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CONSTRAINING THE REAL PROBLEM  

OF FLOATING POINT NUMBER DISTRIBUTION 
 

Abstract- There are many applications that require dealing with 
real and floating point numbers in electronics ranging from the 
low-level schematics of analog mixed signal domain to the high- 
end graphics powering so many personal electronic devices. 

One cannot treat floats or reals the same as integers due to the 
underlying subtleties of the number types. The challenge is 
developing techniques for enabling verification engineers to 
correctly stimulate designs with real world scenarios. (IEEE, 
SystemVerilog Unified Hardware Design, and Verification 
Language, 1800-2012)(SV) defines a real number as represented 
by 64bit floating point number see (IEEE, Standard for Binary 
Floating Point Arithmetic, 754-2008)(IEE754) . The SV 
language does not address randomization of real or float types. 
Languages or libraries that do allow randomization of floats are 
often inefficient and poor distribution of the floating point 
number line. Whilst there are formal verification techniques 
better suited for verification of floats, engineers are still required 
to verify scenarios over multiple levels using dynamic simulation 
with random pattern injection. 

With GPU verification the qualification process requires 
constrained random pattern stimulus to ensure the color, shape, 
size and position of graphics primitives hit graphical API, 
architectural and mathematical corner cases. Numerous float 
formats are employed by GPU designs for optimization purposes 

and these need generated during verification. Of those many float 
formats, a range of values need to be randomly generated to hit 
interesting corner cases, such as correctly place a graphic 
primitive in a specific position within frame; dimensions of a 
graphic object or primitive; perspective / geometric translations, 
lighting / depth / blending operations and so forth. In such cases 
randomly generating one floating point number is not useful, a 
full set of integers with floating point numbers need to be 
constrained and generated together to ensure correct behavior. 

This paper applies the theorems of (Downey, 2007) using SV to 
highlight differences between good and bad distributions.  The 
implementation must be efficient in its distribution including 
NaNs, infinities, denormals, zeros, min and max legal ranges 
whilst being efficient in performance. Also discussed is enabling 
a user interface similar to integers for constraining floats. 
Therein, the paper will delve in constraints of floats to using the 
standard mathematic symbols such as equals, summations, 
greater-than, less-than, multiplication and divisor. 

The result of this effort was base classes in SV that can be used 
with any floating point number format. The code leveraged 
ARM’s internal C++ Floating point mathematical library 
package for computations. Then by optimizing the algorithms 
within the EDA tools used this gave at least 5X gain in dynamic 
digital simulation runtime performance. 



 

 Copyright 2013-2014 by ARM, Ltd., and Synopsys International Limited. All rights reserved. 

I. INTRODUCTION 

To open this paper the first question must be, why constrain the 
generation of floating point numbers and why do you require 
executing in dynamic digital simulation.  

The application under verification is more than what a human 
will see with their naked eye. In previous GPU iterations a large 
amount of effort was spent on insuring the visual correctness. A 
missing pixel at the edge of the screen, or a missing hidden 
image underneath the current image maybe have been acceptable 
as negligible to be noticed by the human eye. With the advent of 
OpenCL framework for GPU’s these negligible issues now have 
significant meaning as the same code that would produce an 
incorrect pixel or image is now being used to execute compute 
functionality. Incorrect compute functionality can have 
disastrous consequences for applications running on the GPU. 
Floating point numbers are crucial to the operation of the GPU as 
it uses floats for not just placement of images on a screen but 
also for defining screen sizes and scissor box areas. Therefore, to 
accurately verify the GPU system we need to operate in its 
supported type formats. 

Some corner cases are just easier verified using traditional 
dynamic verification techniques. Historically hard mathematical 
problems were solved using higher order algorithm tools like 
HOL. Today one can write C algorithms to perform equivalency 
checking with RTL. Also, one can write low-level proofs to 
verify using formal verification tools. In the end each of these 
has their own pros and cons. HOL like tools require a lot of 
expertise and manipulation to use correctly. Similarly, C to RTL 
equivalency checking is great in the presence of C-models for 
everything but what about glue-logic and cross-over points 

between the algorithms. Same for formal proofs, without a good 
complete model the results will be uncertain as to what you are 
really proving. Finally, if you want to run end-user specific test 
patterns and target corner-cases within your design then you 
must have a mechanism within dynamic simulation to execute 
the scenarios. 

The problem is not unique to GPU verification it is also an issue 
for analog/digital mixed signal (AMS) verification and for HW 
implemented digital signal processor (DSP) algorithms. For 
these designs real or float types are used heavily and the dynamic 
digital simulators with their integer arithmetic API’s fall short in 
providing a usage model for non-integer based verification. 

Using SV constraints to target the corner-cases situations within 
a GPU gives rise to particular inefficiencies within simulators. 
Longer term these inefficiencies need to be addressed by 
language and tool experts. Whilst, in AMS the focus can be on 
IEEE754 real types for GPU/CPU/DSP designs there will often 
formats beyond the IEEE754 definitions. To that end the 
language and tools need to provide a solution for a generic 
floating point format and not just IEEE754. 

II. NUMBER FORMATS 

Integer numbers are regular in their distance on the number line, 
whereas floating point numbers are comprised of an exponential 
factor which results in logarithmic points on the number line. All 
floating point numbers have three basic elements built within 
them, the first is a sign value to indicate positive or negative 
numbers secondly there is an exponent portion to indicate the 
number of times the base number is multiplied by itself then 
thirdly there is a mantissa value to represent the significant digits 
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of the number. IEEE754 defines three binary base2 formats with 
length 32bit, 64bit, 128bit and two decimal base10 formats with 
length 64bit and 128bit (see table 3.2 of IEEE754). The 
calculation of the real number from these floating point number 
formats is calculated as follows:  

��1����� 	 
���������� 	 �������� 

The format defined in IEEE754 for a 64bit floating point number 
also referred to as a double which has 1bit for sign with 11bits 
for exponent and 52bits for the mantissa. To understand the 
nature of how such a number appears on the number line the 
exponent portion can be manipulated. Increasing the exponent by 
a value of one will result in the increments of the mantissa to 
give much larger real number delta on the number line which are 
characteristic of a logarithmic scale. Later you will see why 
randomization of a floating point number needs to be controlled 
otherwise meaningless values can be generated. The range of the 
exponent is biased to allow for positive and negative exponents, 
this is controlled by standard bias calculation: 2���� � 1 

Whilst floating point formats allow for the generation of very 
small and very large numbers using biased exponent there is a 
limit to the possible numbers to be represented. To cater for the 
minimum and maximum limits of the number the exponent when 
filled with all ones and mantissa is all zeros indicates that the 
number is representing infinity, where the sign bit dictates if it is 
a negative or positive infinity value. If the exponent is all ones 
and mantissa is non-zero then this indicates values which are not 
numbers such as square root of negative values or deivide by 
zero values. 

Similar issues exists that lead to limitations in the precision of 
any single number which is defined by the number of bits 
available for use as the mantissa. Therefore, there are well 
defined rounding modes to cater for situations when arithmetic 
calculations require a result beyond the precision available with 
the mantissa. All floating point numbers are written as 
scientifically normalized numbers meaning there is only one 
value before the point. For binary numbers this means that there 
will always be a 1 before the point, as a 0 would cause point to 
move right and increase exponent. Thus follows a dilemma as 
how to represent zero numbers using floating point. The 
mechanism is appreciating these are denormalized numbers 
which can be recognized when exponent has all zero bits. In such 
cases the real number calculation take into consideration that the 

exponent is zero and assumes 2������  rather than the normalized 

format: 2��������_��� ������. 

SV defines real and shortreal as 64bit floating point (double 
float) and 32bit floating point (single float) numbers 
respectively. The language does not give users a structural 
representation of a 64bit or 32bit float, nor does is define 
rounding mode selections. VHDL has defined the fixed and 
floating point packages allowing users and vendors to know the 
basic structures present in the design for use with advanced 
technologies and optimizations. Even if the designs only needed 
to handle predefined float types the SV language does not define 
how to perform randomization or coverage of the real and 
shortreal types. In some respects this is actually quite good as 
you will see later the randomization has to be thought through 
intelligently to ensure good distributions. What would be totally 
inadequate would be to bring in a real number analog style solver 
from existing analog tools and use that solver in isolation within 
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a digital environment. Many existing real number solvers are 
targeted to the continuous time analog domain where sweep 
functions or Monte Carlo analysis is applicable. In the digital 
simulation domain the applications for randomization of even 
just the real and shortreal types defined in SV go beyond what is 
required from these traditional analog solvers. Involving integer 
calculations with floating point calculations is a key requirement 
otherwise the verification will not meet the demands for 
targeting specific areas with sufficient performance. Then going 
beyond the scope of the real and shortreal types any floating 
point format should be possible to be used. Of course the normal 
types are quarter, half, single, double and quads which equate to 
8bit, 16bit, 32bit, 64bit and 128bit floating point numbers. It has 
been common practice in the industry to use internal floating 
point formats with different mantissa and exponent bit widths for 
design optimizations and these also need to be handled cleanly 
by any such solution that a language or tool would be supporting. 
From the aspect of verifying key components in a GPU design 
there are so many key features that relate to placement and 
precision of points on a screen that integers are insufficient and 
many multiples of floating point numbers are required to 
correctly draw graphical primitives. 

III. CONTEXT OF GPU CORNER CASES 

There are many known corner cases scenarios when rendering 
images onto a display. One such situation that can help with 
understanding the value of using floating point numbers for 
verification is the zero-area triangle that actually has a very small 
area. A triangle where the sum of two sides equals the length of 
the third will make it a straight-line. There is an important 
difference between primitive objects like triangles and straight 

lines. A triangle will have some area associated with it whereas a 
straight line will only have an associated width. 

Classic techniques one learnt to calculate the area of the triangle 
show us some of the intricacies of verifying with floating point 
numbers. Heron’s formula for the area of a triangle identifies the 
zero area triangle issue. 

The area of a triangle can be calculated using Heron’s formula: 
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a,b,c are the sides of the triangle, s is the semi-perimeter. 
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Rewritten this becomes: 
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For example, a triangle has sides A1, B2, C3 with values 1, 2, 3.  

A1=                             B2= 

C3= 

The only way to ensure that C3 is connected to A1 and B2 is if 
the angle between A1 and B2 is zero. 

In reality side A1 might be greater than 1 by a tiny fractional 
amount. Hence, it needs to be treated as a triangle with an area 
and not a straight line. The area could still be too small to be 
calculated by software models as there is a limit to the maximum 
precision within which software models can operate. Another 
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way to think of this is that drawing the points of the triangle on a 
graph, if the Y coordinate is a very large number it will have a 
finite maximum precision as there are only so many bits in a 
floating point number before rounding occurs. With a very large 
Y coordinate the X coordinates between the two other points of 
the triangle could be less than the precision of Y coordinate. In 
such cases verification strategies that use software models are 
often ineffective as rounding modes could give a zero area result. 

Interestingly there is an opposite corner case when C3 is a tiny 
fraction greater than 3 it means that the triangle lines would not 
meet. In floating point number terminology this is a NaN 
triangle. A basic triangle rule is that no side shall be greater than 
the sum of the other two sides. For verification this is an 
immense challenge as there is no single number, integer or 
floating point that can cause Zero or NaN triangles. A bug if any 
could be in any permutation of the 3 sides. By using software 
models and formal models we can ensure that the RTL is correct 
to the rounding precisions defined by the models but beyond that 
there needs to be assurance that the occurrence of NaN and Zero 
triangles are treated correctly by the design. 

Understanding the context from the zero area triangle is 
important and when placed into the overall context of a drawing 
mechanism it becomes apparent at the numerous float numbers 
required to be generated and constrained together.  

Prior to drawing any primitives there needs to be a screen and 
this requires randomizing of the screen resolution. Constraints of 
the screen need to be weighted for typical resolutions such as 
1pixel by 1pixel, 65K by 65k, 1080p, 4K HD. Once a screen is 
defined there then can be drawn a scissor box within the screen 
to define where subsequent drawing should occur. The scissor 

box can also be placed anywhere in the screen so there will need 
to be constraints to relate the screen and the scissor box 
locations. Within the scissor box is where primitive shapes are 
drawn. Each primitive is defined by the vertices (vtx) it uses for 
locations. A point or dot is a one vertex primitive whereas a line 
has 2 vertices and a triangle has 3 vertices. Each of these 
primitives have a variety of attributes for instance a point will 
have a size and a line will have a width. Each primitive is 
slightly more advanced than the previous, point =1vtx, line=2 
vtx, triangle=3vtx and beyond this are triangle fans and triangle 
strips which have 3vtx to Nvtx. A triangle fan is a number of 
triangles joined by the first vertex and the first vertex being at 
the centre of the fan. A triangle strip is built from triangles joined 
by vertices 2&3 from previous triangle attaching to vertices 1&2 
of current triangle. Now one starts to grasp the level of 
constraints required between the various stages in drawing 
primitives. The user must be able to constrain a particular 

triangle fan to overlap or not overlap 
with a triangle strip within a scissor 
box within a screen. Possibly one of 
the triangles in the fan is a zero-area 
triangle with a tiny area too small to 
calculate. Floating point mathematics 
needs to be used for sizes, positions, 
areas, lengths, dimensions, along with 
perspectives overlaid with graphics 

properties of blending, lighting etc. The verification engineer 
needs to focus on ensuring scenarios beyond the software models 
capabilities are verified. These can be in very small or very large 
floating point number calculations as different calculation 
techniques are used for design optimizations. An example of an 
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optimization you may have done yourself is if a triangle has a 
90o angle then the area is simply: 

! #
1
2


* 

One can mentally compute this much faster than Herons formula 
however what if the angle is a very tiny fraction greater than 90o 
or tiny fraction less than 90o. Such interesting crossover points 
are critical for the verification engineer. Hence this explains the 
importance of using floating point numbers for as much as 
possible of the verification challenge. 

IV. ADDRESSING DISTRIBUTIONS 

A. Poor distribution vs good distributions  

The task of randomizing floating point numbers is not as 
straightforward as randomizing integers. Unlike integers – where 
the values are uniformly distributed over the variable’s legal 
range – the distribution of floating point values is exponential.  
Additionally, standard floating point number formats contain a 
number of bit vector representations that encode values outside 
the number range, such as, ‘not a number’ (NaN), infinity (+/- 
INF), zero (+/- zero) and denormals/subnormals. 

If a simple approach for randomization of a floating point 
number is taken where a bit vector is randomized, the encoding 
of the number format makes it difficult to constrain the vector to 
fall between useful ranges.  Even if constraints are constructed to 
facilitate randomization of values in a target range, a useful 
distribution over that range can be difficult due to the 
exponential distribution, described above. Discounting the 
exponential distribution of the number format can result in a 

distribution as shown in Figure 3. To get a more uniform 
distribution, additional constraints are needed. 

 

Figure 3 

(Downey, 2007) suggested in his paper an algorithm with which 
a uniform distribution of random values of floating point 
numbers could be obtained.   

The solution described within this paper simplifies the approach 
that (Downey, 2007) presented to allow the essence of the 
algorithm to be implemented in the SV language.  The solution 
suggested here works on the premise that floating point values 
constructed from a binary representation have a 50% probability 
to be in the highest exponent range.  Based on this statement, the 
following algorithm has been used to produce a uniform 
distribution when randomizing floating point values: 
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1. Randomize a bit vector which has same width as the 
exponent.  Each bit should have 50% probability to be 1. 

2. Loop through randomized bit vector to find the first bit 
set to 1.  The index of the first bit set to 1 defines the 
value of the exponent, such that the first bit results in a 
maximum exponent value, and the last bit results in the 
lowest exponent value. 

3. The mantissa is chosen freely except in cases where the 
randomized exponent value is the same as one or both of 
the exponent values defining the legal range of 
randomization.  In this case the randomization of the 
mantissa needs to ensure that the legal range will not be 
exceeded. 

Note that the algorithm presented by (Downey, 2007) also 
describes an adjustment made to exponent based on the value of 
the mantissa to correct the distribution for the first point in the 
range.  However, for simplicity that step was not implemented in 
solution presented here. 

The practical solution to capture constraints and other 
functionality (such as arithmetic operations) in re-usable way is 
to implement a class to encapsulate the floating point number.  

The challenge in implementing the suggested algorithm using the 
features of the SV is to get such an implementation with which 
several floating point numbers can be solved during the 
randomization phase such that one random floating point value 
can be used as a range limit to another. This requirement limits 
the way ranges can be set, and also what parts of randomization 

or the algorithm can be placed in the pre_randomize() and 
post_randomize() functions. 

The structure of the algorithm suggests that it would be easiest to 
place minimal constraints in the randomization phase and 
execute most of the value selection in the post randomize phase. 
However, this is not possible due to the sequence and 
relationship of the SV randomization behavior.  For example; 
when classes are randomized the pre_randomize() functions in 
all random classes are executed.  Following the completion of 
the pre_randomisation phase the actual randomization will be 
executed together, and finally the post_randomize() functions in 
all classes will be executed.  With this relationship, the random 
floating point value produced in one instance has a dependency 
on the on another yet the randomization of these two instances 
are in lock-step, which will result in an invalid result. 

The solution proposed for resolving randomization dependency 
for setting limits such that they are solved during the 
randomization phase is to add class member variables for upper 
and lower limits and define them as rand variables.  This 
resolves the dependency and allows randomizing float classes so 
that one float can act as a limit to another. 

class numbers_float_generic ; 
... 
  rand packed_float_struct_t upper_limit; 
  rand packed_float_struct_t lower_limit; 
  rand packed_float_struct_t value; 
... 
endclass 

 

To simplify the implementation of the algorithm, all constraints 
for the exponent selection can be implemented in the 
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pre_randomize() phase so that there is no need to know the 
limits.  This can be done such that a bit vector with a width of 
exponent is randomized and the position of first bit set to 1 in the 
vector is set as value to be subtracted from the largest exponent. 
Subtraction itself will be placed into the constraints. 

function void pre_randomize(); 
  int unsigned exponent_chooser_vec; 
  exponent_chooser_vec= 
             $urandom_range({EXPONENT_WIDTH{1'b1}},  0); 

//Select max value in case exponent_chooser_vec is 0. 
  exponent_chooser = EXPONENT_WIDTH; 

  for (int i = 0; i < EXPONENT_WIDTH; i++) begin 
    if (((exponent_chooser_vec >> i) & 'h1) == 1) b egin 
      exponent_chooser = i; 
      break; 
    end 
  end 
endfunction 

... 
constraint exponent { 
 if (upper_limit.exponent >= exponent_chooser) { 
  value.exponent==upper_limit.exponent-exponent_cho oser; 
 } 
 else { value.exponent == 0; }       
} 

The implemented solution gives a much improved distribution 
for random floating point number over range which is equally 
distributed on both sides of 0. This can be seen in Figure 4, 
which show values of 10,000 randomized floating point numbers 
within range -1023..1023. 

 

Figure 4 

B. Setting ranges non-balance over 0 

In cases where the range crosses zero but the range isn’t centered 
around zero, the algorithm proposed so far will result in an 
uneven distribution as it still provides a 50:50 split for positive 
and negative values.  Figure 5 shows an example of this where 
the negative range is smaller than the positive range and as a 
result a higher density of hits. 
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Figure 5 

A practical fix to this issue is still to use original algorithm to 
choose the exponent, but also to add a constraint on the largest 
exponent chosen based on the sign bit.  To balance the 
proportion of hits related to size of the range, the difference in 
the exponent values has been used to define size of the ranges on 
each side and to adjust the distribution of sign.  

constraint sign { 
  if (upper_limit.exponent > lower_limit.exponent) { 
     value.sign dist {  
      upper_limit.sign :=  
      (upper_limit.exponent - lower_limit.exponent + 1), 
       lower_limit.sign := 1 
     }; 
  } else { 
  value.sign dist {  
     upper_limit.sign := 1, 

     lower_limit.sign :=  
       (lower_limit.exponent - upper_limit.exponent  + 1) 
     }; 
   } 
} 

 

In Figure 6, the affect of sign distribution change can be seen. 

 

Figure 6 

C. Non-full range of mantissa per top/bottom exp 

As shown so far, the proposed solution gives a good distribution 
of values through a workable constraint mechanism.  However, 
the solution contains a flaw which has not been resolved. 

The current solution assumes that whole mantissa range will be 
used.  However, if the limit imposed by the user constraint does 
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not allow whole mantissa range to be used, the largest exponent 
range will still be chosen in 50% of cases (as result of exponent 
selection presented above).  In this case, there will be larger 
density of hits on largest exponent range.  The affect of this is 
demonstrated in Figure 7 which shows the results of randomizing 
floating point values between 0 and 1024.  The limit value of 
1024 is on a new exponent range (137) but limits the mantissa to 
one possible value (0) and so value of 1024 gets 50% of hits. 

This issue was not solved since it was decided that if users are 
aware of this it can be avoided and even if not avoided the 
solution gives good amount of hits on the remaining range. 

 

 

Figure 7 

D. Coarse Ranges 

Even though values which do not present any number and 
infinity might not have a use case in floating point arithmetic 
they might be valid test cases in hardware verification. For 
example it might be requirement that unit correctly discards 
invalid or not supported values, so in this case it is critical that 
these values can be generated. 

Also values like 0, smallest non-zero value, largest possible 
value etc. might become rare when values in floating point range 
are uniformly distributed. In floating point arithmetic these are 
part of interesting cases and there should be possibility to 
increase probability to hit these values. 

To provide the functionality for the user to affect probability of 
these values, a separate field to select coarse range was added. 
Coarse range in this case is a random enumerated value which 
can be used to select specific value, value range or uniform 
distribution. 

E. Usability and Human Readability 

The constraints and functionality presented in previous sections 
achieve the aim to get uniformly distributed random floating 
point numbers.  However, for a reusable solution, the ease of use 
and human readability of constraints cannot be ignored. 

The main factor affecting usability is the conversion from the 
number value to the bit vector representation of a floating point 
number. As presented in section II, arithmetic operations must be 
applied to the bit vector representation to obtain the floating 
point number value. To avoid the need to have knowledge and/or 
execute these operations when setting or reading constraints in 
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test cases, the user of the floating point class library should be 
able to set values appropriate to the scenario.  In most cases this 
will be as a floating point value, in which case the system should 
deal with the conversion using the require operations.  Setting 
values in this way also enables better portability of the test cases. 

To achieve usability, human readability and format independent 
value setting in test cases, strings were used to define floating 
point values in the constraints and string-to-float functions were 
used to convert the string to a bit vector. For simplicity the 
conversion itself was implemented in C. The goal of readability 
and usability was achieved with this approach, but at a cost of a 
drop in performance during randomization due to an increase in 
simulation DPI calls. 

Performance penalties were noted and different ways to convert 
number value to float were considered but not implemented. 

F. Practical Issues 

During deployment in real applications, several issues were 
encountered which eventually limited the use of the floating 
point class library that raised the need for an improved solution. 
These issues are partially due to the implementation and partially 
due to the functionality of the SystemVerilog. 

The major limiting factor was the constraint solver and 
complexity of constraints. The use of rand fields for setting the 
constraint ranges provided a working solution.  However, this 
solution can cause problems for the constraint solver in cases 
where there is a large chain of constraints with several floating 
point numbers used to limit to each other.  In such cases, the 
constraint matrix is complex and the problem hit limits of the 
constraint solver which manifest as performance degradation, 

higher memory usage requirements and contradiction errors.  
The performance of the constraint solver could have been 
improved if further guidance related to the implemented 
algorithm could have been given to the tool.  

The secondary limiting factors to performance related to the 
solutions implemented to improve usability, as described in 
section E, and the overhead incurred in the iterative solution 
required to produce randomly sized arrays of floating point 
numbers.  Depending on the use case for the randomly sized 
array, there are multiple options.  For example, the array size can 
be randomized and necessary amount of classes constructed in 
pre_randomize() function.  Alternatively a maximum amount of 
classes can be constructed in the pre_randomize() function and 
the array size is cut to correct size in the post_randomize(). If the 
size of the array is randomized in pre_randomize() function it 
limits what constraints can later be added for size. Creating 
maximum number of classes has negative affect to performance 
and causes unnecessarily large memory consumption. 

The final limiting factor of note relates to the usability of the 
solution.  If the scenario requires several random floating point 
numbers with interdependencies, it was found to be very 
sensitive to constraint changes.  Thus refining constraints 
towards a target scenario burnt additional user effort. 

V. CONCLUSION 

The SV base classes were used by all of the modular level 
testbenches and on the system-level testbenches. With 
constructive feedback on the usability and the performance of the 
code the implementation went through an iterative improvement 
process. One of the key points for end users of the floating point 
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library to understand was that the digital simulators handle 
normal integer constraints much better than the more complex 
constraints built into the floating point library. This meant that 
with extensive whitebox knowledge of the designs under 
verification the engineers could ensure that for the majority of 
the time normal integers were used and only when necessary was 
the floating point library employed. 

Due to the feedback received the library improved its 
performance dramatically but at some point there has to be a 
tradeoff between required features and usability. Much of the 
lack of performance was from how constraint solver engines 
within digital simulators were dealing with the libraries 
constructs. By explaining the nature of the library also 
explaining how the constraints were being modeled for improved 
distributions the solver engineering team was able to recognize 
redundant implications and dependencies within the constraints 
solution space. Along with other improvements the simulator 
was able to provide a 5X gain in performance on a real design 
which heavily used the floating point library. 

To ensure algorithm compatibility with software models the 
library uses C code functions for many of the arithmetic 
operations such as addition, multiplication, divide and multiply. 
For a more native solution it would be appropriate to perform all 
off these functions within SV code. This could also remove the 
heavy burden of C code performing string to float manipulation 
just so the users can write “1.5” style syntax in SV code. 

The library as it stands solves many of the verification issues but 
it has flaws as mentioned previously, such has not scaling to 
partial mantissa ranges. As and when future projects require 

enhancements to the library these will be implemented to address 
ever increasing users. 

It is the intention and hope of the authors that the industry will 
recognize the works written here as necessary to be implemented 
natively within tools and languages used for verification of 
digital blocks that deal with real or floating point number types. 
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