
Creating a Complete Low Power Verification Strategy using
the Common Power Format and UVM

Robert Meyer
Medtronic, Inc.
8200 Coral Sea Street NE
MS MVC61
Mounds View, MN 55112
robert.j.meyer@medtronic.com

Joel Artmann
Medtronic, Inc.
8200 Coral Sea Street NE
MS MVC61
Mounds View, MN 55112
joel.b.artmann@medtronic.com

ABSTRACT
Given the operational constraints that low power products face,

designs must manage every joule of available energy with the utmost

care. Furthermore, as chips move to progressively smaller nodes, it is

critical to create circuitry whose role is to minimize the effects of

leakage current and other such power-stealing phenomena. This

circuitry presents a sophisticated verification challenge which needs

to be addressed by an equally sophisticated solution.

This paper describes an approach that was used to create a complete

low power verification methodology. This methodology verifies the

power control logic embedded in the SoC firmware in concert with

the SoC‟s power control hardware so that it includes all of the low

power control feature in the SoC. This methodology then back-

annotates low power verification results into a verification plan to

dynamically track progress and quantitatively measure the

verification results. All aspects of low power verification are

integrated into this methodology including verifying control signal

behavior, low power intent of the design and then tying simulation

results back into a verification plan to measure verification results.

We started with a Common Power Format (CPF) file, which was

used to generate a compatible Universal Verification Methodology

(UVM) Verification Component (UVC) and PSL assertions devoted

to verification of power domain isolation & retention. We then

extended these verification components to include other power

related features such as clock gating and firmware control. This

methodology has cut design and verification cycle times by 50%,

while simultaneously significantly increasing the probability of an

error-free design. The code created by this approach: the UVCs and

assertions, can easily be reused on successive design projects.

Categories and Subject Descriptors
B.5.2 [REGISTER-TRANSFER-LEVEL IMPLEMENTATION]:

Design Aids –optimization, simulation, verification

General Terms
Hardware Description Languages, Optimization, Simulation,

Verification

Keywords
Electronic System Level, Design, Verification, Mixed Language

Flow, CPF, UPF, UVM, Low Power, Control Logic

1. INTRODUCTION
The pressure put on today‟s SoC designs to conserve power has

resulted in new, complex design circuitry related to power control.

Verification of these power control features presents equally complex

challenges to the Verification and Design teams, such as: Do all

device features work correctly when portions of the device are in a

low power mode? Does the device transition correctly from one

power mode to another? How can we be sure that all hardware and

firmware interactions related to low power have been verified before

design manufacture?

Figure 1. The low power verification challenge

A complete low power verification solution is needed to address

these challenges and reduce the complexity and manual effort

required to verify a low power SoC design. There are three

components to a complete solution:

 Verify proper operation of the power control signals. These

signals must be shown to reach the proper state in the

proper order at all times.

 Verify the low power “intent” of the design. The design

must be shown to transition to all low power states only

when expected.

 Simulation results must be quantified and show that all

possible combinations of low power behavior have been

executed.

A complete solution can be reached in an accelerated manner with

less manual effort by automating significant parts of the verification

process. We did this by capturing the low power intent of the design

in a Common Power Format (CPF) file and using this file to

automatically drive much of the verification effort. Whereas using the

CPF file to drive portions of the low power verification effort is an

extremely helpful and time saving strategy, it is by no means

complete. There is much that remained to be done to augment the

verification code that was generated from the CPF file to insure an

error-free low power implementation.

mailto:robert.j.meyer@medtronic.com
mailto:joel.b.artmann@medtronic.com

This paper will show that verification code that can be directly

derived from the CPF file in an automated fashion. It will go into

detail to show how this code was then augmented by us to greatly

enhance the quality of the low power verification effort. The paper

will describe four aspects of the verification flow:

 Generation of PSL assertions to check power control

signals and power mode behavior. Augmentation of these

with custom assertions to create a more complete low

power checking strategy will be described.

 Inclusion of CPF file constructs in waveform viewers for

debug.

 Creation of an „e‟ language compatible UVM Verification

Component to capture low power feature coverage in

dynamic simulations. The paper will demonstrate how the

automatically generated UVC can be extended to include

low power concepts that are not defined in the CPF file

such as clock gating and to add checking for low power

behavior.

 Generation of a low power verification plan for inclusion in

the chip or system verification plan. This plan can then be

used to tie simulation results back to the verification plan

and provide low power feature coverage traceability.

Figure 2. The complete low power verification solution

2. CREATING A CPF FILE HIERARCHY FOR

SIMULATION
A CPF file is very closely associated with its corresponding design

and contains hierarchical references to structures within the RTL.

Tools used for place and route and formal verification require all

design references to use the top level module of the design as the root

of these references. The simulator, however, requires the addition of

a testbench to instantiate the top level design module. This will have

the effect of throwing off all of the hierarchical references within the

CPF file.

The solution to this problem is to create a second CPF file for use in

simulation only. Don‟t panic, it is not necessary to duplicate the

information contained in the design CPF file. Instead, the simulation

CPF file simply identifies the testbench module name and refers to

the design CPF file. The simulator then inserts the testbench module

into the hierarchical references called out in the design CPF file.

Below is an example of the content of a simulation CPF file:

set_cpf_version 1.1

set_hierarchy_separator “/”

set_design testbench -testbench

 set_instance soc_design_top

 include soc_design.cpf

end_design testbench

As you can see, there is not much to it and all of the key low power

information remains in the design CPF file.

3. GENERATING PSL ASSERTIONS
Low-power assertions were written as well as auto-generated to

provide a portion of the needed checking for the low power feature of

the design. Assertion Based Verification (ABV) is a general

verification technique that can be used to provide temporal checking

of potentially any design behavior. In our case, we used these

assertions to verify proper temporal power control signal and power

mode behavior.

3.1 Assertions Generated from the CPF File
Table 1 contains a list of the power control signal assertions that are

created for each power domain defined in the CPF file. These

assertions will serve to verify proper power control signal temporal

behavior as the design drives them throughout the simulation.

Assertion Name Description

Always_isolated_when_shutoff The isolation signal is always

asserted whenever shutoff is

asserted.

Isolate_off_follows_pwrup The isolation signal is eventually

de-asserted following power up.

Isolation_signal_not_x The isolation signal never goes

unknown.

Shutoff_follows_isolate The shutoff signal is eventually

asserted following assertion of the

isolate signal.

Shutoff_signal_not_x The shutoff signal is never

unknown.

*Always_save_before_restore When the save signal is asserted it

is eventually followed by

assertion of the restore signal.

*No_restore_while_shutoff The restore signal is never

asserted while the shutoff signal is

asserted.

*No_save_while_shutoff The save signal is never asserted

while the shutoff signal is

asserted.

*Restore_signal_not_x The restore signal never goes

unknown.

*Save_signal_not_x The save signal never goes

unknown.

*Shutoff_follows_save The shutoff signal is eventually

asserted following assertion of the

save signal.

*This assertion is only included if save and restore signals are

defined for the power domain.

Table 1. Assertions generated automatically from the CPF file

3.2 Custom Low Power Assertions
Whereas the auto-generated assertions do a good job of covering the

temporal relationships between the power control signals, the

assertions do not form a complete low power verification scheme.

For instance, there is no assertion which verifies that when the power

shutoff control signal is asserted for a given power domain that the

power within the domain actually shuts off. In order to close this

gap, it is necessary to augment the automatically generated assertions

with additional, designer created assertions and pull them into a

simulation. There are two assertions which can be added for every

power domain:

 Whenever the power shutoff signal is asserted, the power

net in the corresponding power domain shall be powered

down

 Whenever the power shutoff signal is de-asserted, the

power net in the corresponding domain shall be powered up

Below is an example vunit for a power domain module which

contains the assertions described above.

vunit my_design_module_vunit (my_design_module) {

// if power shutoff is asserted then power net is off (1‟bX)

LPV_POWER_NET_OFF : assert always ({power_ctrl == 1} |->

{power_net === 1'bx}) @ (posedge(system_clk));

// if power shutoff is de-asserted then power net is on (1‟b1)

LPV_POWER_NET_ON : assert always ({power_ctrl == 0} |->

{power_net === 1'b1}) @ (posedge(system_clk));

}

The behavioral model used in simulation for a power domain may or

may not be designed to be sensitive to the value driven onto the

power net. In other words, depending on how the behavioral model is

written, it may operate in simulation independently of the power net

value in simulation. This means in operates in the same fashion

whether the power for the domain is turned on or not. If the

behavioral model description is independent of the power net value, it

is possible for a bug in the power shutoff feature to go unrecognized

in simulation. The only way to catch it under these circumstances is

with the custom assertions described above.

4. VIEWING CPF FILE CONSTRUCTS IN A

WAVEFORM VIEWER
We were able to view some of the low power constructs associated

with the CPF file in a waveform viewer. These include the low power

assertions and power domain state information. This is a powerful

tool and a vital step in debugging errant power control behavior.

First, when running the simulation we probed the low power

information. This can be done by either waving the entire design or

by waving the ALPV_MODEL module which is created by inclusion

of the CPF file. This module appears at the same level of hierarchy as

the top level of the design.

Analyzing the simulation results using post-processing, we started the

waveform viewer and loaded the waveform database as per usual.

The twist for low power analysis was to also load a simulation

snapshot in order for the low power state information to be loaded

into the waveform viewer.

Once inside the simulation tool, the power mode and power domain

information is loaded into a hierarchical, tree view display. See

Figure which shows the power display for a project.

Figure 3. Low power information displayed in a design browser

window

To load the state information for one of the domains, right click on a

domain listed in the “Power Domain Information” panel and select

“Send to waveform Window”. There is a great deal of information

recorded for each power domain, including information on many of

the signals in the domain related to isolation, save and restore. What

we found most helpful were the State, Mode, Nominal_Condition and

Voltage entries. Figure shows this information being displayed for

the PDMDSP and PDFLASH domains of a design. Each of the

domains is being shut off then turned back on again in the figure.

Figure 4. Key low power information displayed in ta waveform

window

It is also possible to view the low power assertions in an assertion

browser window. Specifically, all of the probed assertions in the

design will be listed in the assertion browser window. We were able

to see the number of times each assertion passed and failed. As

shown in Figure 3 below, filtering by “*LPV*” will generate the

complete list for the PDHOST domain. This can be very a very useful

strategy to identify and debug low power failures, particularly in the

early stages of design.

Figure 5. CPF file assertions displayed in an assertion browser

window

.

5. CREATING LOW POWER COVERAGE

AND VERIFICATION CODE
By using a utility program available from our tool vendor, we were

able to generate verification code to create coverage on low power

state behavior defined by the CPF file. We then manually extended

this code to create coverage on low power states that are not a default

part of the CPF file such as “SLEEP‟ mode. Finally, we used the

code as part of a UVM compatible verification environment to verify

the low power behavior of a design.

5.1 Generate Low Power Coverage Code
A script program (create_code.sh) was used to generate „e‟ code for

dynamic simulations. The generated „e‟ code contains constructs such

as an agent, monitor and structure definitions used to monitor and

capture feature coverage power domain behavior as defined in the

CPF file. The „e‟ code testbench is mated to the design hierarchy by

using signal references embedded within the CPF file.

5.2 Extending power Mode Coverage
Currently, the CPF v2.0 standard has definitions for the “ON” and

“OFF” power states for a given power domain and not much else.

Power states such as “SLEEP” where the power remains on but the

clock has been gated are not included nor covered in the

automatically generated verification code. However, by manually

creating extensions to the verification code, power states such as

“SLEEP” can be accounted for and verified in simulation.

For example, here is a piece of code using the „e‟ verification

language which extends the pre-defined power state definitions to

include some custom power states. In this case, the concept of a

“SLEEP” power state has been added along with several others.

extend uvm_lp_state_t : [SLEEP, STOP, DEEP_PD, ARRAY_RET,

ARRAY_RET_LOW, ARRAY_SHUT, PERIPH_SHUT];

Next, it is necessary to create a mechanism which will detect these

newly defined low power states in the design. To accomplish this, we

created event ports in the testbench and connected them to signals in

the RTL which indicated the power state of a particular power

domain. A method was created which was always running for the

length of simulation which was responsible for detecting changes in

the power state of a domain and indicating new states to the

scoreboard via an event. As discussed in section 5.3.3, the low power

scoreboard then records the power transition and ultimately uses it to

provide checking that the power transition was indeed expected to

happen. Below is some code for a domain which has many unique

power states defined.

// Definition of ports connected to RTL state indicator signals

port_lp_control_e : list of in event_port is instance;

keep port_lp_control_e.size() == 6;

keep soft port_lp_control_e.hdl_path() == "lp_control";

// This method watches for changes in the RTL which indicate

// a change in low power state and emits a corresponding event

// used by the low power scoreboard

state_watcher_lp_control() @clock is {

 var int_lp_control: uint;

 var valid_state: bool;

 while TRUE {

 message(HIGH,"Waiting for any change on the lp control

 bus.");

 wait (@port_lp_control_e);

 message(HIGH,"Detected a change on the lp control bus”);

 // wait for all control signals to settle to their steady state

 wait [550]*cycle;

 message(HIGH,”Sampling lp control bus.");

 int_lp_control = port_lp_control$;

 message(HIGH,"The new lp control bus state is ",

 int_lp_control);

 valid_state = TRUE; // default value

 case int_lp_control {

 0x04: { power_state_lp = ON; };

 0x14: { power_state_lp = ARRAY_RET; };

 0x16: { power_state_lp = ARRAY_RET_LOW; };

 0x10: { power_state_lp = ARRAY_SHUT; };

 0x18: { power_state_lp = PERIPH_SHUT; };

 default: {

 valid_state = FALSE;

 dut_error("Unidentified power state [", power_state_lp,

 "].");

 };

 };

 if valid_state { emit lp_state_change;};

 };

 };

};

Next, we added logic which tracks the power state of each domain

and creates coverage to record how many times each power state was

reached. Transition coverage can also be added to record all

transitions from one power state to the next. This code will ultimately

be used to measure which power modes and power transitions have

been exercised in simulation. Below is an example of a coverage

statement used on one power domain:

cover lp_power_domain is {

 // Covering power modes reached

 item power_state : uvm_lp_state_t = power_state

 using ignore = (power_state not in [ON, OFF, SLEEP]);

 // Covering power transitions made

 transition power_state using ignore = (

 // only transitions to and from the state of ON are allowed

 (prev_power_state == ON and power_state == ON) or

 (prev_power_state != ON and power_state != ON)

);

 };

5.3 Extending Low Power Checking
The CPF file does drive some verification directly via the PSL

assertions that are used in the course of dynamic simulations. These

assertions primarily verify proper control signal behavior in that the

signals are verified to be asserted and de-asserted by the SoC design

in the proper order and never take on a value of unknown. While this

is helpful, it is definitely not the entire verification needed to insure

correct behavior of the low power feature. For example, the

assertions do not answer questions like: When the system was

required to transition into a low power mode, did it correctly do so? If

the system did make a power transition, was it expected?

However, once again, we extended the verification code that was

automatically generated in section 5.1 to add this functionality. In

order to get this done, we needed to build a UVM verification

environment with a few key components:

 A way to drive device firmware and generate/detect

stimulus that will change the power state of the device.

 A way to generate/detect power state changes in the RTL.

In our case, we used hardware IRQ signals to force power

state changes.

 A mechanism to monitor the low power state of the device

 A checking mechanism that will verify each expected

power state transition eventually happens and that each

transition that does happen was expected.

A simplified diagram showing the UVM compatible low power

verification environment is shown in Figure 4.

Figure 6. Diagram of the UVM low power verification

environment

5.3.1 Creating a Firmware UVC
In order to extend low-power checking, it was important to drive the

verification from firmware. With this capability, we were able to

execute firmware instructions which drive the device into low power

modes using the same mechanisms that the “real” firmware would

use. Using software extensions available from some EDA tool

vendors, it is possible to create firmware routines that can be “driven”

onto a microprocessor in a SoC much in the same way a testbench

might drive a signal pin on the SoC in hardware. We created a

firmware UVC capable of driving and monitoring firmware low

power instructions. A Sequence generator was created which injects

power related instructions into a processor at random intervals. The

constrained random nature of the stimulus allowed us to simulate

unforeseen, but valid, combinations of firmware and hardware state

that the design might reach after manufacturing in the real world. A

monitor mechanism was created to detect and communicate the

power expectations via a method port to a scoreboard checking

mechanism.

Figure 7. The Firmware UVC

Below is one example of a low power sequence,

LP_PDHOST_WFI_GEN, which is executed at constrained random

intervals by the verification environment. This sequence drives the

processor firmware to enable a transition to a low power state. This

sequence randomly generates a Boolean value that will be used to

select a child sequence which then sets a value written into a system

control register by firmware. When set, the processor will be

configured to enter a „Deep Sleep‟ or power off mode after the next

interrupt has been serviced. When this variable is cleared, the

processor will be configured to enter „Sleep‟ mode, where power

remains on but the clock to the domain is gated.

extend mdt_ngmcu_sw_sequence_kind_t : [LP_PDHOST_WFI_GEN];

extend LP_PDHOST_WFI_GEN mdt_ngmcu_sw_sequence {
 !poweroff_wfi_seq: LP_PDHOST_POWER_OFF_WFI

mdt_ngmcu_sw_sequence;

 !clockoff_wfi_seq: LP_PDHOST_CLOCK_OFF_WFI
mdt_ngmcu_sw_sequence;

 deep_sleep: bool;

 body() @driver.clock is only {

 // execute the WFI instruction

 if deep_sleep {
 message(LOW, "ISX: LP: LP_PDHOST_WFI_GEN: About to

execute a poweroff_wfi sequence.");

 do poweroff_wfi_seq; // WFI will not complete until the next IRQ
because CPU is asleep

 message(LOW, "ISX: LP: LP_PDHOST_WFI_GEN: poweroff_wfi

sequence complete.");
 } else {

 message(LOW, "ISX: LP: LP_PDHOST_WFI_GEN: About to

execute a clockoff_wfi sequence.");
 do clockoff_wfi_seq; // WFI will not complete until the next IRQ

because CPU is asleep

 message(LOW, "ISX: LP: LP_PDHOST_WFI_GEN: clockoff_wfi
sequence complete.");

 };

 };
};

The child sequence, LP_PDHOST_POWER_OFF_WFI or

LP_PDHOST_CLOCK_OFF_WFI, sets the system control register

as desired and then executes a WFI (Wait For Interrupt) firmware

command on the processor. An example of one of these sequences is

shown below:

extend mdt_ngmcu_sw_sequence_kind_t :
[LP_PDHOST_POWER_OFF_WFI];

extend LP_PDHOST_POWER_OFF_WFI mdt_ngmcu_sw_sequence {

 !sys_control_reg_seq: LP_PDHOST_WRITE_SYS_CONTROL_REG
mdt_ngmcu_sw_sequence;

 !wfi_seq: WFI mdt_ngmcu_sw_sequence;

 lp_change: mdt_lp_change_s;
 keep lp_change.domain == PDHOST;

 keep lp_change.state == OFF;

 keep lp_change.trigger == SOFTWARE;
 keep lp_change.required == TRUE;

 keep lp_change.time_stamp == 0;

 body() @driver.clock is only {

 message(LOW,"ISX: LP: LP_PDHOST_POWER_OFF_WFI: Turning

CPU power off.") {};
 do sys_control_reg_seq keeping {

 it.sleepdeep == TRUE;

 it.sleeponexit == FALSE;
 };

 driver.lp_change_out$(lp_change);

 do wfi_seq;
 message(LOW,"ISX: LP: LP_PDHOST_POWER_OFF_WFI: Sequence

complete.") {};
 };

};

The sequence also creates a structure, lp_change, and places it on a

scoreboard through a method port. The structure is used by the low

power scoreboard to identify an expected power change in the

PDHOST domain. Later in this document I will show how the

scoreboard uses these items to provide low power verification by

comparing these expected power transitions with actual power

transitions observed in the hardware model.

The example sequences in this section show a portion of the low

power sequences for the PDHOST domain. It is necessary to create

similar sequences for all of the power domains in the design.

5.3.2 Creating an IRQ UVC
Another component required by the low power verification

environment was a UVC which will drive IRQ lines that trigger low

power state transitions. In the real world, IRQ events are not

coordinated with the current activity of the processor or firmware. In

order to model this type of interaction in simulation, the UVC needed

to be capable of driving interrupts at constrained-random intervals

completely independent from the firmware UVC. The UVC included

a monitor that would detect IRQs and communicate the events to a

scoreboard mechanism via a method port. The scoreboard would use

these events to record the expected power state transitions for the

SoC design.

Figure 8. The IRQ UVC

Below is an example of a sequence used by the testbench to drive the

IRQ line at constrained-random intervals in our design. The IRQ line

is asserted for a random time interval between 400us and 10us.

extend mdt_ngmcu_sw_sequence_kind_t : [LP_ASSERT_GPIO0_IRQ];

extend LP_ASSERT_GPIO0_IRQ mdt_ngmcu_sw_sequence {

 body() @driver.clock is only {
 var random_delay : time;

 message(HIGH,"ISX: LP: LP_ASSERT_GPIO0_IRQ: Asserting gpio0

IRQ.") {};

 // generate a pulse which is at least one clock in duration.
 gen random_delay keeping { it > 400 ns; it < 10 us; };

 driver.smp.gpio0_simple$ = 1'b1;

 wait delay(random_delay);
 driver.smp.gpio0_simple$ = 1'b0;

 message(HIGH,"ISX: LP: LP_ASSERT_GPIO0_IRQ: Assert gpio0 IRQ

complete.") {};
 };

};

A method port was added to the IRQ UVC driver to pass IRQ events

to the scoreboard which would then expect a power transition back to

the “ON” power state. Below is an example of this code.

lp_irq : mdt_lp_irq_s;

 keep lp_irq.domain == PDHOST;

 event lp_irq_e is @irq_e;

 on lp_irq_e {

 lp_irq.host_irq = p_env.isx_exception$.as_a(mdt_ngmcu_interrupt_t);

 lp_irq_out$(lp_irq);

 };

5.3.3 Development of a Low Power Scoreboard
The scoreboard is used to provide the needed checking mechanism

for the low power control feature of the device. When the firmware

or IRQ generates stimulus resulting in an expected power state

transition, this is communicated to the scoreboard via the method

ports described previously and an item is placed on a list structure for

expected power transitions. Actual power state transitions are

detected by the power state monitor and also communicated to the

scoreboard via method ports and placed on a list of actual power state

transitions. Each new entry on the list of actual power transitions is

compared to the list of expected power transitions to verify that the

SoC design did indeed execute the expected power transitions. In this

way the low power “intent” of the low power feature was verified for

a given domain. Separate list structures were used to provide a

checking mechanism for each power domain.

The code to monitor the low power state of the device has already

been created automatically from the supplied utility program and can

be used by the scoreboard to recognize actual power state transitions.

Figure 9. The low power scoreboard

There are 3 checks that we needed to apply in the scoreboard:

 Check for unexpected power transitions. This would be an

item on the list of actual transitions without a

corresponding item on the list of expected transitions.

 Check for missing power transitions. This would be an item

on the list of expected transitions that is never paired with a

corresponding item on the list of actual transitions.

 Check for incorrect power transitions. This would be an

item that does not match on both the expected and actual

power transition lists.

Rather than create unique checks for each power domain, macros

were created for the three different checks. The macros were then

applied to all of the power domains in the design. This reduced the

probability of an error in the verification code and reduced the

number of lines of code that needed to be written. Below is an

example of one macro that was used to check for missing power

transitions.

define <lp_missing_power_transition'action> "lp_missing_power_transition

<domain_name'name>" as computed {

 var statement: string;

 statement = append(statement,

 "check lp_missing_power_transition_", <domain_name'name>, "
that ");

 statement = append(statement,

 " (expected_size - actual_size !> 1) else ");
 statement = append(statement,

 " dut_error(\"Missing power transition in the \", domain, \"

power domain.\") {");
 statement = append(statement,

 " print_change_item(missing_item);");

 statement = append(statement,
 " }");

 return statement;

};

6. GENERATING A LOW POWER

VERIFICATION PLAN
It is possible to generate a low power verification plan from the CPF

file either with or without automation. We used this to compare the

low power verification goals with what actually happened in

simulation and thus “close the loop” on low power verification and

empirically determine when all verification and coverage goals have

been met for the low power feature.

We set the main verification plan for the SoC design to reference the

low power verification plan via Meta text. The Meta text acts as a

link between the two verification plans, much in the same way that a

link to a web page points to a separate html document. In this way,

the auto-generated plan was included in the larger verification plan

for the SoC.

Ideally, automation is used to read in the main verification plan and

add the content from the low power verification plan as part of that

process. When automation is used, the simulation results can be tied

back to the verification plan and automatically fill in the low power

section of the plan with the verification results created by the „e‟ code

during simulation. Figure 5 shows the power mode coverage obtained

by a series of simulations for this project.

Figure 10. Power mode coverage

7. SUMMARY
In summary, a complete low power verification methodology:

Reduces time to market
Start with the Common Power Format file to capture the low power

intent of a design and then use it to auto-generate significant portions

of the low power verification effort thus reducing time to market

while simultaneously increasing the quality of results.

Improves quality of results
The code auto-generated from the CPF file can be extended to create

PSL assertions and a UVM compliant UVC which together form an

exceptionally effective and thorough verification strategy

Provides a complete solution

The PSL assertions and UVM compliant verification environment

coverage results can be pulled together and compared to verification

plan goals to quantitatively analyze simulation results and form a

complete low power verification picture.

We started with the Common Power Format file, to capture the low

power intent of a design and then use it to drive the low power

verification effort thus reducing time to market while simultaneously

increasing the quality of results. The code generated from the CPF

file was extended by the verification engineer to form a complete low

power verification picture. We showed how the CPF file can be

hierarchically structured to facilitate its use in dynamic verification,

formal verification as well as place and route. It was shown how PSL

assertions automatically derived from the CPF and then augmented

with manually created assertions to verify power control signal

behavior. The power state of defined power domains can be viewed

in a waveform viewer as an aid to debug. Coverage and monitoring

code can easily be generated to quickly get a UVM compatible

verification environment started. This code can be extended to

include other low power states such as “SLEEP” modes where the

domain clock is gated and to include checking for low power

behavior. Lastly, we showed how all of this can be included in a

verification plan to close the loop on low power verification and

empirically determine when verification is complete.

By taking full advantage of the CPF file and then extending

automatically generated verification constructs manually, to create a

complete low power verification effort; we can expect superior time

to market and quality results.

8. ACKNOWLEDGMENTS
Thanks to Brent Carlson for his help in establishing this methodology

with the support of the Cadence Incisive products and Joseph Hupcey

III of Cadence for his editorial support.

