
Consistent SystemC and VHDL Code Generation
from State Charts for Virtual Prototyping and RTL

Synthesis
Rainer Findenig

Upper Austrian University o. A. S.
Hagenberg, Austria

rainer.findenig@fh-hagenberg.at

Thomas Leitner
DICE GmbH & Co KG

Linz, Austria
thomas.leitner@infineon.com

Vokan Esen, Wolfgang Ecker
Infineon Technologies AG

Neubiberg, Germany
{volkan.esen,wolfgang.ecker}@infineon.com

Abstract—In today’s hardware development, SystemC code is
widely used for virtual prototyping, where an abstract system
model is used to do an early exploration of the hardware
implementation as well as software development. The synthesis
tools, on the other hand, conventionally still rely on VHDL as
the entry language.

State Charts, as for example included in UML, provide a
rich graphical design entry method that can serve as both
documentation and executable specification. This paper presents
a method for both cycle callable SystemC and register transfer
level VHDL code generation from State Chart models. The
presented approach utilizes different modeling styles for SystemC
and VHDL to allow simulation performance optimizations for the
SystemC code and resource optimizations for the VHDL code,
while still keeping their behavior consistent.

I. INTRODUCTION

To shorten today’s design cycles, virtual prototyping is
an essential concept to allow both faster evaluation of the
architecture of hardware systems and the possibility to develop
and test software for the generated hardware before actual
RTL code is available. A virtual prototype (VP) is usually
a SystemC design compiled from highly abstracted models
(e. g. transaction level models) to ensure high simulation
performance as well as cycle accurate modules where the exact
timing is needed to ensure the system’s function.

In a later design stage, for synthesis, these cycle callable
models are converted to an HDL like VHDL or Verilog. Devel-
oping the cycle callable model in an HDL in the first place is
usually not an option: While there is a free simulator for pure
SystemC designs, tools that allow a cosimulation of SystemC
and VHDL or Verilog have high license costs. Moreover, the
conversion is a manual, time-consuming, and error-prone task:
In case there are changes in either the specification or the
implementation, both models need to be adapted consistently,
which requires a tight interaction between the system designer
and the RTL designer.

While automatically generating a synthesizable HDL design
from a cycle callable SystemC design (or vice versa) is
possible (e. g. [1]), this approach still requires the designer to
keep the implementation consistent to the specification. In this
paper, we present an approach to generate both a cycle callable

SystemC model and a synthesizable VHDL model from a
graphical specification given as a State Chart. State Charts
provide several advantages over traditional code entry: They
can directly serve as documentation, they are well-known from
UML, they ease the modeling of complex reactive systems,
and, because UML defines a standardized file format, their
usage is more or less tool-independent.

In contrast to existing work, on generating either SystemC
or HDL from State Charts, our approach ensures consistency
between the SystemC and HDL implementation while employ-
ing two different modeling styles for SystemC and VHDL to
focus on both a computationally efficient implementation for
SystemC and a resource-efficient implementation in VHDL.

A. Introduction to State Charts

The following section presents a quick overview over the
syntax and semantics of State Charts. For an in-depth expla-
nation, refer to e. g. [2], [3], [4], [5].

State Charts are an extension to finite automata that adds
hierarchical nesting of states and concurrent execution1 [2].
Additionally, behavior can be attached to both states and
transitions.

To introduce both hierarchy and concurrent execution (or-
thogonality), UML defines both states and regions [5]. States
are divided into simple states, composite states, and sub-
machine states. Since submachine states are semantically
identical to composite states, we do not elaborate on those
in this work. Composite states differ from simple states in
the fact that they contain one or more regions: A region is
an orthogonal part of a composite state [5] and consists of
transitions and mutually exclusive substates, i. e. at most one
of those substates can be active at any given time. At most
one of those states can be an initial state, which is the state
in which the region starts its execution2. A configuration is
the set of currently active states, i. e. the set of states the State
Chart is currently in.

1Additionally, State Charts allow broadcast communication. Due to the
restriction to a single clock source for the input events, this is not relevant
for this paper, though.

2Note that our approach requires a region to have exactly one initial state.



Note that original State Charts used a different deno-
tation [3]: Composite states containing exactly one region
correspond OR-state while those with more than one region
correspond to AND-states.

One can attach behavior to states by specifying one of the
following:
• an entry action that is executed every time the state is

entered,
• a do activity that is executed after the entry action and

while the State Chart is in the state, and
• an exit action that is executed every time the state is

left [5].
Note that the presented approach does not support do activities,
since their main use is to model continuous behavior, which,
in a cycle callable design, needs to be refined into single
steps that can be modeled, for example, using hierarchy or
self loops. Do activities are therefore omitted in the further
discussion.

States can be connected by transitions, that can (but are not
required to) have
• a trigger that fires the transition,
• a guard that disables the transition if it evaluates to false

when the trigger occurs, and
• an effect specifying behavior that is executed every time

the transition is taken [5].

Transitions are written as s
trigger[guard]/effect−−−−−−−−−−−→ s′ where s and s′

are denoted the source state and the target state, respectively.
Since our approach targets synchronous cycle-callable designs,
the only allowed input event trigger is the positive clock
edge and therefore omitted where not needed for clarity. Note
that completion transitions pose an exception to this rule:
Any transition without explicit trigger and guard starting from
a composite state is taken as soon as the state is finished
executing, i. e. as soon as all it’s substates are in their final
state.

Let entry(s) and exit(s), denote the entry action and exit

action of a state s, respectively. If a transition s
e[guard]/effect−−−−−−−−→ s′

is executed because the event e is received while guard is true,
1) exit(s),
2) effect, and
3) entry(s′) are executed in this order.
As an example, Fig. 1 shows a simplified State Chart. It

consists of six states (Statei, 1 ≤ i ≤ 6) with State2 being a
composite state containing the two regions S2a and S2b.

The State Chart starts its execution in State1 and changes to
State2 when the guard start is true while an input event (i. e.
a rising clock edge) is received3. Since State2 is decomposed
into two regions that are executed concurrently, as soon as
State2 is entered, the State Chart also enters the states State3
and State5. In other words, the configuration {State1} is
changed to {State2,State3,State5} as soon as the guard start
is true while a rising clock edge is received. As with every

3Note that, since the rising clock edge is the only valid input event, it is
omitted in the State Chart.

State1

State2

[S2a]

[S2b]

State3 State4

State5

Initial

State6

[restart]

[abort]

[start]

Fig. 1. A simplified State Chart.

transition, as soon as State1 is left, exit(State1) and then
enter(State2), enter(State3), and enter(State5) are executed.

State2 can be left in two cases:
• If abort becomes true, State2 is left for State6, regardless

of the states the regions S2a and S2b are currently in.
• As soon as both regions S2a and S2b enter their final

states, State2 is left for State1 through the completion
transition.

II. RELATED WORK

Since State Charts were first proposed by Harel [2] and
several approaches to formalize their semantics were made
(see, for example, [3], [4], [5], and the comparisons in [6]
and [7]), much effort was dedicated to automatic generation
of executable models from them or similar representations,
which lead to several commercial products such as MATLAB
Stateflow and IBM Rational Statemate. Other approaches are
available that generate models for formal verification [8], [9]
and, most related to our approach, in hardware description
languages [10], [11] and SystemC [12], [13], [14].

In contrast the the approaches presented in [10] and [11],
our approach generates synthesizable VHDL code (i. e. on
the register transfer level) instead of behavioral code which
requires an additional manual refinement step before being
implementable in hardware.

The SystemC modeling style presented in this paper is
similar to the approach presented in [13] but focuses on a more
computationally efficient implementation: Our implementation
requires only a single SC_METHOD for any State Chart,
regardless of its hierarchy or number of parallel regions. This,



as mentioned in [15], reduces the amount of context switches
and therefore improves the simulation performance.

III. SEMANTICS

As mentioned before, State Charts were first proposed by
Harel [2] in a rather informal manner. Since then, several
approaches with different semantics were developed, most
notably the semantics for Statemate [3], Rhapsody [4], and
UML [5]. Since there are many unobvious corner cases to be
considered and our approach, in some cases, deviates from the
conventional semantics, this section describes the semantics
based on important distinctions previously identified in [6]
and [7].

a) Perfect Synchrony Hypothesis: The perfect synchrony
hypothesis asserts that the output for a given input event is
computed instantaneously and therefore occurs at the same
time as the input. This implies the zero-time assumption,
which states that transitions always complete in zero time [7].

The State Chart variant supported in our approach does
not allow arbitrary trigger events: All transitions are either
directly or indirectly4 triggered by a clock edge. Therefore,
using the slightly relaxed definition that the perfect synchrony
hypothesis also holds if all events are processed before the next
input event (i. e. clock edge) occurs [6], which is obviously
the fact in a synchronous system, the hypothesis holds in our
approach. Using the same definition, the zero-time assumption
holds in our approach, too.

Additionally, since all transitions are implicitly triggered by
an event on the clock input, there is no need for a distinction
between internal and external events or for support for the
conjunction, disjunction or negation of events.

b) Simultaneous Events: Classical State Charts allow
handling simultaneous events (i. e. events that occur at the
same time) simultaneously, while the UML semantics queue
the events and handle them one after the other [7]. Since,
in our variant, there is only one single input event source,
however, there is no need to allow simultaneous events.
For the same reasons, negated trigger events, which are
needed to determinize otherwise nondeterministic transitions
and handling of inconsistencies between a transition’s effect
and its cause are not necessary. Additionally, the distinction
between preemptive and non-preemptive interrupts is reduced
to defining priorities between different enabled transitions [6],
which will be discussed below.

c) Causality: Our approach respects causality in the
sense that the State Chart cannot create events that trigger
itself. This is trivially true since the only input event supported
is derived the State Chart’s clock.

d) Inter-Level Transitions and State Reference: Both are
currently not supported in our approach. Nonetheless, since
our focus is on intuitive semantics rather than compositional
semantics, those features could easily be added.

4A completion event, which is needed to trigger a completion transition, is
indirectly triggered by the clock edge that caused the corresponding region
to move to its final state.

A

B

C

[b]

[a]

D

Fig. 2. Transition priorities: If both a and b evaluate to true, the State Chart
will move to State D, in accordance with classical State Charts.

e) Self-start and self-termination: Both are not supported
since, as mentioned before, the State Chart cannot create
events that trigger itself.

f) Instantaneous States: We do not allow instantaneous
states in our approach; this conforms to the UML standard and
is sensible for a cycle callable implementation: The minimum
time a State Chart can be in a given state is one cycle. This
implies that simple states cannot have outgoing completion
transitions: A simple state’s entry action is guaranteed to
execute in zero time, and therefore the completion transition
would need to be executed immediately after entering the
state [5], thus resulting in an instantaneous state. Therefore,
our approach does not support completion transitions starting
in simple states.

Since instantaneous states are not supported, more than
one transition can only fire at a single point of time if
all those transitions are in mutually orthogonal regions [6].
Therefore, parallel execution of transitions inside a single
region, transition refinement, and, obviously, multiple entered
or exited instantaneous states are not supported and an infinite
number of transitions at an instant of time cannot occur.

g) Determinism: The presented approach does not en-
force determinism. The code generator nondeterministically
chooses a prioritization between different transitions starting
from the same state. However, the formal verification pre-
sented later in this paper will detect nondeterministic behavior.

h) Priorities for Transition Execution: We adhere to the
semantics of classical State Charts regarding the priorities for
transition execution, i. e. a transition t1 : s1 → s′1 has priority
over any transition t2 : s2 → s′2 if s2 is a (direct or indirect)
substate of s1 [3]. Fig. 2 shows such an example: Since C
is a superstate of A, transitions originating in C have priority
over those originating in A; therefore, if the State Chart is in
state A and both guards (a and b) evaluate to true, the State
Chart will move to state D.

Note that this prioritization does not conform to the UML
standard, which defines that transitions originating from lower-
level states have priority. This decision is based on the fact
that, in hardware design, transitions originating from higher-
level states are usually used to abort a sequence of actions or a
calculation and should therefore not be blocked by lower-level



A

t2: [x != 0]

B

C D

t1: /x = 0;

/x = 1;

Fig. 3. Due to the variable semantics of internal storage, the execution of
transition t2 depends on the execution order.

transitions.
i) Timeout Events: Our approach supports a concept

similar to timeout events: A special guard can be added to a
transition to count the number of clock cycles the transition’s
source state was active and leave the state after a certain
amount of cycles has passed.

j) Signal Semantics: For performance reasons, our ap-
proach allows the usage of storage with signal semantics only
for inputs and outputs of the State Chart, and of storage with
variable semantics only inside the State Chart. Therefore, our
approach follows the UML specification [5] for the execution
of actions, which defines that the statements of an action are
executed sequentially. This is in contrast to the traditional State
Chart semantics [3], which define the statements of an action
to be executed in parallel.

On the other hand, this decision leads to the fact that transi-
tions contained in orthogonal regions may nondeterministically
influence each other: Consider, for example, the State Chart
in Fig. 3 being is in the states A and C. The execution order
of t1 and t2 is nondeterministic—if t2 is evaluated before t1,
it is not enabled. If, on the other hand, t1 is evaluated first, it
changes t2’s guard and therefore, when t2 is evaluated later, it
is enabled. Therefore, the designer is required to determinize
the behavior accordingly, for example with additional guards.

k) Fork and Join, History: While supporting parallel re-
gions, our approach does not support fork and join constructs.
Currently, history is not supported either.

l) Choice: In contrast to the UML standard, our approach
only supports static choice, dynamic choice is not supported.
Additionally, we do not support pseudostates, as initial states.

IV. IMPLEMENTATION

A. Design Entry

Usually, the motivation to use a code generator is to get
improved code quality due to consistency with the specifi-
cation and to reduce or in the best case avoid the effort of
manually writing the code. Still, a suitable tool for editing the
specification is required.

In our approach, we decided to use a conventional UML
editor for the design entry. The editor shall support model ex-
port via XMI, which can be processed by the generator. While
UML offers a variety of elements, our generator supports a

subset of those elements only: This includes simple states,
transitions, junctions, initial states and final states. Parallelism
shall be modeled using regions while composite states enable
the user to create hierarchy. Supported behavioral elements
include state entry and exit actions, transition guards and
effects, and time triggers. The syntax of the action language
used for behavioral elements is based on C but adds features
such as time triggers.

As our generator will create synchronous code, we presume
that all transitions are implicitly triggered by the design’s
clock. As mentioned before, there is one exception from
this rule: Completion transitions are triggered when the child
state machines have reached their final state. Non-completion
transitions are capable of interrupting the child state machine
at any time.

B. Code Generation

The main constraint for the code generator presented in our
approach is the fact that the generated SystemC and VHDL
code shall be consistent. While this consistency could be
checked via cosimulation of both models, ensuring consistent
code generation will save costs and resources needed for this
check. While developing the concept for the code generator,
several topics have been identified as issue with impact on
code consistency and will be discussed below:
• different namespace concepts
• different semantics of bitfield interfaces
• different modeling styles in VHDL and SystemC
Both SystemC and VHDL generator use namespaces to

partition the State Chart into distinct units for each hierarchy
level and thereby avoid name clashes. Alternatively, name
resolution is possible via using distinct names for each object.
Nevertheless, in our approach we use namespaces, since the
generated code is structured in a modular way and is easier to
read and to understand.

In SystemC, each level of a state machine is implemented
in its own SytemC class. Hierarchy is achieved by defining
nested classes and instantiating objects of these classes within
the context of the upper level state machine class. Due to
leveraging C++ class scope mechanism, name clashes are
avoided in a clean way.

In contrast to SystemC, classes are not supported in VHDL
and therefore a different concept is needed. Nevertheless,
VHDL offers packages to pack various objects like types, con-
stants, and procedures into one common scope. Thus packages
have been leveraged to implement the state machines; each
level of a state machine is placed into a single packages includ-
ing the relevant state record and the procedures implementing
the State Charts functionality. To model hierarchy, references
to the state records of child state machines are included into
the state record of the parent state machine.

In SystemC, the State Chart is modeled in a single process
model, whereas the VHDL implementation utilizes a conven-
tional two-process model. The SystemC implementation is
optimized for execution speed and therefore shall trigger as
few context switches as possible, which can be achieved by



reducing the State Chart to one single process. Connectivity to
the outside world (i.e. external bitfields, hardware signals) is
achieved via SystemC ports. In the SystemC implementation,
external bitfields are plain SystemC signals and therefore
update their value one delta cycle after the state machine
assigned the new value.

On the contrary, in the VHDL implementation external
bitfields are modeled with flipflops, therefore requiring data
and enable signals. These signals may not be registered,
otherwise the external bitfields will get their new value one
cycle after the bitfields in the state machine. Thus the VHDL
implementation uses a two-process model (combinatorial and
sequential process), where the combinatorial process drives the
asynchronous signals and the sequential process implements
the internal state.

C. Evaluation Cycle

To implement the State Chart, we generate either SystemC
or VHDL code that evaluates the current state and inputs
on every clock cycle. Due to the support for hierarchy, the
patterns for the generated code are indirectly recursive: The
code implementing a composite state will contain a copy of the
code implementing a region for every region in the composite
state. Similarly, the code implementing a region will, if the
region contains another composite state, include a copy of the
code implementing that composite state.

Fig. 4 presents the rather straight-forward way used to
implement composite states in our approach: The composite
state’s code evaluates its contained regions, and returns the
information whether all of them have entered a final state to its
containing region to indicate whether a completion transition
leaving this state is enabled.

evaluate all contained 

regions

return RUNNINGreturn DONE

all sub-SCs done?

[no][yes]

Fig. 4. Evaluation cycle for composite states.

Fig. 5, on the other hand, shows the more involved imple-
mentation of regions. When the region is evaluated, it first
checks if it had already reached a final state; this is needed to
synchronize several regions in one composite state: Regions
running in parallel might finish at different points in time,
requiring the faster ones to wait for the slower ones to finish.
In this case, the faster region simply stops its evaluation
immediately and returns DONE.

The code implementing the region is passed a parameter
force_exit that determines if region is to be left, which
would, for example, be the case if the composite state con-
taining the region is left. In this case, all currently active

contained composite states are evaluated with force_exit
set to true, which means that only their respective exit actions
are executed.

The phase “evaluate local transitions” checks whether any
local transitions inside the current region are enabled (i. e. have
a guard that evaluates to true). If more than one transition is
enabled here, the transition that is executed depends on the
order in which the transitions are checked and is therefore
chosen nondeterministically5. If the State Chart contains active
composite states, they are evaluated next (starting in the
evaluation cycle for composite states, therefore making the
evaluation cycle indirectly recursive). Note that local transi-
tions are checked before completion transitions, and, therefore,
have a higher priority.

If, after evaluating the local transitions and the com-
pletion transitions, no enabled transition was found and
force_exit is false, the region returns RUNNING to in-
dicate to its caller that it still running; otherwise, the current
state’s exit action is executed. If the region stays active, it will
execute the transition, including its effect.

Should the transition lead to a final state, the region returns
DONE to indicate that it finished processing and the containing
composite state might be able to execute a completion tran-
sition. If, on the other hand, the transition leads to a normal
state, the state is reset (which, for a composite state, includes
setting its current state to its initial state) and, finally, the new
state’s enter action is executed.

V. ENSURING CONSISTENCY

As the goal of our generation approach is to automati-
cally generate consistent design implementations in different
design languages, a methodology to ensure consistency was
developed. In Fig. 6, the framework for checking consistency
is shown. Note that the methods presented here are checks
to increase the confidence in the generator: As soon as the
generator has matured enough, the generated models could
also be assumed to be correct by construction.

A common way to check consistency between two different
models is to run a cosimulation. Both models are instantiated
in one common testbench, their inputs are fed with identical
input symbols and the output symbols are compared. By
leveraging constrained-random techniques, the ability to detect
mismatches in corner cases is improved and coverage is
increased.

Nevertheless, the result of a cosimulation is only valid if
one of the models can be assumed to be correct, i. e. to be the
golden model. This means, that for one model another check
against the specification needs to take place. One way to verify
a model against a specification is property checking. Design
properties, derived from the design specification are verified
by means of formal tools. Moreover, these properties could
also be reused for simulation-based verification.

In our case, the generator is capable of transforming the
specification into SystemVerilog assertions. Currently, each

5As mentioned before, formal verification based on generated assertions
will be able to identify such cases.



evaluate local transitions

evaluate active 

composite states

force exit?

force_exit or local

transition active?

active transition or

force exit?

return RUNNING

execute exit action

force exit?

return DONE

execute transition

reset next state

reached final state?

return DONE

execute enter action

return RUNNING

reached final state?

return DONE

evaluate completion 

transitions

contains composite

states?

[yes]

[yes]

[no]

[no]

[yes]

[no]

[no]

[no]

[no]

[no]
[yes]

[yes]

[yes]

[yes]

Fig. 5. Evaluation cycle for regions.

UML Model

SC Model

VHDL Model

Properties

VP 

simulation

cosimulation

formal 

checks

«improvement»

Fig. 6. A framework to ensure consistency of generated models.

state s in the model is taken into account, and for every
outgoing transition s

[g]−→ s′ of the state a property

(s ∈ Configuration) ∧ g |=> (s′ ∈ Configuration)

is created. Additional properties, especially concerning the
output behavior of the State Chart (i. e., checking exit and entry
actions as well as transitions’ effects) as well as special cases
such as variable accesses and time-triggered transitions will
be included in future versions of the generator. The resulting
set of properties is used to formally prove the correct state
transitions in the VHDL model. As stated before, the SVAs
can also be used for functional verification. Moreover, if they
are generated in an assertion language for SystemC (as, e. g.,
presented in [16]), they can also be used in the SystemC virtual
prototype simulation.

Additionally, the generator is able to create a common
SystemC testbench, prepared to be run with either the OSCI
reference simulator or a HDL simulator capable of mixed-
language simulation. As the VHDL model is proven formally,
it acts as the golden model in this cosimulation to ensure the
consistency of the SystemC model.

VI. RESULTS

During pilot testing of the methodology, we noted a major
impact on design productivity of the design team. Taking into
account, that a manual implementation requires

1) knowledge transfer between concept engineering and
design teams,

2) implementation of the State Chart in HDL, and
3) verification to detect implementation bugs and/or misin-

terpretation of design intent,
an automatic generation flow offers a high potential to decrease
the pressure of tight project plans on the design teams.
According to feedback from designers a productivity gain of
up to one man week for an average State Chart (of course
depending on the State Chart’s complexity) can be achieved
by rendering VHDL implementation automatically rather than
manually writing it.

The methodology has been applied to three different State
Charts:
• a small test design (proof of concept),
• a minor industrial example (industrial example #1), and
• an average industrial example (industrial example #2).
For each of those examples, the SystemC and VHDL

implementations as well as the SystemVerilog assertions were
generated.

For each of the generated properties the formal tool used re-
ported a runtime between 0.05 sec and 0.10 sec. Nevertheless,
the overall runtime for the formal checks includes preparation
steps as well (e.g. memory allocation). Therefore we measured
the total runtime using the TCL command “time”. The checks
have been run with the first two State Charts, but could not be
run with the average industrial example since not all features of
the State Charts are currently supported by the SVA generator.
Table I shows the results of the performance measurements.



The two small examples with 10 properties each, have an
average runtime of 5.26 seconds. We assume the methodology
to scale linearly with the number of properties, which would
lead to an estimated runtime of around 28.40 seconds for
industrial example #2. While runtime of formal tools usually
increases exponentially with design complexity, the very short
runtimes given in Table I indicate that also more complex
examples should be verifiable with the given approach.

TABLE I
RUNTIME PERFORMANCE OF FORMAL CHECKS

SC # of properties runtime (sec.)
proof of concept (POC) 10 5.62

industrial example #1 (IE1) 10 4.90
industrial example #2 (IE2) 54 28.40 6

With regard to consistency, especially a comparison of
the simulation runtime of the different modeling styles is
of interest. Table II shows the results from the runtime
measurements. First, the runtime of the simulation using the
OSCI simulator (tSC@OSCI) and the HDL simulator (tSC@HDL)
has been measured. Second, the simulation runtime of the
same testbench instantiating the VHDL model using a HDL
simulator has been measured (tVHDL@HDL). The speed-up factor
is defined to be S = tVHDL@HDL

tSC@OSCI
. It can be seen from the

table, that, depending on the application, the SystemC imple-
mentation leads to a small speed-up compared to the VHDL
implementation. Additionally, it allows the usage of the freely
available OSCI simulator, which showed the best simulation
performance in our tests. Moreover, the SystemC model can
also be reused in high-complexity system simulations, where
the performance of the HDL simulator is expected to drop
further.

TABLE II
SIMULATION PERFORMANCE

SC tSC@OSCI tSC@HDL tVHDL@HDL speed-up(sec.) (sec.) (sec.)
POC 0.25 0.739 0.569 2.27
IE1 0.40 0.490 0.550 1.38
IE2 0.46 0.590 1.53 3.33

It is noteworthy that the second presented industrial example
(IE2) is already silicon proven in a 2G/3G transceiver and will
also be included in an upcoming LTE transceiver.

VII. CONCLUSION

This paper presented an approach to generate both cycle
callable SystemC and register transfer level VHDL code from
a graphical specification given as a State Chart. Differences
in the generated models’ respective use cases are identified
and addressed: The SystemC model uses a single-process
modeling style to improve the simulation speed for virtual
prototyping over existing solutions while the VHDL model
uses a conventional two-process modeling style comprising a
combinatorial and a sequential process to improve the resource
usage for RTL synthesis. While their implementation differs,

6Estimated, refer to text.

both models behave consistently. Models generated with the
presented approach are already silicon proven.

As the set of generated SystemVerilog assertions is not yet
complete, the generator will be extended to create a complete
set of properties. Further work will also include aligning a
transaction-level modeling style, e. g. as presented in [15],
to the cycle callable modeling style presented in this paper
to facilitate a semi-automatic refinement from the transaction
level to the register transfer level. Moreover, it is planned to
introduce a sequence generator derived from the UML model,
which allows to stimulate all possible transition paths through
the State Chart model in a controlled manner.

Finally, it is noteworthy that due to the standardization of
State Charts and their XML representation, the generator is
independent of the State Chart input tool, avoiding vendor
lock-in and ensuring future support for the given approach.
Also, the presented approach is based on a clearly defined meta
model and therefore readily extensible to other code generation
applications, such as Verilog, SystemVerilog, or even firmware
in C/C++.

REFERENCES

[1] N. Bombieri, G. Di Guglielmo, L. Di Guglielmo, M. Ferrari, F. Fummi,
G. Pravadelli, F. Stefanni, and A. Venturelli, “HIFSuite: Tools for HDL
code conversion and manipulation,” in Proc. of HLDVT 2010, Jun. 2010,
pp. 40–41.

[2] D. Harel, “Statecharts: a Visual Formalism for Complex Systems,”
Science of Computer Programming, vol. 8, pp. 231–274, 1987.

[3] D. Harel and A. Naamad, “The STATEMATE semantics of statecharts,”
ACM transactions on software engineering and, vol. 5, pp. 293–333,
1996.

[4] D. Harel and H. Kugler, “The RHAPSODY Semantics of Statecharts
(or, On the Executable Core of the UML),” in Integration of Software
Specification Techniques for Application in Engineering, ser. Lect. Notes
in Comp. Sci., vol. 3147. Springer-Verlag, 2004, pp. 325–354.

[5] OMG Unified Modeling Language: Superstructure, Version 2.2. Object
Management Group, 2009.

[6] M. Von Der Beeck, “A comparison of statecharts variants,” Lecture
Notes in Computer Science, pp. 1–25, 1994.

[7] M. L. Crane and J. Dingel, “UML vs. classical vs. rhapsody statecharts:
not all models are created equal,” Software & Systems Modeling, vol. 6,
pp. 415–435, January 2007.

[8] E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann, “Implementing
statecharts in PROMELA/SPIN,” pp. 90–101, 1998.

[9] D. Latella, I. Majzik, and M. Massink, “Automatic Verification of
a Behavioural Subset of UML Statechart Diagrams Using the SPIN
Model-checker,” Formal Aspects of Computing, vol. 11, pp. 637–664,
December 1999.

[10] S. Qin and W.-N. Chin, Mapping Statecharts to Verilog for Hardware/-
Software Co-specification, 2003, pp. 282–300.

[11] V.-A. V. Tran, S. Qin, and W. N. Chin, “An Automatic Mapping from
Statecharts to Verilog,” Theoretical Aspects of Computing - ICTAC 2004,
pp. 187–203, 2005.

[12] M. Mura, M. Paolieri, L. Negri, and M. G. Sami, “StateCharts to
systemc: a high level hardware simulation approach,” Proceedings of
the 17th ACM Great Lakes symposium, pp. 505–508, 2007.

[13] M. Mura and M. Paolieri, “SC2 StateCharts to SystemC: Automatic
Executable Models Generation,” in Embedded Systems Specification and
Design Languages, 2008, pp. 227–239.

[14] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio, “A model-driven
design environment for embedded systems.” San Francisco, CA, USA:
ACM, 2006, Conference proceedings (article), pp. 915–918.

[15] R. Findenig, T. Leitner, M. Velten, and W. Ecker, “Transaction-level
State Charts in UML and SystemC with zero-time evaluation,” in
Proceedings of DVCon 2010, February 2010, pp. 13–19.

[16] V. Esen, “A new assertion language covering multiple levels of abstrac-
tion,” Ph.D. dissertation, Technische Universität München, 2008.


