
CONSTRAINING THE REAL 
PROBLEM OF FLOATING POINT 

NUMBER DISTRIBUTION
Jussi Mäkelä <Jussi.Makela@arm.com>
Martin Fröjd <Martin.Frojd@arm.com>

Adiel Khan <Adiel.Khan1@synopsys.com>



Floating point number

Sign Exponent Mantissa

bit 0bit n

• Floating point is a method of representing an approximation 
of a real number in a way that can support a wide range of 
values.

(−1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒 ∗ 𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏

• Special values:
– Signed zero: zero has sign bit
– Subnormal values: smaller than the smallest normal number
– Not a number (NaN): returned as the result of certain "invalid" 

operations, such as 0/0, ∞×0, or sqrt(−1)
– Infinity: infinities has to be handled in reasonable way



GPU and Floating Point Numbers

Vertices

Triangles/Lines/Points

Vertex 
Buffer 

Objects

Depth 
Stencil Dither

Colour 
Buffer 
Blend

RasterizerPrimitive 
AssemblyAPI

Frame 
Buffer

Fragment 
Shader

Vertex 
Shader

Primitive 
Processing



Examples of Floating Point 
Arithmetic Tests in GPU Verification

• Functionality of the module 
performs floating point 
arithmetic to:
– Exactly detect if primitive is 

inside or outside drawing 
area

– Remove primitives, which 
have zero area, and not 
remove triangles, which 
have close to zero area

– Remove primitives based 
on facing



Floating Point Number
Class Library for Verification

• Verification requirements:
– Good distribution of random floating point numbers
– Detailed control to hit interesting cases
– Increase probability to hit values like +/-0, infinity, NaN, smallest 

non-zero, largest non-zero, etc.
– Support floating point number arithmetic operations like multiply, 

divide, add, subtract and comparison
– Reusable and shareable over multiple test benches

• Solution:
– A practical solution is to encapsulate floating point representation 

into a class



Floating Point Number
Class Features: Formats

• IEEE754 defines three binary base2 formats 32bit, 64bit, 
128bit, and two decimal base10 formats with length 64bit 
and 128bit

• We use also custom formats, not part of IEEE 754

• Solution:
– Parameterizable base-class with parameters for different 

field widths
– Base-class implements interface common to all formats
– Sub-classes implement behavior for specific formats



Floating Point Number
Class Features: Readability

Sign Exponent Mantissa

bit 0bit n

• The main factor affecting usability is the conversion from 
number value to the bit vector representation of floating 
point number

(−1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒 ∗ 𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏

• Solution:
– Use strings to set values of floating point numbers:

• a = 32’h41820000 vs. a = string_as_float(“16.25”)

– For log messages, provide floating point number to string 
conversions



Floating Point Number
Class Features: Coarse Ranges

• Need a way to increase probability to hit special values:
– NaN and infinity are valid test cases in hardware verification
– Values interesting in special cases like 0, smallest non-zero 

value, largest possible value, etc. are rare to hit without 
increased probability

• Solution: 
– Random field to choose coarse range that defines what 

constraints to use



Floating Point Number
Class Features: Limits

• Need to be able to define limits
• Need to be able to use random floating point number as a limit 

for other random floating point number
• Need to complete randomization during randomize phase

• Solution: 
– Use random fields to define fields for upper and lower limits
– Use fields in constraints to limit the actual value



Floating Point Number
Class Features: Distribution

• Unlike integers – where the values are uniformly distributed 
over the variable’s legal range – the distribution of floating 
point values is exponential

10000 random float samples in range -1023..1023



Floating Point Number
Class Features: Distribution

• Solving exponential distribution:
– Floating point values constructed from a binary 

representation have a 50% probability to be in the highest 
exponent range 
(Downey, A. (2007, July 25). Generating Pseudo-random Floating-Point Values.)

0 exponent = 4exponent = 3exp = 21

possible range of numbers for given exponent



Floating Point Number
Class Features: Distribution

• The algorithm:
1. Randomize a bit vector that has same width as the exponent 

• Each bit should have 50% probability to be 1

2. Loop through randomized bit vector to find the first bit set to 1 
• Index of the first bit defines the exponent

3. The mantissa is chosen freely, but constraints must ensure the 
legal range of mantissa will not be exceeded

0 exponent = 4exp. = 3e=21

50%50%



Floating Point Number
Class Features: Distribution

• Distribution using algorithm:
– Uniform distribution when ranges over and below zero are equal
– Non-balanced distribution when ranges over and below zero are 

not equal
10000 random float samples in range -1023..1023 10000 random float samples in range -255..1023



Floating Point Number
Class Features: Distribution

• The amount of hits needs to be balanced and related to the 
size of the range

10000 random float samples in range -255..1023

Range above 0 approx. 4 
times larger than range 
below.
upper exponent = 136
lower exponent = 134

To balance the
proportion of hits related to 
size of the range, the 
difference in
the exponent values can be 
used to define size of the 
ranges on
each side and to adjust the 
distribution of sign.



Issues With the Implemented
Algorithm: Non-full Range Mantissa

• The algorithm assumes that full range of mantissa will be used
• Limiting the range of mantissa reduces the amount of numbers 

on highest exponent

0 4exponent = 3exp. = 21 exponent = 4

Mantissa

possible range of numbers for 
given exponent



Issues With the Implemented
Algorithm: Non-full Range Mantissa

• If non-full range of mantissa is used, it shows as a higher 
density of hits on highest exponent

Upper limit 1024 exponent = 137 
and mantissa = 0
Exponent 137 will get 50% of hits 
and they all will have mantissa = 0.

Range from 0 to just below upper 
limit will have exponent range 
0..136 and will get 50% of hits with 
full mantissa range

10000 random float samples in range 0..1024



Issues with the Implemented
Algorithm: Performance

• Using C to convert strings to float causes a drop in 
performance during randomization due to an increase in 
simulation DPI calls

• The use of random fields for limits can cause a large chain of 
constraints, and poor performance on constraint solver

• Random size array of classes requires a large enough array to 
be created first, but creating maximum number of classes has 
a negative affect on performance and causes unnecessarily 
large memory consumption



Conclusion

• It is possible to create a library for handling floating point 
numbers in verification, but it is not easy - issues are partially 
due to the implementation, and partially due to the functionality 
of the SystemVerilog

• With the feedback received from Synopsys, the library improved 
its performance dramatically, but at some point there must be a 
trade-off between required features and usability

• The industry should recognize the need and requirements for 
random floating point numbers and add them as part of the 
standard library to be implemented natively within tools and 
languages 



Thank You


	Slide Number 1
	Floating point number
	GPU and Floating Point Numbers
	Examples of Floating Point �Arithmetic Tests in GPU Verification
	Floating Point Number�Class Library for Verification
	Floating Point Number�Class Features: Formats
	Floating Point Number�Class Features: Readability
	Floating Point Number�Class Features: Coarse Ranges
	Floating Point Number�Class Features: Limits
	Floating Point Number�Class Features: Distribution
	Floating Point Number�Class Features: Distribution
	Floating Point Number�Class Features: Distribution
	Floating Point Number�Class Features: Distribution
	Floating Point Number�Class Features: Distribution
	Issues With the Implemented�Algorithm: Non-full Range Mantissa
	Issues With the Implemented�Algorithm: Non-full Range Mantissa
	Issues with the Implemented�Algorithm: Performance
	Conclusion
	Thank You

