
Coverage Driven Verification of an Unmodified DUT within an
OVM Testbench

Michael Baird

Willamette HDL, Inc
14314 SW Allen Blvd., Suite 625

Beaverton, OR 97005
+1 503-590-8499

ABSTRACT
A coverage-driven verification plan defines verification goals in
terms of functional coverage points. Each area of functionality
required to be tested is described in terms of values, events and
combinations of these. SystemVerilog provides covergroups as one
way of obtaining coverage statistics to drive the testing activities.

In a SystemVerilog Open Verification Methodology (OVM)
testbench it is rather straight forward to create covergroups to obtain
coverage results for points that are internal to the testbench itself and
from objects, such as drivers and monitors that provide access to the
pins of the Device Under Test (DUT). Hence this is what is typically
done. What is often desirable is creating covergroups that provide
coverage of the internals of the DUT, without modifying the DUT
itself, and then providing the coverage information to objects, such
as coverage collectors inside the OOP testbench. This is more
difficult to achieve, as it is not as straightforward.

This paper will first describe how to obtain coverage results from
points internal to the testbench and from the pins of the DUT as
background and will then focus on how to create covergroups that
target points internal to the DUT, without modifying it, and provide
the information, without using hierarchical references, to a coverage
collector inside of an OVM testbench which allows for coverage
driven testing.
No new "magic" trick or tricks are needed to get coverage from
inside the DUT. Rather a combination of three things is used; a
language construct (SystemVerilog bind), an OOP technique
(Abstract/Concrete classes) and an OVM polymorphism capability
(factory override) are used. Each of these is not too difficult in and
of itself but bringing them together in the right way requires a good
understanding all three to address the problem.

1. INTRODUCTION
Verification engineers may use coverage information for defining
when to stop testing, for judging the quality of the testing and as
feedback for determining where to focus further testing In other
words coverage information is used to answer the questions "Are we
done testing yet?" and "Have we done adequate testing?". An OVM
testbench typically has a Device Under Test (DUT) which is either a
Verilog module or a VHDL entity/architecture. The focus of this
paper is on how to gather the information for computing coverage
information with particular focus on gathering information from
inside the DUT. Obtaining coverage information from inside the
DUT may be broken down into two parts or problems. 1) How to
embed a covergroup inside the DUT without modifying the DUT. 2)
How to get access to the covergroup inside the DUT without using
hierarchical references.

In this document the example used in diagrams and code is from an
OVM testbench which has as its DUT an Ethernet Media Access
Controller (MAC) core [1]. The MAC connects to an Ethernet PHY
chip through its Media Independent Interface (MII) and to the
WISHBONE SoC bus [3]. The MAC registers are memory mapped
onto the WISHBONE bus. The WISHBONE bus is a 32 bit address
and 32 bit data (non-multiplexed) synchronous bus.

2. Coverage Collectors
A key coverage component is the coverage collector scoreboard. Its
role is to collect coverage information and to determine when
adequate testing is complete. In an OVM testbench the coverage
collector can also fulfill an additional role of halting the simulation
when a threshold is reached [2]. The coverage collection is
performed by covergroups which may either be instantiated inside
the coverage collector or at the source of the coverage information.
There are in general three sources of coverage information for a
coverage collector:

 Information gathered from inside testbench.
 Information gathered from the DUT pins.
 Information gathered from inside the DUT itself.

Gathering information from inside the testbench will be discussed
briefly. Then gathering information from the DUT pins will be
discussed in more detail with examples to provide background
information for understanding the techniques used for gathering
information from inside the DUT itself. Gathering information from
inside the DUT will then be discussed.

2.1 Gathering Coverage Information from
Inside the Testbench
A covergroup inside of a coverage collector may provide coverage
metrics based on information gathered from inside the testbench. To
illustrate this type of information consider a WISHBONE bus write
to a memory mapped register in the MAC. A WISHBONE write
transaction object is created by a stimulus generator and then applied
to the WISHBONE bus to write data to the MAC register. A copy of
this WISHBONE write transaction object may be presented to the
covergroup in the coverage collector. The covergroup may then
measure (count) that a certain address was written or that certain data
was written or a cross of both the address and data (certain data was
written at a certain address). This type of coverage is common in
OVM testbenches because the information is easily understood, as it
is already "gathered" so to speak in the transaction object and it is
easy to present the information to the coverage collector. It should
be noted that the data being measured is what may be called
"inferred" information because the sampled data is not from the
actual address and data lines of the WISHBONE bus. Rather from a

transaction object that if properly applied will drive the specified
address and data lines.

2.2 Gathering Coverage Information from the
Pins of the DUT
There are two approaches for gathering information at the pins of the
DUT for coverage purposes. Using virtual interfaces and using the
"Abstract/Concrete classes" approach. Here the information
gathered is not "inferred" information such as was described in the
previous section. Instead the actual address and data lines of the
WISBONE bus are observed as transactions are applied to the bus
and then presented to the covergroup.

2.2.1 Using Virtual Interfaces
SystemVerilog provides interfaces for connecting hardware modules
(the MAC in our example) without having to do so pin by pin.
SystemVerilog also provides virtual interfaces, which are essentially
a pointer to an interface instance, for connecting class based
testbench components to an interface instance [2]. The diagram in
Figure 1 shows the DUT (mac) connected to an instance
(wb_bus_if) of a WISHBONE bus interface and a virtual
interface connection (v_wb_bus_if) inside of a coverage collector
(cov_collector) pointing to the wb_bus_if instance. The
coverage collector resides inside of a container class called the
analysis_group. test_irq_srcs is the top level class object
while top_mac is the top level module. Note that in this figure the
rest of the testbench components and the MII of the MAC are not
shown.
In Figure1 the covergroup instance (cg_irq_srce) is inside the
interface (wb_bus_if) and is accessed by the coverage collector
through the virtual interface (v_wb_bus_if). Alternatively the
covergroup could have been placed inside the coverage collector. In
this case the information would be provided to the covergroup
typically by a monitor or driver component which acts as a gatherer
on the coverage collector's behalf.

Figure 1. MAC Testbench - Virtual Interface Connection

2.2.2 Using the Abstract/Concrete Classes Approach
An alternative approach uses what will be referred to as the
Abstract/Concrete classes approach. It is used for bridging between
the object oriented world of an OVM testbench and the static
instance world of the DUT. A use of this approach is described in
detail by Rich and Bromley [5].
In the Abstract/Concrete classes approach an abstract class
(SystemVerilog virtual class) is defined. The abstract class has pure
virtual methods which define a public interface or Application
Programming Interface (API) for accessing information that will be

needed by the testbench. In this example the class is
irq_srce_base and the API consists of a method called
get_cg_coverage() and is for accessing coverage information
from the DUT pins. See Figure 2.

Figure 2. Abstract class irq_srce_base and analysis_pkg
virtual class irq_srce_base extends ovm_component;
`ovm_component_utils(irq_srce_base)

 function new(string name = "" ,
 ovm_component parent = null);
 super.new(name , parent);
 endfunction
 //event signals change in value may be used as the
 //event sample for a covergroup to check coverage
 event int_result_event;

 // for retrieving coverage of the irq source reg
 pure virtual function int get_cg_coverage();
endclass

package analysis_pkg;
 `include "irq_srce_base.svh"
 // base class handle for making connection to
 // derived class object in interface instance
 irq_srce_base irq_srce_concrete;
 `include "mac_cov_collector.svh"
 // rest of package not shown
endpackage

The implementations of the API methods are not in the abstract class
but rather are in a derived class which is referred to as the concrete
class. The concrete class irq_source_cov is defined inside of a
SystemVerilog interface, wishbone_bus_syscon_if in figure
3. A concrete class handle irq_srce_concrete and an
allocation method get_irq_srce() are also declared inside the
interface. The concrete class' scope is inside of the interface and is
not visible outside of the interface. In this example an interface is
used as the container but a module could be used instead.

Figure 3. Wishbone bus interface containing the
irq_srce_cov concrete class

interface wishbone_bus_syscon_if
 #(int num_masters = 8, int num_slaves = 8,
 int data_width = 32, int addr_width = 32) ();

import analysis_pkg::irq_srce_base;

 // wishbone slave inputs
 logic [addr_width-1:0] s_addr;
 bit s_cyc;
 bit s_stb[num_slaves];
 bit s_we;
 // wishbone slave outputs
 logic [data_width-1:0] s_rdata[num_slaves];

// rest of WISHBONE interface logic not shown

//--------------------------------------
// Generate event for coverpoint sample
 wire r_slave_0 = s_cyc & s_stb[0] & !s_we & clk;

 class irq_srce_concr extends irq_srce_base;
 // Covergroup for the Interrupt Source Register
 covergroup cg_irq_srce @ (posedge r_slave_0);
 int_srce_addr: coverpoint s_addr[11:2]
 // Interrupt Source reg word address is `h1

 { bins addr_bin = {1};}
 busy: coverpoint s_rdata[0][4] // Busy
 { bins busy_1 = {1};}
 rxe: coverpoint s_rdata[0][3] // Receive error
 { bins rxe_1 = {1};}
 rxb: coverpoint s_rdata[0][2] // Receive buffer
 { bins rxb_1 = {1};}
 txe: coverpoint s_rdata[0][1] // Transmit error
 { bins txe_1 = {1};}
 txb: coverpoint s_rdata[0][0] // Transmit buffer
 { bins txb_1 = {1};}
 busy_c: cross int_srce_addr, busy;
 rxe_c: cross int_srce_addr, rxe;
 rxb_c: cross int_srce_addr, rxb;
 txe_c: cross int_srce_addr, txe;
 txb_c: cross int_srce_addr, txb;
 endgroup

 function new(string name = "",
 ovm_component parent = null);
 cg_irq_srce = new(); // create covergroup
 $display("---- My Verilog path is: %m");
 endfunction

 function int get_cg_coverage();
 // get the coverage info from the cover group
 return (cg_irq_srce.get_coverage());
 endfunction
 endclass

 // Concrete class handle
 irq_srce_concr irq_srce_concrete;

 // lazy allocation of concrete class
 function irq_srce_base get_irq_srce();
 if(irq_srce_concrete == null)
 irq_srce_concrete = new();
 return (irq_srce_concrete);
 endfunction

 always @ (negedge r_slave_0)
 // trigger event for sampling
 -> irq_srce_concrete.int_result_event;

endinterface

The interface is it self instantiated along side of the DUT and
connected to its pins. See the diagram in Figure 4 and the code in
Figure 5.

Figure 4. MAC testbench - Abstract/Concrete class
connection

Figure 5. WISHBONE interface instantiation and
connection

module top_mac;
 import ovm_pkg::*;
 import tests_pkg::*;
 import analysis_pkg::irq_srce_base;

 // Wishbone interface instance
 wishbone_bus_syscon_if wb_bus_if();
 // MAC instance
 eth_top mac
 (
 // WISHBONE common
 .wb_clk_i(wb_bus_if.clk),
 .wb_rst_i(wb_bus_if.rst),
 // WISHBONE slave
 .wb_adr_i(wb_bus_if.s_addr[11:2]),
 .wb_we_i (wb_bus_if.s_we),
 .wb_cyc_i(wb_bus_if.s_cyc),
 .wb_stb_i(wb_bus_if.s_stb[0]),
 .wb_dat_o(wb_bus_if.s_rdata[0]),
 // other MAC port connections not shown
);

initial begin
 // Assign class handle in analysis_pkg
 analysis_pkg::irq_srce_concrete =
 wb_bus_if.get_irq_srce();
 // rest of module not shown
endmodule

This instance of the interface resides in the static instance world and
is tightly coupled to the DUT. Since the concrete class definition
and instance are inside this interface it can access everything that the
interface is connected to.
Inside of a coverage collector (mac_cov_collector) a variable
(irq_srce_cov) of the abstract class type (a base class handle) is
created which may then hold a reference to, or point to the instance
of the concrete class (derived class object) inside of the interface. See
Figure 4. This provides access for the covergroup to DUT pin
information by calling the API methods on the abstract class
variable. See figure 6.

Figure 6. Coverage collector
class mac_cov_collector extends ovm_component;
 `ovm_component_utils(mac_cov_collector)

// Abstract class handle
 irq_srce_base irq_srce_base_h;

 function new(string name, ovm_component parent);
 super.new(name,parent);
 endfunction

 function void build();
 super.build();
 // get handle to object in interface from
 // handle in analysis package
 irq_srce_base_h =
 analysis_pkg::irq_srce_concrete;
 endfunction

 // check coverages and if 100% stop the tests
 task run();
 //look for event to signal change irq srce reg
 forever @(irq_srce_base_h.int_result_event) begin
 ovm_report_info("MAC_COV", $psprintf(
 "MAC interrupt source reg coverage is %.2f%%",
 irq_srce_base_h.get_cg_coverage()));

 if(irq_srce_base_h.get_cg_coverage() == 100)
 ovm_top.stop_request(); //100% coverage - done
 end
 endtask
endclass

In an OVM testbench there are several ways that the abstract class
handle inside the coverage collector may be assigned to the instance
of the concrete class. In this example a global variable is created
inside of the package analysis_pkg (see Figure 2) which is
assigned in the top module (see Figure 5) to point to the interface
instance. The abstract class handle is assigned from this global
variable (see Figure 6). Another way this assignment could be
accomplished is with the OVM configuration database. Passing the
location of the interface instance through constructor arguments
would not be allowed here because of the use of the OVM factory for
creation of objects in this example.

2.3 Gathering Coverage Information from the
inside the DUT
It is often desirable or necessary to not only gather information at the
pins of the DUT but from inside the DUT as well. Verilog permits
hierarchical references to the inside of the DUT. In the crudest case a
hard coded hierarchical path might be used from within the coverage
collector to access the information. Alternatively either of the two
methods described previously for obtaining information from the
DUT pins might be augmented to include hierarchical paths to access
inside the DUT. None of these approaches, however, is very
desirable. If the DUT is written in VHDL then hierarchical
references for accessing internal information are not allowed.
Another solution is to add a covergroup inside the DUT by
modifying the DUT. While this may be feasible in some cases often
it is not. And even if feasible it is rarely desirable to modify the
DUT.
Even if a covergroup may be added inside the DUT there is still the
issue of getting the information out without using a hierarchical
reference.

3. Adding a Covergroup to the DUT without
modifying it – SystemVerilog bind
As mentioned in the introduction the first part or problem to getting
coverage information from inside the DUT is embedding a
covergroup inside the DUT without modifying the DUT. The use of
the SystemVerilog bind statement to embed assertions inside a DUT
is common and well understood and is described in detail by
Cummings[6]. Similarly the bind statement may be used to embed a
covergroup inside the DUT. A summary only of the bind statement
is provided here. Consider an example interface that has a
covergroup defined and instantiated inside of it. Additionally the
interface has ports which connect to the variables that the covergroup
will access. The bind statement is then used to "bind" the interface
to either a specific sub-module instance or all the instances of a sub-
module of the DUT. The result of the bind is as if an instance of the
interface was created inside of the sub-module to which it is bound, a
"remote instantiation" if you will. One may verify this by displaying
the "bound" interface's hierarchical path using this Verilog print
statement placed inside the interface:
$display("My Verilog path is: %m");
In the bind statement the connection of the ports of the interface is
specified. Using the SystemVerilog bind statement a covergroup
inside of a bound interface can access the required information inside

the DUT without modification to the DUT and without using
hierarchical references.

4. Accessing the covergroup information inside
the DUT
The first part or problem is solved using the bind statement to add
the covergroup to the DUT without modifying the DUT. The second
part or problem is to access or retrieve the covergroup information
from the bind instance inside the DUT without using hierarchical
references. In the example illustrated in the next sections the target
of the coverage is the Interrupt Source Register of the MAC which is
implemented in the eth_registers sub-module of the MAC
design. Internally this register is called INT_SOURCEOut.

4.1 Accessing the covergroup Information inside
the DUT using a Virtual Interface
As described in section 2.2.1 a virtual interface may be used to point
to an instance of an interface for accessing information that the
interface is connected to. It is required that the virtual interface
variable be assigned the location of the instance of the interface. In
the case of a bind of the interface to a DUT sub-module the location
of the interface instance is not the location of the bind statement
itself, but rather as shown in section 3 it is inside of the DUT. Thus a
hierarchical path to the interface instance inside the DUT must be
assigned to the virtual interface property inside of the testbench.
Obtaining and using this hierarchical path is not feasible with a
VHDL DUT and may not be feasible with a Verilog DUT.
Consequently it is concluded that using a virtual interface is not a
solution to accessing the covergroup information inside the DUT.

4.2 Accessing the covergroup Information inside
the DUT using the Abstract/Concrete classes
Approach
As described in section 2.2.2 the Abstract/Concrete classes approach
may also be used for accessing information from the DUT to which
the interface containing the concrete class is connected to. In the
Abstract/Concrete classes approach an assignment of the concrete
class object inside the interface instance is made to the abstract class
handle inside the coverage collector OVM testbench component.
This requires the location of the interface instance be known.
Consequently it is concluded that using the Abstract/Concrete classes
approach alone is not a solution to accessing the covergroup
information inside the DUT. This approach alone has exactly the
same problem described in the previous section with using virtual
interfaces,

5. OVM Technology that is part of the solution
The proposed solution to getting the covergroup information out of
the DUT without using hierarchical references requires use of the
Abstract/Concrete classes approach together with the use of OVM
factory overrides. Additionally understanding the way OVM
maintains OVM testbench hierarchies with its own path names while
not part of the solution can help clarify how the solution works.

5.1 OVM Factory and Factory Overrides
OVM has a singleton object called the "factory". It implements the
object-oriented design pattern known as the factory method pattern
[4]. In general the term factory method means a method whose

purpose is the creation of objects. This creation pattern has to deal
with the problem of creating objects without specifying the exact
type of object to be created. It does so by providing a method for
creating an object (create) that may be overridden (factory
override) to specify a derived type object.
The OVM factory is used for dynamic or run time object creation.
These objects may be transaction objects such as WISHBONE
transactions or Ethernet transactions, or may be testbench
components such as a coverage collector or driver. Objects that are
to be created using the factory must be registered with the factory
prior to the start of simulation. Thus the factory can create any of the
registered object types by calling it's create() method.
Furthermore, in keeping with the factory method pattern, the OVM
factory has an override mechanism which may be best described with
an example. Given that types A and B are both registered with the
factory and type B is derived from type A, then type B can be set to
override type A. Once this override is in place a request to create an
object of type A will result in the creation of object type B in its
place. The OVM factory provides for overriding by type or by type
name. In our example an override by type name is used. It should
be noted that although the OVM factory is used in this solution
outside of an OVM testbench the same approach could be
implemented using a hash table of the abstract class type.

5.2 OVM Hierarchical Path
OVM maintains its own path information for each testbench
component that is separate and different from the underlying
SystemVerilog hierarchical path. That is each object in an OVM
testbench has an "OVM path" which is used by OVM and a
"SystemVerilog path" which is used by the SystemVerilog compiler.
Each testbench component, when it is created is given an OVM path
name which is unique. It is similar to the SystemVerilog path in that
the path it is constructed of names separated by the period (.)
character. Additionally each testbench component knows who its
hierarchical parent is in the OVM structure and who its hierarchical
children are. OVM uses the OVM path information for things like
traversing the testbench structure to execute phase methods, for
locating objects within the testbench and so forth. A testbench
component must reside within the OVM hierarchical structure to
function properly within the testbench.

6. Solution Using Factory Overrides with
Abstract/Concrete Classes Approach and bind
A solution example will be presented in this section which uses the
SystemVerilog bind statement to solve the first problem of
embedding a covergroup inside the DUT with out modifying the
DUT and uses the Abstract/Concrete classes approach together with
the OVM factory override to solve the second problem of accessing
the covergroup information inside the DUT without using
hierarchical references.

6.1 Solving the First Problem using Bind
An interface mac_regs_cov_container is created to contain
the declaration of the concrete class irq_srce_concr. See
Figure 7. Note that since a virtual interface connection is not used in
this approach a module could be used instead of an interface as the
container.
Inside the concrete class irq_srce_concr the
cg_interrupt_source covergroup covers the Interrupt Source

Register (INT_SOURCEOut) of the MAC. The INT_SOURCEOut
is inside the eth_registers sub-module of the MAC.

Figure 7. Interface Container for the Concrete Class
`include "ovm_macros.svh"
interface mac_regs_cov_container(
 input Clk, // clock
 input wire [31:0] INT_SOURCEOut // irq srce reg
);
 import ovm_pkg::*;
 import analysis_pkg::irq_srce_base;

 class irq_srce_concr extends irq_srce_base;
 // OVM factory registration
 `ovm_component_utils(irq_srce_concr)

 // Covergroup for the Interrupt Source Register
 covergroup cg_interrupt_source;
 busy: coverpoint INT_SOURCEOut[4]//Busy
 { bins busy_1 = {1};}
 rxe: coverpoint INT_SOURCEOut[3]//Receive error
 { bins rxe_1 = {1};}
 rxb: coverpoint INT_SOURCEOut[2]//Receive buffer
 { bins rxb_1 = {1};}
 txe: coverpoint INT_SOURCEOut[1]//Transmit error
 { bins txe_1 = {1};}
 txb: coverpoint INT_SOURCEOut[0]//Transmit buff
 { bins txb_1 = {1};}
 endgroup

 function new(string name, ovm_component parent);
 super.new(name,parent);
 cg_interrupt_source = new(); //create covergroup
 endfunction

 function int get_cg_coverage();
 // get the coverage info from cover group
 return (cg_interrupt_source.get_coverage());
 endfunction

 task run();
 ovm_report_info("IRQ_SRCE_CONCR", $psprintf(
 "My OVM path name is: %s", get_full_name()));
 ovm_report_info("IRQ_SRCE_CONCR",
 $psprintf("My Verilog path is: %m"));
 forever @ (INT_SOURCEOut[4:0]) begin
 cg_interrupt_source.sample();//sample covergroup
 -> int_result_event; //trigger event
 end
 endtask
 endclass
endinterface

Figure 8 shows the bind instance mac_regs_bind of the interface
mac_regs_cov_container to the eth_registers sub-module.

Figure 8. bind instance
module top_mac;
 bind eth_registers mac_regs_cov_container
 mac_regs_bind(.*);
 // rest of top_mac not shown
endmodule

6.2 Solving the Second Problem using
Abstract/Concrete classes and OVM Factory
Override
In order to use the Abstract/Concrete classes approach the creation of
the concrete class irq_srce_concr must be done using a factory
override instead of by explicitly calling new(). As noted in section
5.1 this requires that both the abstract and the concrete classes must
be registered with the factory. This factory registration, done with
the macro, can be seen in Figure 7 for the concrete class and in
Figure 8 for the abstract class.

Figure 8. Abstract class irq_srce_base
virtual class irq_srce_base extends ovm_component;
 // OVM factory registration
`ovm_component_utils(irq_srce_base)

 function new(string name = "" ,
 ovm_component parent = null);
 super.new(name , parent);
 endfunction
 //event signals change in value may be used as the
 //event sample for a covergroup to check coverage
 event int_result_event;

 // for retrieving coverage of the irq source reg
 pure virtual function int get_cg_coverage();
endclass

The factory override of the abstract class with the concrete class in
this example is done in the top module top_mac. See figure 9.

Figure 9. Factory Override
module top_mac;
initial
 // Factory overrides
 factory.set_type_override_by_name(
 "irq_srce_base", "irq_srce_concr");
 // rest of module not shown
endmodule

In the coverage collector (See Figure 10), the create() method of
the abstract class is called and the resultant object is assigned to the
abstract class handle irq_srce_base_h. Because of the factory
override in top_mac (Figure 9) the resultant object t is a concrete
class object instead of the abstract class object.

Figure 10. Coverage collector
class mac_cov_collector extends ovm_component;
 `ovm_component_utils(mac_cov_collector)

 // components
irq_srce_base irq_srce_base_h;

 function new(string name, ovm_component parent);
 super.new(name,parent);
 endfunction

 function void build();
 super.build();
 // create base coverage container
 // This is meant to be overridden!
 irq_srce_base_h =
 irq_srce_base::type_id::create("irq_srce_base_h",
this);
 endfunction

 task run(); // check coverages and if 100% stop
the tests
 //look for event to signal change in irq srce reg
 forever @ (irq_srce_base_h.int_result_event) begin

 ovm_report_info("MAC_COV", $psprintf(
 "MAC interrupt source register coverage is
%.2f%%",
 irq_srce_base_h.get_cg_coverage()));
 if(irq_srce_base_h.get_cg_coverage() == 100)
 ovm_top.stop_request(); //100% coverage - done
 end
 endtask
endclass // rest of module not shown

The diagram in Figure 11 shows the resultant "connection" between
the coverage collector and the bind instance inside the DUT. The
abstract base handle irq_srce_base_h points to the concrete
object irq_srce_concr, the scope of which is inside the bind
instance mac_regs_bind.

Figure 11. MAC testbench. Bind, Abstract/Concrete
classes, Factory Override

The coverage collector can access information from the covergroup
that is inside of the DUT! How? Because, in effect, the concrete
class object (irq_srce_concr) that is created "exists" in both
the static instance world of the DUT and the object oriented world of
an OVM testbench at the same time. You can think of it as having
"dual citizenship" in both these worlds.
How does it "exist" in both?
The concrete class object "exists" inside the DUT. Because it is
defined or declared inside of the interface
(mac_regs_cov_container), which is bound to a sub-module
of the DUT, the scope of the created object is inside of the interface
bind instance inside the DUT. In other words the SystemVerilog
path of the object shows it inside the interface bind instance inside
the DUT. As discussed earlier, this can be demonstrated by executing
this statement inside the concrete class:
$display("My Verilog path is: %m");
Consequently the concrete class object can access DUT information
there.
The concrete object "exists" inside the OVM testbench. The request
to create the abstract class is executed in the coverage collector,
which is an OVM testbench component. Because of the override, the
concrete class object is created instead and because this object is an
OVM testbench component and because the call to create it is inside
of another OVM testbench component, the concrete class object is
created as part of the OVM testbench structure. Its OVM path shows
that it is a hierarchical child object to the coverage collector. This
can be shown by executing the following statement inside the
concrete class object:
$display("My OVM path name is: %s",

 get_full_name());
The coverage collector may call the concrete class object's API
method get_cg_coverage() (See Figure 10) for accessing the
coverage information of the covergroup.

The bind statement does the "remote instantiation" of the covergroup
inside the DUT (without DUT modification) and the creation of the
concrete object via the factory override "pulls" the scope or visibility
of the covergroup into the OVM testbench. This "dual citizenship" of
the concrete object allows the coverage collector to access the
covergroup information from the bind instance inside the DUT via
API calls.

7. Conclusions
 Coverage information for coverage driven testing may be

gathered from all three desired locations. From within the
testbench, from the DUT pins and from inside the DUT itself.

 The two approaches (virtual interfaces and Abstract/Concrete
classes) for gathering information from the DUT pins are
inadequate in and of themselves for getting coverage
information out of the DUT without DUT modification or the
use of hierarchical references.

 The bind construct may be used to place a covergroup inside the
DUT without modifying it.

 The Abstract/Concrete classes approach combined with the
override capability of the OVM factory "pulls" the scope
(visibility) of the covergroup instance inside the DUT into the
OVM testbench without using hierarchical references.

8. REFERENCES
[1] I. Mahor, Ethernet IP Core Design Document. 2002
http://www.opencores.org/project,ethmac
[2] M. Glasser. Open Verification Methodology Cookbook. 2009, Springer,
Inc.
[3] WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores specification. Revision B.3, 2002.
http://www.opencores.org
[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Elements
of Reusable Object-Oriented Software. 1995, Addison-Wesley Publishing
Company, Reading Massachusetts,

[5] D. Rich, J. Bromley. Abstract BFMs outshine Virtual Interfaces for
Advanced SystemVerilog Testbenches. DVCon February 2008

[6] C. Cummings. SystemVerilog Assertions Design Tricks and SVA Bind
Files. SNUG SJ 2009. www.sunburst-
design.com/papers/CummingsSNUG2009SJ_SVA_Bind.pdf

