]; 

extend LP_ASSERT_GPIO0_IRQ mdt_ngmcu_sw_sequence { 

    body() @driver.clock is only { 
        var random_delay : time; 

 
        message(HIGH,"ISX: LP: LP_ASSERT_GPIO0_IRQ: Asserting gpio0 

IRQ.") {}; 

        // generate a pulse which is at least one clock in duration.  
        gen random_delay keeping { it > 400 ns; it < 10 us; }; 

        driver.smp.gpio0_simple$ = 1'b1; 

        wait delay(random_delay); 
        driver.smp.gpio0_simple$ = 1'b0; 

        message(HIGH,"ISX: LP: LP_ASSERT_GPIO0_IRQ: Assert gpio0 IRQ 

complete.") {}; 
    }; 

}; 

 

A method port was added to the IRQ UVC driver to pass IRQ events 

to the scoreboard which would then expect a power transition back to 

the “ON” power state. Below is an example of this code. 

 
lp_irq : mdt_lp_irq_s; 

    keep lp_irq.domain == PDHOST; 
 

    event lp_irq_e is @irq_e; 

    on lp_irq_e { 

        lp_irq.host_irq = p_env.isx_exception$.as_a(mdt_ngmcu_interrupt_t); 

        lp_irq_out$(lp_irq); 

    }; 

 

 

5.3.3 Development of a Low Power Scoreboard 
The scoreboard is used to provide the needed checking mechanism 

for the low power control feature of the device. When the firmware 

or IRQ generates stimulus resulting in an expected power state 

transition, this is communicated to the scoreboard via the method 

ports described previously and an item is placed on a list structure for 

expected power transitions. Actual power state transitions are 

detected by the power state monitor and also communicated to the 

scoreboard via method ports and placed on a list of actual power state 

transitions. Each new entry on the list of actual power transitions is 

compared to the list of expected power transitions to verify that the 

SoC design did indeed execute the expected power transitions. In this 

way the low power “intent” of the low power feature was verified for 



a given domain. Separate list structures were used to provide a 

checking mechanism for each power domain. 

 

The code to monitor the low power state of the device has already 

been created automatically from the supplied utility program and can 

be used by the scoreboard to recognize actual power state transitions. 

 

 
Figure 9. The low power scoreboard 

 

There are 3 checks that we needed to apply in the scoreboard: 

 Check for unexpected power transitions. This would be an 

item on the list of actual transitions without a 

corresponding item on the list of expected transitions. 

 Check for missing power transitions. This would be an item 

on the list of expected transitions that is never paired with a 

corresponding item on the list of actual transitions. 

 Check for incorrect power transitions. This would be an 

item that does not match on both the expected and actual 

power transition lists. 

 

Rather than create unique checks for each power domain, macros 

were created for the three different checks. The macros were then 

applied to all of the power domains in the design. This reduced the 

probability of an error in the verification code and reduced the 

number of lines of code that needed to be written. Below is an 

example of one macro that was used to check for missing power 

transitions. 

 
define <lp_missing_power_transition'action> "lp_missing_power_transition 

<domain_name'name>" as computed { 

    var statement: string; 
 

    statement = append(statement, 

                    "check lp_missing_power_transition_", <domain_name'name>, " 
that "); 

    statement = append(statement, 

                    "    (expected_size - actual_size !> 1)  else "); 
    statement = append(statement, 

                    "    dut_error(\"Missing power transition in the \", domain, \" 

power domain.\") {"); 
    statement = append(statement, 

                    "        print_change_item(missing_item);"); 

    statement = append(statement, 
                    "    }"); 

 

    return statement; 

}; 

 

 

6. GENERATING A LOW POWER 

VERIFICATION PLAN 
It is possible to generate a low power verification plan from the CPF 

file either with or without automation. We used this to compare the 

low power verification goals with what actually happened in 

simulation and thus “close the loop” on low power verification and 

empirically determine when all verification and coverage goals have 

been met for the low power feature. 

 

We set the main verification plan for the SoC design to reference the 

low power verification plan via Meta text. The Meta text acts as a 

link between the two verification plans, much in the same way that a 

link to a web page points to a separate html document. In this way, 

the auto-generated plan was included in the larger verification plan 

for the SoC. 

 

Ideally, automation is used to read in the main verification plan and 

add the content from the low power verification plan as part of that 

process. When automation is used, the simulation results can be tied 

back to the verification plan and automatically fill in the low power 

section of the plan with the verification results created by the „e‟ code 

during simulation. Figure 5 shows the power mode coverage obtained 

by a series of simulations for this project. 

 

 
Figure 10. Power mode coverage 

 

7. SUMMARY 
In summary, a complete low power verification methodology: 

 

Reduces time to market 
Start with the Common Power Format file to capture the low power 

intent of a design and then use it to auto-generate significant portions 

of the low power verification effort thus reducing time to market 

while simultaneously increasing the quality of results.  

 

Improves quality of results 
The code auto-generated from the CPF file can be extended to create 

PSL assertions and a UVM compliant UVC which together form an 

exceptionally effective and thorough verification strategy 

 

Provides a complete solution 

The PSL assertions and UVM compliant verification environment 

coverage results can be pulled together and compared to verification 

plan goals to quantitatively analyze simulation results and form a 

complete low power verification picture. 

 



We started with the Common Power Format file, to capture the low 

power intent of a design and then use it to drive the low power 

verification effort thus reducing time to market while simultaneously 

increasing the quality of results. The code generated from the CPF 

file was extended by the verification engineer to form a complete low 

power verification picture. We showed how the CPF file can be 

hierarchically structured to facilitate its use in dynamic verification, 

formal verification as well as place and route. It was shown how PSL 

assertions automatically derived from the CPF and then augmented 

with manually created assertions to verify power control signal 

behavior. The power state of defined power domains can be viewed 

in a waveform viewer as an aid to debug. Coverage and monitoring 

code can easily be generated to quickly get a UVM compatible 

verification environment started. This code can be extended to 

include other low power states such as “SLEEP” modes where the 

domain clock is gated and to include checking for low power 

behavior. Lastly, we showed how all of this can be included in a 

verification plan to close the loop on low power verification and 

empirically determine when verification is complete. 

 

By taking full advantage of the CPF file and then extending 

automatically generated verification constructs manually, to create a 

complete low power verification effort; we can expect superior time 

to market and quality results. 

 

8. ACKNOWLEDGMENTS 
Thanks to Brent Carlson for his help in establishing this methodology 

with the support of the Cadence Incisive products and Joseph Hupcey 

III of Cadence for his editorial support. 


