201/

DESIGN AND VERIFICATION™

m 4=yl Coverage Models for Formal Verification

orACLE ke Xiushan Feng . .§ Xiaolin Chen, Abhishek Muchandikar Q) nUPS\/S
Oracle Labs “4 Oracle Labs, Austin TX e Synopsys Inc., Mountain View, CA

As formal verification engineers, the authors always face challenges to accurately access the current status of test benches. Many questions need to be answered at certain stages of a project. E.g., do we need more
assertions? Did we over-constrain inputs that caused the drop of an important design scenario? Are proof bounds for bounded proofs good enough to catch potential design bugs? For the properties that are fully proven,
do they cover the design logic that were intended to cover? We cannot get answers to these four most-asked questions without extracting information from formal engines, which is not feasible for general users. However,
like coverage metrics from simulation-based verification, formal verification coverage models can be defined and used as metrics to measure formal verification progress and completeness. Some academic research on
formal verification coverage and commercial formal verification tools are starting to support some coverage usages in the past two years. However, none of them clearly specified what engineers would really need and
provided a good way to present formal coverage results in a standard way.

In this paper, the authors will introduce formal verification coverage models and their usages by real-life examples. The four most-asked questions finally have reasonable and acceptable answers supported by metrics.

* Objective metrics of a formal verification test bench

* Coverage Closure methodology same as simulation based verification

Did we over-constrain
: Are proof bounds deep closure
inputs?

enough to catch bugs?

Do invariant proofs Input Stimuli Coverage Bounded Proof Coverage
cover the design logic

as planned?

Formal Core Coverage

Coverage Model to check whether measure whether enough assertions have been written to cover the design spaces that we intend to check

3 (UG " coi(asty))
CcOl (th) = Y.total .

- ast; is one of n assertions of testbench tb. n, kis an integer
- 3 is an operator to get the number of coverage tarcets

> total is the total number of coverage targets within th .
COI) 1s the function to compute cone of influence of an assertion

CF TaskList ﬁﬂﬂﬂ VEE GoalList | _ VCF PraperyDensty . *Srcl:bridge.channell0]i/slowfsrgvcrndl/mabhi/studysbridge lab/rtl/bridge.sv]

278 always Blposedge clk or negedge st n) begin

A
i = bd Enter name Match values
Task List |i‘\ Time Max Cycle [<Enter name Match Value = v @@@ B J 280 if (wrst n) begin
— — — Info

Name Progress Result 281 rd ptr <= {AWIDTH{1‘hk0O}};

S ' v ~ OM;E’H_FE MesifigationTamets: Al Show Complexity el 082 wr_ptr ¢= (AWIDTH{1‘b0}};
status | v 3 | vacuity | witness | engine | type | tlas: Show Property Density 283 count <= [;

! Total asserts - 17 084 end
bridge.arid_not_in_use " . assert sour¢ o Compute Formal Core Tatal covers - 0 285 else hegin
Assertion density (lines) - 220117 = 12,94 d

bridge.channel[0].no_pop_when_empty " . assert source 286 if {push & ~full) hegin

Cover density (lines) - 220/0
. , 287 if (swap && ~empty) begin £f Error injection leogic, swap fifo order
bridge.channel[0].no_push_when full " " assert source Tatal Registers - 23 e if (wr_ptr —= DEPTH-1) begin

3 Uncovered Reqisters (asserts) - 12 =
: 283 men [vr ptr] [EElnen (0]

bridge. channel[0] mem -
bridge channel O] _gir 290 mem[0] <= data_in;
bridge. channel 0] wr ot 291 erid

bridge.channel[2].no_pop_when_empty " . assert source bridg.channel]L} mem 282 else begin
bridge.hannel 1] ir 293 mem[wr ptr] <= mem[wr ptr+l];

bridge.channel[2].no_push_when full " . assert SoUrce e el o s 204 mem[wr_ptr+l] <= data_in;
295 end

bridge.channel[3].no_pop_when_empty " . assert SOUrce bridge. channell2] mem
bridge.channel]2].rd_ptr 296 end

bridge.channel[3].no_push_when_full " . assert source bridge chamnel 2L wr ot 207 ellss

bridge.channel[al‘mx;m 208 mem[wr_ptr] <= data_in; £ Correct hehavior here
bridge. chennel[3) rd pir 299 if (wr_ptr == DEPTH-1}) wr ptr <= {AWIOTH{1'hO}};
bridge.r«_pkt len_range " . assert source bridge. chenmel[3] wr ptr i

: ; Assertion density (registers) - 47.83%
bridae.rx okt min lenath assert sOUrce .w 1 - *Srcl:bridge. sv [VCF Goallist
— 9 Uncovered Reaisters (covers) - 23

bridge.channel[1].no_pop_when_empty " . assert SOUrce

bridge.channel[1].no_push_when_full " . assert source

bridge.r<_pkt_channel_empty " . assert source

Coverage Model focuses on how formal tools drive inputs to reach RTL design space Coverage Model focuses on how formal tools drive inputs to reach RTL design space
under the current input constraints RTL Design under the current input constraints

- RTL Design
stimulifth) = 2o -

Lrotal bounded_proof (ast_set;) = Z(Ug(Cu)ncoi(asty)

——— I Yeoi{ast;)
C; is covered target at cyclei. Uy (C;) is the greatest fixpoint (GFP) of all
reachable targets. Y (set) is the number of items inside set * ast; € ast_set;, i, k is an integer
Ytotal is the total number of coverage targets within tb . ast; is an assertion that has a proof bound n; n, kisan integer

coi() Is the function to compute cone of influence of an assertion

CowSrc.l: bridge. channel[0] o |_|2'.:|| —_ ||:| |

[=] == -]l Lo | ” (=g |Jn:l'_-..-'.-"l:nr‘in:lge_lab_salnfhridge_lab_anluti-:in.u"r'un.u"...u"r‘tl.n"l:ur'in:lge.s-.-'

Cowvered Acre cl1lk or negedge ret n) bhagin WCF Goallist

. Inconclusive oo ird —
Unreachable = [AWIDTHI(1 "ol] ; |E| Time |12H Max Cycle [<Enter name Match Value=

= [(AWIDTH[1"'k0]] ;
0

LUnreachable-Ower-Zon=traint
Excluded

Verification Targets: Success And Inconclusive Filter by status

status (V) name

=] =

g if (pushh & ~fFall! bhagin

el if (Ewap &5 ~ampbtirl bhagin A4 BError dnjaectiorn logic
. Ewrap EFifo ordar

bridge.channel[1].ne_push_when full
bridge.channel[2].no_pop_when_empty @ View Trace...

bridge.channel[2].no_push_when_full @ Navigator
bridge.channel[3].no_pop_when_empty € Property Complexity Report

i

s if (- pEtr == DEPTH-1! haogin
2o marn [t] == me=m [O] :

200 me=r [O] = @ata dri:
29l =)l 288

<l Property Progress Report

bridge.channel[3].no_push_when full

bridge.lab3. genblk1[0].cov rid last V' wset BMELyles

=g o =2lse bhagin Press 'FS' to sawve in Tooltip Yiewer
= mearn [pita] = men [ptar+1] ;

= | mearl [jptr+1] <= @ata_ dri:

g e (=Yl

23935
=Ry . . ’ & ok][XCancell

—

t"‘

Check Selected Properties

Configure (auto: 20)

%
bridge.lab3. genblk1[0].genblk1[0].cov_arid arls o L

Flome Cmlombmel Menm s e,ia-

WO FormalCore

Coverage Model analyzes If there are design bugs outside O E =@~ Formal verification without coverage

the formal proof core but still within the COI of the assertion e closure is the same as doing simulation
- Formal core without coverage closure. With the

Y(Uproof core(ast ;)) - Registers: 7/33

proof.core (ast sety) =~ vy Pl iIncreasing usage of formal verification for

lab2.r_pkt size

outpuL_cointer circuit design, we expect these formal
assumes output_slot

v ast, € ast_set, i, kis an integer < tounter verification coverage models will become

walid

* proofcore(ast ;) is the set of targets actually used by formal engines to prove ast ; y £ Inputs: 7/3 standard models for formal tools and are

ar : - : / - Constraints: 5/13
* coi() is the function to compute cone of influence of an assertion bridge. lab2. ASM_RPTR VALID used by formal verification sign-off process
¥ - bridge.lab2. ASM_Rx_EQOP_ENE |
gy bridge.lab2 ASM_Rx_HEADER
bridge.lab2 ASM _WPTR_ALID
bridge.lab2. genblkl. ASM_NO_ERROR_INIECTION

Formal core

