
Martin Fröjd, Adiel Khan, Jussi Mäkelä

Version: 1.0

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

CONSTRAINING THE REAL PROBLEM

OF FLOATING POINT NUMBER DISTRIBUTION

Abstract- There are many applications that require dealing with
real and floating point numbers in electronics ranging from the
low-level schematics of analog mixed signal domain to the high-
end graphics powering so many personal electronic devices.

One cannot treat floats or reals the same as integers due to the
underlying subtleties of the number types. The challenge is
developing techniques for enabling verification engineers to
correctly stimulate designs with real world scenarios. (IEEE,
SystemVerilog Unified Hardware Design, and Verification
Language, 1800-2012)(SV) defines a real number as represented
by 64bit floating point number see (IEEE, Standard for Binary
Floating Point Arithmetic, 754-2008)(IEE754) . The SV
language does not address randomization of real or float types.
Languages or libraries that do allow randomization of floats are
often inefficient and poor distribution of the floating point
number line. Whilst there are formal verification techniques
better suited for verification of floats, engineers are still required
to verify scenarios over multiple levels using dynamic simulation
with random pattern injection.

With GPU verification the qualification process requires
constrained random pattern stimulus to ensure the color, shape,
size and position of graphics primitives hit graphical API,
architectural and mathematical corner cases. Numerous float
formats are employed by GPU designs for optimization purposes

and these need generated during verification. Of those many float
formats, a range of values need to be randomly generated to hit
interesting corner cases, such as correctly place a graphic
primitive in a specific position within frame; dimensions of a
graphic object or primitive; perspective / geometric translations,
lighting / depth / blending operations and so forth. In such cases
randomly generating one floating point number is not useful, a
full set of integers with floating point numbers need to be
constrained and generated together to ensure correct behavior.

This paper applies the theorems of (Downey, 2007) using SV to
highlight differences between good and bad distributions. The
implementation must be efficient in its distribution including
NaNs, infinities, denormals, zeros, min and max legal ranges
whilst being efficient in performance. Also discussed is enabling
a user interface similar to integers for constraining floats.
Therein, the paper will delve in constraints of floats to using the
standard mathematic symbols such as equals, summations,
greater-than, less-than, multiplication and divisor.

The result of this effort was base classes in SV that can be used
with any floating point number format. The code leveraged
ARM’s internal C++ Floating point mathematical library
package for computations. Then by optimizing the algorithms
within the EDA tools used this gave at least 5X gain in dynamic
digital simulation runtime performance.

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

I. INTRODUCTION

To open this paper the first question must be, why constrain the
generation of floating point numbers and why do you require
executing in dynamic digital simulation.

The application under verification is more than what a human
will see with their naked eye. In previous GPU iterations a large
amount of effort was spent on insuring the visual correctness. A
missing pixel at the edge of the screen, or a missing hidden
image underneath the current image maybe have been acceptable
as negligible to be noticed by the human eye. With the advent of
OpenCL framework for GPU’s these negligible issues now have
significant meaning as the same code that would produce an
incorrect pixel or image is now being used to execute compute
functionality. Incorrect compute functionality can have
disastrous consequences for applications running on the GPU.
Floating point numbers are crucial to the operation of the GPU as
it uses floats for not just placement of images on a screen but
also for defining screen sizes and scissor box areas. Therefore, to
accurately verify the GPU system we need to operate in its
supported type formats.

Some corner cases are just easier verified using traditional
dynamic verification techniques. Historically hard mathematical
problems were solved using higher order algorithm tools like
HOL. Today one can write C algorithms to perform equivalency
checking with RTL. Also, one can write low-level proofs to
verify using formal verification tools. In the end each of these
has their own pros and cons. HOL like tools require a lot of
expertise and manipulation to use correctly. Similarly, C to RTL
equivalency checking is great in the presence of C-models for
everything but what about glue-logic and cross-over points

between the algorithms. Same for formal proofs, without a good
complete model the results will be uncertain as to what you are
really proving. Finally, if you want to run end-user specific test
patterns and target corner-cases within your design then you
must have a mechanism within dynamic simulation to execute
the scenarios.

The problem is not unique to GPU verification it is also an issue
for analog/digital mixed signal (AMS) verification and for HW
implemented digital signal processor (DSP) algorithms. For
these designs real or float types are used heavily and the dynamic
digital simulators with their integer arithmetic API’s fall short in
providing a usage model for non-integer based verification.

Using SV constraints to target the corner-cases situations within
a GPU gives rise to particular inefficiencies within simulators.
Longer term these inefficiencies need to be addressed by
language and tool experts. Whilst, in AMS the focus can be on
IEEE754 real types for GPU/CPU/DSP designs there will often
formats beyond the IEEE754 definitions. To that end the
language and tools need to provide a solution for a generic
floating point format and not just IEEE754.

II. NUMBER FORMATS

Integer numbers are regular in their distance on the number line,
whereas floating point numbers are comprised of an exponential
factor which results in logarithmic points on the number line. All
floating point numbers have three basic elements built within
them, the first is a sign value to indicate positive or negative
numbers secondly there is an exponent portion to indicate the
number of times the base number is multiplied by itself then
thirdly there is a mantissa value to represent the significant digits

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

of the number. IEEE754 defines three binary base2 formats with
length 32bit, 64bit, 128bit and two decimal base10 formats with
length 64bit and 128bit (see table 3.2 of IEEE754). The
calculation of the real number from these floating point number
formats is calculated as follows:

��1����� 	
���������� 	 ��������

The format defined in IEEE754 for a 64bit floating point number
also referred to as a double which has 1bit for sign with 11bits
for exponent and 52bits for the mantissa. To understand the
nature of how such a number appears on the number line the
exponent portion can be manipulated. Increasing the exponent by
a value of one will result in the increments of the mantissa to
give much larger real number delta on the number line which are
characteristic of a logarithmic scale. Later you will see why
randomization of a floating point number needs to be controlled
otherwise meaningless values can be generated. The range of the
exponent is biased to allow for positive and negative exponents,
this is controlled by standard bias calculation: 2���� � 1

Whilst floating point formats allow for the generation of very
small and very large numbers using biased exponent there is a
limit to the possible numbers to be represented. To cater for the
minimum and maximum limits of the number the exponent when
filled with all ones and mantissa is all zeros indicates that the
number is representing infinity, where the sign bit dictates if it is
a negative or positive infinity value. If the exponent is all ones
and mantissa is non-zero then this indicates values which are not
numbers such as square root of negative values or deivide by
zero values.

Similar issues exists that lead to limitations in the precision of
any single number which is defined by the number of bits
available for use as the mantissa. Therefore, there are well
defined rounding modes to cater for situations when arithmetic
calculations require a result beyond the precision available with
the mantissa. All floating point numbers are written as
scientifically normalized numbers meaning there is only one
value before the point. For binary numbers this means that there
will always be a 1 before the point, as a 0 would cause point to
move right and increase exponent. Thus follows a dilemma as
how to represent zero numbers using floating point. The
mechanism is appreciating these are denormalized numbers
which can be recognized when exponent has all zero bits. In such
cases the real number calculation take into consideration that the

exponent is zero and assumes 2������ rather than the normalized

format: 2��������_��� ������.

SV defines real and shortreal as 64bit floating point (double
float) and 32bit floating point (single float) numbers
respectively. The language does not give users a structural
representation of a 64bit or 32bit float, nor does is define
rounding mode selections. VHDL has defined the fixed and
floating point packages allowing users and vendors to know the
basic structures present in the design for use with advanced
technologies and optimizations. Even if the designs only needed
to handle predefined float types the SV language does not define
how to perform randomization or coverage of the real and
shortreal types. In some respects this is actually quite good as
you will see later the randomization has to be thought through
intelligently to ensure good distributions. What would be totally
inadequate would be to bring in a real number analog style solver
from existing analog tools and use that solver in isolation within

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

a digital environment. Many existing real number solvers are
targeted to the continuous time analog domain where sweep
functions or Monte Carlo analysis is applicable. In the digital
simulation domain the applications for randomization of even
just the real and shortreal types defined in SV go beyond what is
required from these traditional analog solvers. Involving integer
calculations with floating point calculations is a key requirement
otherwise the verification will not meet the demands for
targeting specific areas with sufficient performance. Then going
beyond the scope of the real and shortreal types any floating
point format should be possible to be used. Of course the normal
types are quarter, half, single, double and quads which equate to
8bit, 16bit, 32bit, 64bit and 128bit floating point numbers. It has
been common practice in the industry to use internal floating
point formats with different mantissa and exponent bit widths for
design optimizations and these also need to be handled cleanly
by any such solution that a language or tool would be supporting.
From the aspect of verifying key components in a GPU design
there are so many key features that relate to placement and
precision of points on a screen that integers are insufficient and
many multiples of floating point numbers are required to
correctly draw graphical primitives.

III. CONTEXT OF GPU CORNER CASES

There are many known corner cases scenarios when rendering
images onto a display. One such situation that can help with
understanding the value of using floating point numbers for
verification is the zero-area triangle that actually has a very small
area. A triangle where the sum of two sides equals the length of
the third will make it a straight-line. There is an important
difference between primitive objects like triangles and straight

lines. A triangle will have some area associated with it whereas a
straight line will only have an associated width.

Classic techniques one learnt to calculate the area of the triangle
show us some of the intricacies of verifying with floating point
numbers. Heron’s formula for the area of a triangle identifies the
zero area triangle issue.

The area of a triangle can be calculated using Heron’s formula:

!"� # $��� � ���� �
��� � %�

a,b,c are the sides of the triangle, s is the semi-perimeter.

� #
� &
 & %

2

Rewritten this becomes:

!"� # 1
4($4�)
) � ��)&
)�%)�)

For example, a triangle has sides A1, B2, C3 with values 1, 2, 3.

A1= B2=

C3=

The only way to ensure that C3 is connected to A1 and B2 is if
the angle between A1 and B2 is zero.

In reality side A1 might be greater than 1 by a tiny fractional
amount. Hence, it needs to be treated as a triangle with an area
and not a straight line. The area could still be too small to be
calculated by software models as there is a limit to the maximum
precision within which software models can operate. Another

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

way to think of this is that drawing the points of the triangle on a
graph, if the Y coordinate is a very large number it will have a
finite maximum precision as there are only so many bits in a
floating point number before rounding occurs. With a very large
Y coordinate the X coordinates between the two other points of
the triangle could be less than the precision of Y coordinate. In
such cases verification strategies that use software models are
often ineffective as rounding modes could give a zero area result.

Interestingly there is an opposite corner case when C3 is a tiny
fraction greater than 3 it means that the triangle lines would not
meet. In floating point number terminology this is a NaN
triangle. A basic triangle rule is that no side shall be greater than
the sum of the other two sides. For verification this is an
immense challenge as there is no single number, integer or
floating point that can cause Zero or NaN triangles. A bug if any
could be in any permutation of the 3 sides. By using software
models and formal models we can ensure that the RTL is correct
to the rounding precisions defined by the models but beyond that
there needs to be assurance that the occurrence of NaN and Zero
triangles are treated correctly by the design.

Understanding the context from the zero area triangle is
important and when placed into the overall context of a drawing
mechanism it becomes apparent at the numerous float numbers
required to be generated and constrained together.

Prior to drawing any primitives there needs to be a screen and
this requires randomizing of the screen resolution. Constraints of
the screen need to be weighted for typical resolutions such as
1pixel by 1pixel, 65K by 65k, 1080p, 4K HD. Once a screen is
defined there then can be drawn a scissor box within the screen
to define where subsequent drawing should occur. The scissor

box can also be placed anywhere in the screen so there will need
to be constraints to relate the screen and the scissor box
locations. Within the scissor box is where primitive shapes are
drawn. Each primitive is defined by the vertices (vtx) it uses for
locations. A point or dot is a one vertex primitive whereas a line
has 2 vertices and a triangle has 3 vertices. Each of these
primitives have a variety of attributes for instance a point will
have a size and a line will have a width. Each primitive is
slightly more advanced than the previous, point =1vtx, line=2
vtx, triangle=3vtx and beyond this are triangle fans and triangle
strips which have 3vtx to Nvtx. A triangle fan is a number of
triangles joined by the first vertex and the first vertex being at
the centre of the fan. A triangle strip is built from triangles joined
by vertices 2&3 from previous triangle attaching to vertices 1&2
of current triangle. Now one starts to grasp the level of
constraints required between the various stages in drawing
primitives. The user must be able to constrain a particular

triangle fan to overlap or not overlap
with a triangle strip within a scissor
box within a screen. Possibly one of
the triangles in the fan is a zero-area
triangle with a tiny area too small to
calculate. Floating point mathematics
needs to be used for sizes, positions,
areas, lengths, dimensions, along with
perspectives overlaid with graphics

properties of blending, lighting etc. The verification engineer
needs to focus on ensuring scenarios beyond the software models
capabilities are verified. These can be in very small or very large
floating point number calculations as different calculation
techniques are used for design optimizations. An example of an

Figure 2

Figure 1

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

optimization you may have done yourself is if a triangle has a
90o angle then the area is simply:

! #
1
2

*

One can mentally compute this much faster than Herons formula
however what if the angle is a very tiny fraction greater than 90o
or tiny fraction less than 90o. Such interesting crossover points
are critical for the verification engineer. Hence this explains the
importance of using floating point numbers for as much as
possible of the verification challenge.

IV. ADDRESSING DISTRIBUTIONS

A. Poor distribution vs good distributions

The task of randomizing floating point numbers is not as
straightforward as randomizing integers. Unlike integers – where
the values are uniformly distributed over the variable’s legal
range – the distribution of floating point values is exponential.
Additionally, standard floating point number formats contain a
number of bit vector representations that encode values outside
the number range, such as, ‘not a number’ (NaN), infinity (+/-
INF), zero (+/- zero) and denormals/subnormals.

If a simple approach for randomization of a floating point
number is taken where a bit vector is randomized, the encoding
of the number format makes it difficult to constrain the vector to
fall between useful ranges. Even if constraints are constructed to
facilitate randomization of values in a target range, a useful
distribution over that range can be difficult due to the
exponential distribution, described above. Discounting the
exponential distribution of the number format can result in a

distribution as shown in Figure 3. To get a more uniform
distribution, additional constraints are needed.

Figure 3

(Downey, 2007) suggested in his paper an algorithm with which
a uniform distribution of random values of floating point
numbers could be obtained.

The solution described within this paper simplifies the approach
that (Downey, 2007) presented to allow the essence of the
algorithm to be implemented in the SV language. The solution
suggested here works on the premise that floating point values
constructed from a binary representation have a 50% probability
to be in the highest exponent range. Based on this statement, the
following algorithm has been used to produce a uniform
distribution when randomizing floating point values:

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

1. Randomize a bit vector which has same width as the
exponent. Each bit should have 50% probability to be 1.

2. Loop through randomized bit vector to find the first bit
set to 1. The index of the first bit set to 1 defines the
value of the exponent, such that the first bit results in a
maximum exponent value, and the last bit results in the
lowest exponent value.

3. The mantissa is chosen freely except in cases where the
randomized exponent value is the same as one or both of
the exponent values defining the legal range of
randomization. In this case the randomization of the
mantissa needs to ensure that the legal range will not be
exceeded.

Note that the algorithm presented by (Downey, 2007) also
describes an adjustment made to exponent based on the value of
the mantissa to correct the distribution for the first point in the
range. However, for simplicity that step was not implemented in
solution presented here.

The practical solution to capture constraints and other
functionality (such as arithmetic operations) in re-usable way is
to implement a class to encapsulate the floating point number.

The challenge in implementing the suggested algorithm using the
features of the SV is to get such an implementation with which
several floating point numbers can be solved during the
randomization phase such that one random floating point value
can be used as a range limit to another. This requirement limits
the way ranges can be set, and also what parts of randomization

or the algorithm can be placed in the pre_randomize() and
post_randomize() functions.

The structure of the algorithm suggests that it would be easiest to
place minimal constraints in the randomization phase and
execute most of the value selection in the post randomize phase.
However, this is not possible due to the sequence and
relationship of the SV randomization behavior. For example;
when classes are randomized the pre_randomize() functions in
all random classes are executed. Following the completion of
the pre_randomisation phase the actual randomization will be
executed together, and finally the post_randomize() functions in
all classes will be executed. With this relationship, the random
floating point value produced in one instance has a dependency
on the on another yet the randomization of these two instances
are in lock-step, which will result in an invalid result.

The solution proposed for resolving randomization dependency
for setting limits such that they are solved during the
randomization phase is to add class member variables for upper
and lower limits and define them as rand variables. This
resolves the dependency and allows randomizing float classes so
that one float can act as a limit to another.

class numbers_float_generic ;
...
 rand packed_float_struct_t upper_limit;
 rand packed_float_struct_t lower_limit;
 rand packed_float_struct_t value;
...
endclass

To simplify the implementation of the algorithm, all constraints
for the exponent selection can be implemented in the

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

pre_randomize() phase so that there is no need to know the
limits. This can be done such that a bit vector with a width of
exponent is randomized and the position of first bit set to 1 in the
vector is set as value to be subtracted from the largest exponent.
Subtraction itself will be placed into the constraints.

function void pre_randomize();
 int unsigned exponent_chooser_vec;
 exponent_chooser_vec=
 $urandom_range({EXPONENT_WIDTH{1'b1}}, 0);

//Select max value in case exponent_chooser_vec is 0.
 exponent_chooser = EXPONENT_WIDTH;

 for (int i = 0; i < EXPONENT_WIDTH; i++) begin
 if (((exponent_chooser_vec >> i) & 'h1) == 1) b egin
 exponent_chooser = i;
 break;
 end
 end
endfunction

...
constraint exponent {
 if (upper_limit.exponent >= exponent_chooser) {
 value.exponent==upper_limit.exponent-exponent_cho oser;
 }
 else { value.exponent == 0; }
}

The implemented solution gives a much improved distribution
for random floating point number over range which is equally
distributed on both sides of 0. This can be seen in Figure 4,
which show values of 10,000 randomized floating point numbers
within range -1023..1023.

Figure 4

B. Setting ranges non-balance over 0

In cases where the range crosses zero but the range isn’t centered
around zero, the algorithm proposed so far will result in an
uneven distribution as it still provides a 50:50 split for positive
and negative values. Figure 5 shows an example of this where
the negative range is smaller than the positive range and as a
result a higher density of hits.

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

Figure 5

A practical fix to this issue is still to use original algorithm to
choose the exponent, but also to add a constraint on the largest
exponent chosen based on the sign bit. To balance the
proportion of hits related to size of the range, the difference in
the exponent values has been used to define size of the ranges on
each side and to adjust the distribution of sign.

constraint sign {
 if (upper_limit.exponent > lower_limit.exponent) {
 value.sign dist {
 upper_limit.sign :=
 (upper_limit.exponent - lower_limit.exponent + 1),
 lower_limit.sign := 1
 };
 } else {
 value.sign dist {
 upper_limit.sign := 1,

 lower_limit.sign :=
 (lower_limit.exponent - upper_limit.exponent + 1)
 };
 }
}

In Figure 6, the affect of sign distribution change can be seen.

Figure 6

C. Non-full range of mantissa per top/bottom exp

As shown so far, the proposed solution gives a good distribution
of values through a workable constraint mechanism. However,
the solution contains a flaw which has not been resolved.

The current solution assumes that whole mantissa range will be
used. However, if the limit imposed by the user constraint does

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

not allow whole mantissa range to be used, the largest exponent
range will still be chosen in 50% of cases (as result of exponent
selection presented above). In this case, there will be larger
density of hits on largest exponent range. The affect of this is
demonstrated in Figure 7 which shows the results of randomizing
floating point values between 0 and 1024. The limit value of
1024 is on a new exponent range (137) but limits the mantissa to
one possible value (0) and so value of 1024 gets 50% of hits.

This issue was not solved since it was decided that if users are
aware of this it can be avoided and even if not avoided the
solution gives good amount of hits on the remaining range.

Figure 7

D. Coarse Ranges

Even though values which do not present any number and
infinity might not have a use case in floating point arithmetic
they might be valid test cases in hardware verification. For
example it might be requirement that unit correctly discards
invalid or not supported values, so in this case it is critical that
these values can be generated.

Also values like 0, smallest non-zero value, largest possible
value etc. might become rare when values in floating point range
are uniformly distributed. In floating point arithmetic these are
part of interesting cases and there should be possibility to
increase probability to hit these values.

To provide the functionality for the user to affect probability of
these values, a separate field to select coarse range was added.
Coarse range in this case is a random enumerated value which
can be used to select specific value, value range or uniform
distribution.

E. Usability and Human Readability

The constraints and functionality presented in previous sections
achieve the aim to get uniformly distributed random floating
point numbers. However, for a reusable solution, the ease of use
and human readability of constraints cannot be ignored.

The main factor affecting usability is the conversion from the
number value to the bit vector representation of a floating point
number. As presented in section II, arithmetic operations must be
applied to the bit vector representation to obtain the floating
point number value. To avoid the need to have knowledge and/or
execute these operations when setting or reading constraints in

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

test cases, the user of the floating point class library should be
able to set values appropriate to the scenario. In most cases this
will be as a floating point value, in which case the system should
deal with the conversion using the require operations. Setting
values in this way also enables better portability of the test cases.

To achieve usability, human readability and format independent
value setting in test cases, strings were used to define floating
point values in the constraints and string-to-float functions were
used to convert the string to a bit vector. For simplicity the
conversion itself was implemented in C. The goal of readability
and usability was achieved with this approach, but at a cost of a
drop in performance during randomization due to an increase in
simulation DPI calls.

Performance penalties were noted and different ways to convert
number value to float were considered but not implemented.

F. Practical Issues

During deployment in real applications, several issues were
encountered which eventually limited the use of the floating
point class library that raised the need for an improved solution.
These issues are partially due to the implementation and partially
due to the functionality of the SystemVerilog.

The major limiting factor was the constraint solver and
complexity of constraints. The use of rand fields for setting the
constraint ranges provided a working solution. However, this
solution can cause problems for the constraint solver in cases
where there is a large chain of constraints with several floating
point numbers used to limit to each other. In such cases, the
constraint matrix is complex and the problem hit limits of the
constraint solver which manifest as performance degradation,

higher memory usage requirements and contradiction errors.
The performance of the constraint solver could have been
improved if further guidance related to the implemented
algorithm could have been given to the tool.

The secondary limiting factors to performance related to the
solutions implemented to improve usability, as described in
section E, and the overhead incurred in the iterative solution
required to produce randomly sized arrays of floating point
numbers. Depending on the use case for the randomly sized
array, there are multiple options. For example, the array size can
be randomized and necessary amount of classes constructed in
pre_randomize() function. Alternatively a maximum amount of
classes can be constructed in the pre_randomize() function and
the array size is cut to correct size in the post_randomize(). If the
size of the array is randomized in pre_randomize() function it
limits what constraints can later be added for size. Creating
maximum number of classes has negative affect to performance
and causes unnecessarily large memory consumption.

The final limiting factor of note relates to the usability of the
solution. If the scenario requires several random floating point
numbers with interdependencies, it was found to be very
sensitive to constraint changes. Thus refining constraints
towards a target scenario burnt additional user effort.

V. CONCLUSION

The SV base classes were used by all of the modular level
testbenches and on the system-level testbenches. With
constructive feedback on the usability and the performance of the
code the implementation went through an iterative improvement
process. One of the key points for end users of the floating point

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved.

library to understand was that the digital simulators handle
normal integer constraints much better than the more complex
constraints built into the floating point library. This meant that
with extensive whitebox knowledge of the designs under
verification the engineers could ensure that for the majority of
the time normal integers were used and only when necessary was
the floating point library employed.

Due to the feedback received the library improved its
performance dramatically but at some point there has to be a
tradeoff between required features and usability. Much of the
lack of performance was from how constraint solver engines
within digital simulators were dealing with the libraries
constructs. By explaining the nature of the library also
explaining how the constraints were being modeled for improved
distributions the solver engineering team was able to recognize
redundant implications and dependencies within the constraints
solution space. Along with other improvements the simulator
was able to provide a 5X gain in performance on a real design
which heavily used the floating point library.

To ensure algorithm compatibility with software models the
library uses C code functions for many of the arithmetic
operations such as addition, multiplication, divide and multiply.
For a more native solution it would be appropriate to perform all
off these functions within SV code. This could also remove the
heavy burden of C code performing string to float manipulation
just so the users can write “1.5” style syntax in SV code.

The library as it stands solves many of the verification issues but
it has flaws as mentioned previously, such has not scaling to
partial mantissa ranges. As and when future projects require

enhancements to the library these will be implemented to address
ever increasing users.

It is the intention and hope of the authors that the industry will
recognize the works written here as necessary to be implemented
natively within tools and languages used for verification of
digital blocks that deal with real or floating point number types.

VI. ACKNOWLEDGEMENTS

The authors would like to acknowledge key contributions

from Robin Hotchkiss of ARM and Katherine Qiang of

Synopsys. Without the support and insight from R.

Hotchkiss this problem may have burdened ARM

engineers for longer than necessary. We owe a great

many thanks to K. Qiang for her innovation in creating

new algorithms to ensure the code developed by ARM is

sustainable and usable with sufficient performance from

the simulator toolset. An extended thank you goes to all

members of the MALI GPU team whom have tested and

gave constructive feedback on the code in use.

VII. REFERENCES

Downey, A. (2007, July 25). Generating Pseudo-random

Floating-Point Values.

IEEE. (754-2008). Standard for Binary Floating Point

Arithmetic. IEEE . IEEE CS.

IEEE. (1800-2012). SystemVerilog Unified Hardware

Design, and Verification Language. IEEE Standard for

SystemVerilog . IEEE SACAG.

http://en.wikipedia.org/wiki/OpenCL

http://www.glprogramming.com

http://malideveloper.arm.com

