
Tables below shows the performance and capacity comparisons
between using an XML format and an internal binary format for
some typical user designs in the range of 4 to 17 million bins.

From the table we can see that the XML files are on average 160
times larger than the binary representation of a design. With
design sizes increasing, tests numbering in the thousands to tens
of thousands, and many regressions run on a daily basis, the
result can be a huge amount of data. Even compressed XML files
(note that compression is not part of the UCIS process) are on
average three times larger, not much of a relief considering that
this approach also adds an extra burden of
compressing/uncompressing any time the data needs to be
processed.

Abstract

Coverage is extremely important to the modern verification flow.
Most vendors have already figured that unifying data across all
verification engines leads to a more efficient and integrated
environment. There are many challenges to be solved unifying
and sharing data across a single vendor’s tool set which are
further complicated when wanting to share data across multiple
vendors’ tool sets.

The Unified Coverage Interoperability Standard (UCIS) was
created to make data sharing and exchange easier by
standardizing data models and data exchange. UCIS uses
Extensible Mark-up Language (XML) as an exchange format.
This paper introduces a method of exchanging data between two-
UCIS compliant coverage database systems without the need for
inefficient formats like ASCII or XML.

Mentor’s Unified Coverage DataBase (UCDB)

What UCIS provides the industry The use of XML The implementation

Coverage Data Exchange is no robbery…or is it?
Darron May and Samiran Laha, Mentor Graphics Inc

Darron_May@mentor.com; Samiran_Laha@mentor.com

Architected in 2005 to unify coverage collection across all
verification engines, UCDB was first released within Questa and
ModelSim in early 2006 as a way of natively storing, analyzing
and reporting on functional coverage, code coverage and
assertions.

Coverage databases however they are implemented contain very
similar information, at the very lowest basic point it contains
counts of defined events. The way these defined events are
labelled or arranged within the database with a set of building
blocks is defined as the data model for the particular metric.

Accellera’s UCIS subgroup was formed in 2006 with three
defined goals combined to encourage user and EDA technology
advancement.

 Identify interoperability opportunities for coverage
 Define standard coverage models for the industry
 Define an operability standard for data exchange

Mentor Graphics donated the UCDB API to Accellera and it was
chosen as the basis of the UCIS standard where version 1.0 was
released in June 2012.

When a vendor supports UCIS users often assume that the
implementations are binary compatible, which is not correct.
Figure 2 below shows the different combinations of UCIS support;
note that the implementers of coverage databases require a
persistent form of the data to be stored in an implementation-
specific manner. (In the case of Mentor this is a UCDB file stored
on a disk.)

UCIS interoperability

UCIS defines all known coverage models and its
recommendations on how these models should be represented
with the scope and coveritem building blocks plus attributes and
flags. The standard provides an XML exchange format allowing
vendor A to output XML in a defined format and vendor B to read
this XML format and import the data into its database. There are
a number of problems that this presents.

1. XML & UCIS Data schemas non-overlap
2. XML files for average sized DB’s are huge
3. Data types across Vendors require adaption
4. Linking two UCIS Apps create symbol clashes
5. Vendors do not have access to other Vendors APIs
6. Some Vendors support little or none of the UCIS API
7. Requirement for no intermediate formats

Data exchange using the API

Exchanging data without the need for XML is straightforward
when the two implementations exchanging data have full
implementations of both the coverage models and API as defined
within the standard. Below the graphic shows the basic blocks of
a UCIS-to-UCIS exchange application; it requires both sides to
support the data models for the coverage metrics being
exchanged.

The ‘Source’ block reads data from the source database using
the vendor-specific UCIS API, which created the source
database. The ‘Source’ block is created by linking the UCIS C
library supplied by the vendor which contains the definition of
UCIS API routines for that vendor. By linking the application
against other vendor-supplied UCIS C libraries, the same
application can be used by any implementation. Data read by the
‘Source’ block is passed to the ‘Communicator’ block by calling
some specific C routines defined by the ‘Communicator’ block.

The implementation allows customization on both the read and
write sides of the exchange.

Some coverage vendors do not support the UCIS API so there is
a need to allow mixing of APIs and the addition of extra
customization code to make adjustments between the two
formats being exchanged. The architecture of this exchanger is
able to plug and play with any coverage API on either the source
of target sides.

This means that the differences in the data representation and
data models have to be taken care of within the ‘Target’ and
‘Source’ blocks. For example the source side could be replaced
with the UCAPI API to allow Synopsys coverage databases to be
read, and the target side replaced with the Unicov API to allow a
Cadence coverage database to be written.

Problems supporting differing coverage models

Functional coverage can be adjusted between coverage
database implementations due to the fact that they are
representing the same SystemVerilog standard. But as there are
no standards for code coverage, this may produce more
difficulties as different vendors implement different data models.
Here is a possible list of different code coverage data models
which could be very hard to transform from one to another.

1. Statement and Branch coverage: Line coverage vs.
block coverage

2. Expression coverage: Flat list of nodes and variables vs.
hierarchically represented sub-expressions

3. Toggle coverage: Simple transitions among 0, 1, and Z
vs. merging Z with 0 or 1 based on some mode

Conclusions

A basic exchange of coverage data between vendors using XML
is limited not only with respect to performance and capacity, but
also in that data models can vary even between vendors.
Therefore a different method is required that allows adjustments
to be made during the data exchange process.

	Slide Number 1

