Martin Frojd,

Adiel Khan,

Jussi Makela

Version: 1.0

CONSTRAINING THE REAL PROBLEM
OF FLOATING POINT NUMBER DISTRIBUTION

Abstract- There are many applications that require dealing wi
real and floating point numbers in electronics raggrom the
low-level schematics of analog mixed signal domaithe high-
end graphics powering so many personal electrads.

One cannot treat floats or reals the same as irgefjee to the
underlying subtleties of the number types. The lehgk is
developing techniques for enabling verification iaegrs to
correctly stimulate designs with real world sceosri(IEEE,
SystemVerilog Unified Hardware Design, and Verifica

Language, 1800-2012)(SV) defines a real numbeepiesented
by 64bit floating point number see (IEEE, Stand&mdBinary

Floating Point Arithmetic, 754-2008)(IEE754) . Th8V

language does not address randomization of refibat types.
Languages or libraries that do allow randomizatbiiioats are
often inefficient and poor distribution of the ftoay point

number line. Whilst there are formal verificatioachniques
better suited for verification of floats, enginears still required
to verify scenarios over multiple levels using dymasimulation
with random pattern injection.

With GPU verification the qualification process uegs
constrained random pattern stimulus to ensure ohar,cshape,
size and position of graphics primitives hit gragathi API,
architectural and mathematical corner cases. Nuwmseftoat
formats are employed by GPU designs for optimiratiorposes

and these need generated during verification. @fehmany float
formats, a range of values need to be randomlyrgesg to hit

interesting corner cases, such as correctly placgragphic

primitive in a specific position within frame; dimsons of a
graphic object or primitive; perspective / geoneetranslations,
lighting / depth / blending operations and so fohlthsuch cases
randomly generating one floating point number is mgeful, a

full set of integers with floating point numbersedeto be

constrained and generated together to ensure tbebavior.

This paper applies the theorems of (Downey, 208H)quSV to
highlight differences between good and bad distigmg. The
implementation must be efficient in its distributioncluding
NaNs, infinities, denormals, zeros, min and maxalegnges
whilst being efficient in performance. Also discedds enabling
a user interface similar to integers for constrajnifloats.
Therein, the paper will delve in constraints ofat®to using the
standard mathematic symbols such as equals, suomsati
greater-than, less-than, multiplication and divisor

The result of this effort was base classes in S¥ ¢an be used
with any floating point number format. The code dmged

ARM’s internal C++ Floating point mathematical Koy

package for computations. Then by optimizing thgodthms

within the EDA tools used this gave at least 5Xngai dynamic

digital simulation runtime performance.

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

[. INTRODUCTION

To open this paper the first question must be, adnystrain the
generation of floating point numbers and why do yeqguire
executing in dynamic digital simulation.

The application under verification is more than tvhahuman
will see with their naked eye. In previous GPUadtams a large
amount of effort was spent on insuring the visuatectness. A
missing pixel at the edge of the screen, or a missidden

image underneath the current image maybe havedsaeptable
as negligible to be noticed by the human eye. Wi¢hadvent of
OpenCL framework for GPU’s these negligible issnes have
significant meaning as the same code that wouldlym® an
incorrect pixel or image is now being used to exe@ompute
functionality. Incorrect compute functionality carhave

disastrous consequences for applications runninghenGPU.

Floating point numbers are crucial to the operatibthe GPU as
it uses floats for not just placement of imagesaoscreen but
also for defining screen sizes and scissor boxsandzerefore, to
accurately verify the GPU system we need to opeiatéds

supported type formats.

Some corner cases are just easier verified usiaditional
dynamic verification techniques. Historically haréhthematical
problems were solved using higher order algorittomist like
HOL. Today one can write C algorithms to perfornuigglency
checking with RTL. Also, one can write low-levelopfs to
verify using formal verification tools. In the emdch of these
has their own pros and cons. HOL like tools reqairéot of
expertise and manipulation to use correctly. SiryiJaC to RTL
equivalency checking is great in the presence ohd@dels for
everything but what about glue-logic and cross-opeints

between the algorithms. Same for formal proofshait a good
complete model the results will be uncertain as/at you are
really proving. Finally, if you want to run end-usspecific test
patterns and target corner-cases within your detiigm you
must have a mechanism within dynamic simulatiorexecute
the scenarios.

The problem is not unique to GPU verification iaiso an issue
for analog/digital mixed signal (AMS) verificaticand for HW
implemented digital signal processor (DSP) algamgh For
these designs real or float types are used heanidythe dynamic
digital simulators with their integer arithmetic g>fall short in
providing a usage model for non-integer based ieatibn.

Using SV constraints to target the corner-casestsins within
a GPU gives rise to particular inefficiencies wittgimulators.
Longer term these inefficiencies need to be addcessy
language and tool experts. Whilst, in AMS the focas be on
IEEE754 real types for GPU/CPU/DSP designs thetkeoften
formats beyond the IEEE754 definitions. To that ethe
language and tools need to provide a solution fayeaeric
floating point format and not just IEEE754.

II. NUMBER FORMATS

Integer numbers are regular in their distance emtimber line,
whereas floating point numbers are comprised afxgonential
factor which results in logarithmic points on thewber line. All
floating point numbers have three basic elementi tithin

them, the first is a sign value to indicate positir negative
numbers secondly there is an exponent portion dicate the
number of times the base number is multiplied Isglitthen
thirdly there is a mantissa value to represensifeificant digits

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

of the number. IEEE754 defines three binary base@dts with
length 32bit, 64bit, 128bit and two decimal basé&dhats with
length 64bit and 128bit (see table 3.2 of IEEE75%he
calculation of the real number from these floatpaint number
formats is calculated as follows:

(—1)S19" x hase®*POnent x mantissa

The format defined in IEEE754 for a 64bit floatipgint number
also referred to as @ouble which has 1bit for sign with 11bits
for exponent and 52bits for the mantissa. To undeds the
nature of how such a number appears on the nunimrthe
exponent portion can be manipulated. Increasing@tipenent by
a value of one will result in the increments of thantissa to
give much larger real number delta on the numiperwhich are
characteristic of a logarithmic scale. Later youl wee why
randomization of a floating point number needs @acbntrolled
otherwise meaningless values can be generatedanfige of the
exponent is biased to allow for positive and negatixponents,
this is controlled by standard bias calculatipht™* — 1

Whilst floating point formats allow for the geneost of very

small and very large numbers using biased expotiemne is a
limit to the possible numbers to be representedcater for the
minimum and maximum limits of the number the expudnehen

filled with all ones and mantissa is all zeros cades that the
number is representing infinity, where the signdiitates if it is

a negative or positive infinity value. If the exgon is all ones
and mantissa is non-zero then this indicates vailnsh are not
numbers such as square root of negative valuesioidd by

zero values.

Similar issues exists that lead to limitations te fprecision of
any single number which is defined by the numberbité

available for use as the mantissa. Therefore, tlaeee well

defined rounding modes to cater for situations whsthmetic
calculations require a result beyond the precisiealable with
the mantissa. All floating point numbers are writtas
scientifically normalized numbers meaning thereoidy one
value before the point. For binary numbers this magaat there
will always be a 1 before the point, as a 0 wowdse point to
move right and increase exponent. Thus followslengna as
how to represent zero numbers using floating poirte

mechanism is appreciating these are denormalizedbers
which can be recognized when exponent has alllzé&oln such
cases the real number calculation take into coreside that the

exponent is zero and assun2és?*s rather than the normalized
format: 26xponent_value—bias

SV defines real and shortreal as 64bit floatingnpddouble
float) and 32bit floating point (single float) nues
respectively. The language does not give usersructstal
representation of a 64bit or 32bit float, nor dassdefine
rounding mode selections. VHDL has defined the dixand
floating point packages allowing users and vendorsnow the
basic structures present in the design for use waithanced
technologies and optimizations. Even if the designly needed
to handle predefined float types the SV languages dmt define
how to perform randomization or coverage of thel raad
shortreal types. In some respects this is actuplite good as
you will see later the randomization has to be g¢fuhrough
intelligently to ensure good distributions. Whatulbe totally
inadequate would be to bring in a real number ansigle solver
from existing analog tools and use that solvesaiation within

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

a digital environment. Many existing real numbetvers are
targeted to the continuous time analog domain wissveep
functions or Monte Carlo analysis is applicable.the digital
simulation domain the applications for randomizatiof even
just the real and shortreal types defined in S\bggond what is
required from these traditional analog solversolwing integer
calculations with floating point calculations ikey requirement
otherwise the verification will not meet the demanébr
targeting specific areas with sufficient performan€hen going
beyond the scope of the real and shortreal typgsflaating
point format should be possible to be used. Of s®mtine normal
types are quarter, half, single, double and quddshiequate to
8bit, 16bit, 32bit, 64bit and 128bit floating poimambers. It has
been common practice in the industry to use intefloating
point formats with different mantissa and expor@htvidths for
design optimizations and these also need to beldmiktanly
by any such solution that a language or tool wigdupporting.
From the aspect of verifying key components in aJGkesign
there are so many key features that relate to iplect and
precision of points on a screen that integers rseafiicient and
many multiples of floating point numbers are regdirto
correctly draw graphical primitives.

[II. CONTEXT OF GPU CORNER CASES

There are many known corner cases scenarios winglenag
images onto a display. One such situation that leglp with
understanding the value of using floating point bens for
verification is the zero-area triangle that actphks a very small
area. A triangle where the sum of two sides eqtiedength of
the third will make it a straight-line. There is @&mportant
difference between primitive objects like triangl®sd straight

lines. A triangle will have some area associateti Wwiwhereas a
straight line will only have an associated width.

Classic techniques one learnt to calculate the afrtfae triangle
show us some of the intricacies of verifying witbatting point
numbers. Heron’s formula for the area of a trianidémtifies the
zero area triangle issue.

The area of a triangle can be calculated using eformula:

Area = \/s(s —a)(s—=b)(s—0)
a,b,c are the sides of the triangle, s is the gEmimeter.

_a+b+c
ST

Rewritten this becomes:

Area = 1/4 J4a?b? — (a2+b2—c?)?
For example, a triangle has sides Al, B2, C3 watlues 1, 2, 3.

Al= B2=

C3=

The only way to ensure that C3 is connected to Ad B2 is if
the angle between Al and B2 is zero.

In reality side A1 might be greater than 1 by g tfractional
amount. Hence, it needs to be treated as a triamigflean area
and not a straight line. The area could still be $oall to be
calculated by software models as there is a lionthe maximum
precision within which software models can oper&aother

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

way to think of this is that drawing the pointstbé triangle on a
graph, if the Y coordinate is a very large numhexill have a
finite maximum precision as there are only so mabity in a
floating point number before rounding occurs. Wathery large
Y coordinate the X coordinates between the two roploénts of
the triangle could be less than the precision afodgrdinate. In
such cases verification strategies that use satwiaodels are
often ineffective as rounding modes could give r@ zgea result.

Interestingly there is an opposite corner case wbeéns a tiny
fraction greater than 3 it means that the triatigies would not
meet. In floating point number terminology this @& NaN

triangle. A basic triangle rule is that no sidelsba greater than
the sum of the other two sides. For verificatioris tis an

immense challenge as there is no single numbeegentor
floating point that can cause Zero or NaN triangfesug if any

could be in any permutation of the 3 sides. By gisnftware
models and formal models we can ensure that the iR Thrrect
to the rounding precisions defined by the modetsieyond that
there needs to be assurance that the occurrerid@Nofind Zero
triangles are treated correctly by the design.

Understanding the context from the zero area theang
important and when placed into the overall contéx drawing
mechanism it becomes apparent at the numerousrfloabers
required to be generated and constrained together.

Prior to drawing any primitives there needs to beceeen and
this requires randomizing of the screen resoluti@aonstraints of
the screen need to be weighted for typical resmistisuch as
1pixel by 1pixel, 65K by 65k, 1080p, 4K HD. Onces@een is
defined there then can be drawn a scissor boxmwitieé screen
to define where subsequent drawing should occue. Jdissor

box can also be placed anywhere in the screenese will need
to be constraints to relate the screen and thesacibox
locations. Within the scissor box is where pringtishapes are
drawn. Each primitive is defined by the vertices\it uses for
locations. A point or dot is a one vertex primitwéereas a line
has 2 vertices and a triangle has 3 vertices. Edcthese
primitives have a variety of attributes for instare point will
have a size and a line will have a width. Each e is
slightly more advanced than the previous, pointtxliine=2
vtx, triangle=3vtx and beyond this are trianglesfamd triangle
strips which have 3vtx to Nvtx. A triangle fan isnamber of
triangles joined by the first vertex and the fivetrtex being at
the centre of the fan. A triangle strip is buittrir triangles joined
by vertices 2&3 from previous triangle attachingvétices 1&2
of current triangle. Now one starts to grasp theelleof
constraints required between the various stagesirawing
primitives. The user must be able to constrain diquaar
triangle fan to overlap or not overlap
with a triangle strip within a scissor
box within a screen. Possibly one of
the triangles in the fan is a zero-area
triangle with a tiny area too small to
calculate. Floating point mathematics
needs to be used for sizes, positions,
areas, lengths, dimensions, along with
perspectives overlaid with graphics
properties of blending, lighting etc. The verificat engineer
needs to focus on ensuring scenarios beyond theasef models
capabilities are verified. These can be in verylsoravery large
floating point number calculations as different ccddtion
techniques are used for design optimizations. Asmrgte of an

Figure 1

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

optimization you may have done yourself is if ardle has a
90° angle then the area is simply:

A—lbh
)

One can mentally compute this much faster than méeformula
however what if the angle is a very tiny fractioeater than 90
or tiny fraction less than 80Such interesting crossover points
are critical for the verification engineer. Henbéstexplains the
importance of using floating point numbers for asichn as
possible of the verification challenge.

IV. ADDRESSING DISTRIBUTIONS

A. Poor distribution vs good distributions

The task of randomizing floating point numbers ist ras
straightforward as randomizing integers. Unlikeegars — where
the values are uniformly distributed over the Jales legal
range — the distribution of floating point valuesexponential.
Additionally, standard floating point number formatontain a
number of bit vector representations that encodgegaoutside
the number range, such as, ‘not a number’ (NaNpiip (+/-
INF), zero (+/- zero) and denormals/subnormals.

If a simple approach for randomization of a flogtipoint
number is taken where a bit vector is randomized,encoding
of the number format makes it difficult to constréie vector to
fall between useful ranges. Even if constrainéscmstructed to
facilitate randomization of values in a target mn@ useful
distribution over that range can be difficult due the
exponential distribution, described above. Discmgntthe
exponential distribution of the number format casult in a

distribution as shown in Figure 3. To get a mordfoum
distribution, additional constraints are needed.

15688

“f]l.oat_r‘estlllts.txt'l' +

1608 | + + +
+ + + + ++

588 - +‘i}.+ + +H + 3 + ++ + i

-1808 ¥ + "

-1588 L L L L L L L L L
a 16688 20680 30686 4080 Soee 6oe6 7oee goea 90686 16668

Figure 3

(Downey, 2007) suggested in his paper an algorithitin which
a uniform distribution of random values of floatingpint
numbers could be obtained.

The solution described within this paper simplifias approach
that (Downey, 2007) presented to allow the essevfcéhe

algorithm to be implemented in the SV language.e $blution

suggested here works on the premise that floatoigt palues

constructed from a binary representation have a pfisability

to be in the highest exponent range. Based orsthisment, the
following algorithm has been used to produce a aunif

distribution when randomizing floating point values

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

1. Randomize a bit vector which has same width as the

exponent. Each bit should have 50% probabilityed..

2. Loop through randomized bit vector to find the tfilot
set to 1. The index of the first bit set to 1 def the
value of the exponent, such that the first bit itssin a
maximum exponent value, and the last bit resultthén
lowest exponent value.

3. The mantissa is chosen freely except in cases where
randomized exponent value is the same as one lorolbot
the exponent values defining the legal range of
randomization. In this case the randomization hef t
mantissa needs to ensure that the legal rangaaetilbe
exceeded.

Note that the algorithm presented by (Downey, 208I8o
describes an adjustment made to exponent basdtomalue of
the mantissa to correct the distribution for thstfpoint in the
range. However, for simplicity that step was moplemented in
solution presented here.

The practical solution to capture constraints anthero
functionality (such as arithmetic operations) irusable way is
to implement a class to encapsulate the floatingtpaumber.

The challenge in implementing the suggested algoritsing the
features of the SV is to get such an implementatiith which
several floating point numbers can be solved durthg
randomization phase such that one random floataigt value
can be used as a range limit to another. This reauant limits
the way ranges can be set, and also what parendbmization

or the algorithm can be placed in the pre_randofhized
post_randomize() functions.

The structure of the algorithm suggests that itld/dne easiest to
place minimal constraints in the randomization pehamnd
execute most of the value selection in the poddoanize phase.
However, this is not possible due to the sequennd a
relationship of the SV randomization behavior. aample;
when classes are randomized the pre_randomizeg¢}idas in
all random classes are executed. Following theptetion of
the pre_randomisation phase the actual randomizatiti be
executed together, and finally the post_randomizg(gtions in
all classes will be executed. With this relatidpsithe random
floating point value produced in one instance haeendency
on the on another yet the randomization of these ihgtances
are in lock-step, which will result in an invalidsult.

The solution proposed for resolving randomizati@pehdency
for setting limits such that they are solved duritige

randomization phase is to add class member vasidbteupper
and lower limits and define them as rand variable$his

resolves the dependency and allows randomizing fleases so
that one float can act as a limit to another.

class numbers_float_generic ;
rand packed_float_struct_t upper_limit;
rand packed_float_struct_t lower_limit;

rand packed_float_struct_t value;

endclass

To simplify the implementation of the algorithm| ebnstraints
for the exponent selection can be implemented ie th

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

pre_randomize() phase so that there is no needhdav khe

limits. This can be done such that a bit vectahvai width of

exponent is randomized and the position of firssbt to 1 in the
vector is set as value to be subtracted from tlge$d exponent.
Subtraction itself will be placed into the congttai

function void pre_randomize();
int unsigned exponent_chooser_vec;
exponent_chooser_vec=
$urandom_range({EXPONENT_WIDTH{1'b1}}, 0);

//Select max value in case exponent_chooser_vec is 0.
exponent_chooser = EXPONENT_WIDTH,;

for (inti=0; i < EXPONENT_WIDTH; i++) begin
if (((exponent_chooser_vec >>i) & 'hl)==1) b egin
exponent_chooser = i;
break;
end
end
endfunction

constraint exponent {
if (upper_limit.exponent >= exponent_chooser) {
value.exponent==upper_limit.exponent-exponent_cho oser;

}

else { value.exponent == 0; }

}
The implemented solution gives a much improvedridistion

for random floating point humber over range whishegually
distributed on both sides of 0. This can be seeFkigure 4,
which show values of 10,000 randomized floatinghpoumbers
within range -1023..1023.

15688 T T T T T T

“f]l.oat_r‘estlllts.txt'l' +

1688

hee

=580

-1008 }

-1588 L L L L L L L L
a 16688 20680 30686 4080 Soee 6oe6 7oee goea 90686 16668

Figure 4

B. Setting ranges non-balance over 0

In cases where the range crosses zero but the isrigeentered
around zero, the algorithm proposed so far willuiegn an
uneven distribution as it still provides a 50:50itsjor positive
and negative values. Figure 5 shows an examptei®fwhere
the negative range is smaller than the positivgeaand as a
result a higher density of hits.

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

12a8

“fioat_resﬁlts.txtd +

608

=280

-4a88

Figure 5

A practical fix to this issue is still to use omngi algorithm to
choose the exponent, but also to add a constraithe largest
exponent chosen based on the sign bit. To baldhee
proportion of hits related to size of the range thifference in
the exponent values has been used to define sibe odnges on
each side and to adjust the distribution of sign.

constraint sign {

if (upper_limit.exponent > lower_limit.exponent) {
value.sign dist {
upper_limit.sign :=
(upper_limit.exponent - lower_limit.exponent +1),

lower_limit.sign := 1

I

}else {

value.sign dist {
upper_limit.sign := 1,

L L L L L L L L L
a 16688 20680 30686 46608 Soee 6oe6 7oee Goee 9088 1686€

lower_limit.sign :=

(lower_limit.exponent - upper_limit.exponent +1)
h
}

}

In Figure 6, the affect of sign distribution charuge be seen.

12a8

“fioat_resﬁlts.txtd +

1888 | e o i e w - bt e

i1z 1:]

468

-200 1

-488 L L L L L L L L L
a 16688 20680 30686 4080 Soee 6oe6 7oee goea 90686 16668

Figure 6

C. Non-full range of mantissa per top/bottom exp
As shown so far, the proposed solution gives a gbsigibution
of values through a workable constraint mechanigtowever,
the solution contains a flaw which has not beenlvesl.

The current solution assumes that whole mantissgeravill be
used. However, if the limit imposed by the usenstmaint does

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

not allow whole mantissa range to be used, theefrgxponent
range will still be chosen in 50% of cases (asltedfuexponent
selection presented above). In this case, thellebeilarger
density of hits on largest exponent range. Thecafbf this is
demonstrated in Figure 7 which shows the resultarmomizing
floating point values between 0 and 1024. Thetlivailue of
1024 is on a new exponent range (137) but limesniiantissa to
one possible value (0) and so value of 1024 gé¥s &iohits.

This issue was not solved since it was decidedithaters are
aware of this it can be avoided and even if notidaa the
solution gives good amount of hits on the remaimargge.

1288 T T T
“float_results.txt” +

1800 [

s
:
+ g
T
*$'+ *+§§$¢+ fﬁ%—g e
R ke T e
e e T g

Ay L

SR T

Figure 7

h
addtis,
RPN s A

16688 20680 Joe8 4080 Soee 6Goeg 7oee Goee 9068 16668

D. Coarse Ranges

Even though values which do not present any nunzvet
infinity might not have a use case in floating pgaamithmetic
they might be valid test cases in hardware vetifica For
example it might be requirement that unit corredigcards
invalid or not supported values, so in this cass tritical that
these values can be generated.

Also values like 0, smallest non-zero value, largesssible
value etc. might become rare when values in flgatioint range
are uniformly distributed. In floating point aritletic these are
part of interesting cases and there should be Iptigsito
increase probability to hit these values.

To provide the functionality for the user to affgrbbability of
these values, a separate field to select coarge raas added.
Coarse range in this case is a random enumerated wdich
can be used to select specific value, value rarrgandorm
distribution.

E. Usability and Human Readability

The constraints and functionality presented in joev sections
achieve the aim to get uniformly distributed rand@ioating
point numbers. However, for a reusable solutiba,gase of use
and human readability of constraints cannot beriggho

The main factor affecting usability is the conversifrom the
number value to the bit vector representation tbating point
number. As presented in section Il, arithmetic afiens must be
applied to the bit vector representation to obthia floating
point number value. To avoid the need to have kadgé and/or
execute these operations when setting or readingtr@ints in

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

test cases, the user of the floating point clasafy should be
able to set values appropriate to the scenariandst cases this
will be as a floating point value, in which case 8ystem should
deal with the conversion using the require openatio Setting
values in this way also enables better portabiftihe test cases.

To achieve usability, human readability and forimnatependent
value setting in test cases, strings were usecktioel floating

point values in the constraints and string-to-fluatctions were
used to convert the string to a bit vector. Forpticity the

conversion itself was implemented in C. The goateafdability
and usability was achieved with this approach,aiwd cost of a
drop in performance during randomization due tar@nease in
simulation DPI calls.

Performance penalties were noted and different i@ayonvert
number value to float were considered but not immelieted.

F. Practical Issues

During deployment in real applications, severaluéss were
encountered which eventually limited the use of floating
point class library that raised the need for anrowed solution.
These issues are partially due to the implememtatia partially
due to the functionality of the SystemVerilog.

The major limiting factor was the constraint solvand
complexity of constraints. The use of rand fields setting the
constraint ranges provided a working solution. ideer, this
solution can cause problems for the constraintesoln cases
where there is a large chain of constraints witvess floating
point numbers used to limit to each other. In soakes, the
constraint matrix is complex and the problem hiits of the
constraint solver which manifest as performanceratgion,

higher memory usage requirements and contradiotioors.
The performance of the constraint solver could héesn
improved if further guidance related to the impletee
algorithm could have been given to the tool.

The secondary limiting factors to performance elato the
solutions implemented to improve usability, as dégd in

section E, and the overhead incurred in the iteFagolution

required to produce randomly sized arrays of flaatpoint

numbers. Depending on the use case for the raydsinéd

array, there are multiple options. For example,atray size can
be randomized and necessary amount of classesrudsst in

pre_randomize() function. Alternatively a maximamount of
classes can be constructed in the pre_randomiae¢tion and
the array size is cut to correct size in the pastdomize(). If the
size of the array is randomized in pre_randomifa(gtion it

limits what constraints can later be added for .si2eesating
maximum number of classes has negative affect timnpeance
and causes unnecessarily large memory consumption.

The final limiting factor of note relates to theabdity of the
solution. If the scenario requires several randimating point
numbers with interdependencies, it was found to vieey
sensitive to constraint changes. Thus refining straints
towards a target scenario burnt additional usereff

V. CONCLUSION

The SV base classes were used by all of the modenes

testbenches and on the system-level testbenchesh Wi

constructive feedback on the usability and thegsarnce of the
code the implementation went through an iteratmprovement
process. One of the key points for end users ofltlaéing point

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

library to understand was that the digital simulatdandle
normal integer constraints much better than theenmmmplex
constraints built into the floating point librar§his meant that
with extensive whitebox knowledge of the designsdain
verification the engineers could ensure that fa mmajority of
the time normal integers were used and only wheessary was
the floating point library employed.

Due to the feedback received the library improved
performance dramatically but at some point there toeabe a
tradeoff between required features and usabilityuciMof the
lack of performance was from how constraint soleegines
within digital simulators were dealing with the rigies
constructs. By explaining the nature of the libraaso
explaining how the constraints were being modetedmproved
distributions the solver engineering team was &bleecognize
redundant implications and dependencies withinctbrestraints
solution space. Along with other improvements tiauator
was able to provide a 5X gain in performance oea design
which heavily used the floating point library.

To ensure algorithm compatibility with software naetsl the
library uses C code functions for many of the angfic
operations such as addition, multiplication, divated multiply.
For a more native solution it would be appropriat@erform all
off these functions within SV code. This could atemove the
heavy burden of C code performing string to floanipulation
just so the users can write “1.5” style syntaxVhc®de.

The library as it stands solves many of the veatfan issues but
it has flaws as mentioned previously, such hasseating to
partial mantissa ranges. As and when future prejeetuire

enhancements to the library these will be implemgnd address
ever increasing users.

It is the intention and hope of the authors that itidustry will
recognize the works written here as necessary tmplemented
natively within tools and languages used for vesifion of
digital blocks that deal with real or floating pbmumber types.

VI. ACKNOWLEDGEMENTS

The authors would like to acknowledge key contributions
from Robin Hotchkiss of ARM and Katherine Qiang of
Synopsys. Without the support and insight from R.
Hotchkiss this problem may have burdened ARM
engineers for longer than necessary. We owe a great
many thanks to K. Qiang for her innovation in creating
new algorithms to ensure the code developed by ARM is
sustainable and usable with sufficient performance from
the simulator toolset. An extended thank you goes to all
members of the MALI GPU team whom have tested and
gave constructive feedback on the code in use.

VII. REFERENCES

Downey, A. (2007, July 25). Generating Pseudo-random
Floating-Point Values.

IEEE. (754-2008). Standard for Binary Floating Point
Arithmetic. IEEE . IEEE CS.

IEEE. (1800-2012). SystemVerilog Unified Hardware
Design, and Verification Language. IEEE Standard for
SystemVerilog . IEEE SACAG.

http://en.wikipedia.org/wiki/OpenCL

http://www.glprogramming.com

http://malideveloper.arm.com

Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

