
CONNECTING THE DOTS: APPLICATION OF

FORMAL VERIFICATION FOR SOC CONNECTIVITY

Bin Ju, Staff Application Engineer,

Cadence Design Systems, Inc.

binju@cadence.com

Abstract— There are several aspects of SoC

connectivity which are difficult to exhaustively

test through functional simulations. In the past,

we would test some arbitrarily chosen subset of

such connections using the Verilog force/observe

methodology. Formal verification provides a

much more scalable solution, finding many more

connectivity issues earlier in the process, with

fewer verification resources. Formal is also

inherently exhaustive, thus addressing the

quality of testing.

This paper will describe in detail the process

to apply formal analysis to SoC connectivity

verification. As well as showing the methodology

and technology that achieves the main benefit of

scalability, we will highlight some of the specific

bugs found. Finally, we will discuss limitations to

the current connectivity verification process,

including the current spreadsheet-based

connectivity specification method, and highlight

improvements to be made.

The paper provides an accurate account of

real work carried out by a specific customer

supported by the Author, during 2013.

Unfortunately, the customer cannot be named.

Keywords— assertions; formal verification;

SoC connectivity

I. INTRODUCTION

Each generation of SoC design is more complex
than the one before. For a number of design
generations, our customer has needed to integrate IP
blocks from both third-party suppliers and in-house
design at the chip-level. Sometimes these IP blocks
connect directly to other blocks or to the
interconnect fabric via standardized interface

protocols. In other cases the IP block connections
need glue logic. There is always some glue logic
between block interfaces and the I/O pad ring.
Blocks from different design groups often have
different assumptions on the interfaces.

All of these connections need thorough
verification. Protocol-based interfaces lend
themselves more naturally to functional test. Other
interfaces are more structural, with no specific
timing, but signal connection paths are not
necessarily straightforward, with many multiplexers
and other components at the top level. Verifying
such connections using simulation-based directed
testing is time-consuming and inefficient. For each
such connection to be tested, verification engineers
had to write testbench code incrementally to add the
force and observe points. As a result such testing
was done very late in the project and often such
bugs had to be fixed via ECOs. In addition, the
exhaustiveness of this approach was always in
question and subject to human error and
interpretation. Our customer has found that this kind
of testing is better suited to formal connectivity
checking, using a spreadsheet-based chip-level
connectivity specification.

II. MOTIVATION

Top-level connectivity relies on certain late-
arriving information, including programming for
both functional operation and test modes. Often, in
our customer’s design schedules, this information is
only complete two months or so before scheduled
tapeout, so there is enormous time pressure to
complete verification and achieve RTL freeze. After
RTL freeze, any bugs found are subject to a closely-
controlled ECO flow and are highly visible to
management. Hence it is critical that top-level
connectivity verification is not only completed
quickly, but is also rigorous.

Top-level connectivity is much more complex
than engineers who may not have had the pleasure
of verifying it might assume. In our customer’s
typical designs, there are many miscellaneous
memory port connections for DFT purposes, and test
bus multiplexing. Depending on programming, test
signals can be routed differently, connecting to top
level I/O pads or memory.

Muxes are also widely used between blocks from
different teams, for example the configuration buses
between baseband and radio.

Figure1: Typical Signal Multiplexing for 32-bit

SoC Port

For example, Figure 1 shows a 32-bit output
interface. Multiplexers are configured in a 32-wide
gang and can select one of up to 256 bits each, for
each bit of the 32-bit interface.

Additionally, test signals and sequences change
between one design and the next. As much as 50%
change from one project to the next project is
common. So our customer needed a verification

solution that made it easy to reuse across projects,
and also to easily manage the changing connectivity
specifications.

III. PREVIOUS CONNECTIVITY

VERIFICATION METHODS

Before adopting formal methods, the previous
verification approach was to create directed tests
that would test some arbitrarily chosen subset of
such connections using the Verilog force/observe
methodology. For each such connection to be tested,
verification engineers had to write testbench code
incrementally to add the force and observe points,
forcing a value at one end of the signal path, and
observing at other.

This customer’s previous projects had between
10 and 15 different directed test types. Building the
test environment was tedious, taking between 2-3
months – almost one week per test type.
Additionally, the force / observe tests were not
exhaustive, especially for the degree of signal path
complexity illustrated in Figure 1. Furthermore, the
existing methods were not reusable from project to
project, considering the test bus signals and
sequence changes we already described.

As a result such testing was done very late in the
project and bugs found had to be fixed via the
highly-visible ECO process. More often than not,
projects would have a bug needing ECO. In
addition, the exhaustiveness of this approach was
always in question and subject to human error and
interpretation.

One possible improvement our customer
considered was to manually create assertions at the
interfaces. An obvious downside to this approach is
the need for verification engineers to code
assertions. Also it would not fully address the need
for reuse across changing connectivity
specifications. However, while the verification
engineers could do this, another problem is that the
designers must also sign-off on connectivity
specification and verification. In our customer’s
experience, the designers are not as familiar with
using assertions as the verification engineers.

A connectivity specification approach based on a
spreadsheet would be easier, and more
understandable by other teams. As a baseline
improvement, the spreadsheet would be an effective

master documentation of the changing connectivity
specification, enabling clearer communication
between verification and design engineers, which in
itself would eradicate many connectivity issues.
Furthermore, if verification could be automated
from the same specification, the benefits would be
enormous.

IV. FORMAL VERIFICATION FLOW FOR

CONNECTIVITY

Such a spreadsheet-based connectivity
specification method, with automated assertion
creation to check the specified connectivity, is
nowadays available with commercially available
formal verification tools. The case study we describe
here used Incisive® Formal Verifier (IFV) from
Cadence® Design Systems, Inc. The connectivity
verification flow is illustrated in Figure 2.

Figure 2: Formal Connectivity Verification Flow

Steps to check connectivity were:

1. The connectivity information was captured in
a spreadsheet. See Appendix 1 for an
illustration of a typical connectivity
spreadsheet. Template and example
spreadsheets are provided with the tool. The
key fields the designer must complete in the
spreadsheet are as follows:

a. Complete a configuration table: the table
is illustrated in Figure 3. The designer
sets the assertion language (SVA, PSL or
TCL); the design language (Verilog or
VHDL); file names; and default
parameters for clock, reset, delay and
toggle covers. Note that for the assertion

language selection, we use TCL as the
default. This speeds up connectivity
specification update iterations, as
changes to the connectivity specification
do not require recompilation. PSA and
SVA have the advantage that the
generated assertions can also be used in
simulation if desired.

Figure 3: Configuration Table

b. Complete the pad setup table: The I/O

pads are specified in a simple table, as
illustrated in Figure 4. This information
is used to verify there are correct number
of rows in the spreadsheet depending on
the number of ports associated to the pad
that need to be checked. If the number of
rows is less than expected, an error
issued.

Figure 4: Pad Setup Table

c. Complete the connectivity rows: Next,

the source, destination and all
intermediate points for Pad-IP and IP-IP
connections are specified. The capability
to define aliases is useful to minimize
repetitive typing of signal names.
Connections can be point-to-point,
multipoint, multiplexed, or pipelined,
with fixed or variable latencies. Figure 5
illustrates a typical connectivity
definition table for both muxed and non-
muxed types.

Figure 5: Connectivity Definition Table

2. The Microsoft Excel file created in step 1 was
exported as a .csv file.

3. The connectivity information present in the
.csv file was converted to a set of assertions
by IFV automatically. The types of checks
and the code generated are determined by the
connectivity specification described in step 1
and there is nothing further the designer
needs to do to specify or create the checks.

Some examples are given below, to illustrate
the relationship between the specification and
the generated code, in this case in the tcl
language:

a. Basic connectivity with reset

Figure 6 shows a simple connection with
reset definition, which gives the abort
construct.

Figure 6: Connectivity Assertion with reset

Figure 7: Muxed Connectivity Assertions

b. Muxed connectivity

See Figure 7 above. Note how the select
expression is defined.

c. Pipelined connectivity

See Figure 8 below. Note the clock
expression and cycle latency definition.

Figure 8: Pipelined Connectivity Assertions

4. A list of modules to black box was manually

created. Since we are only interested in
verifying top level connectivity black-boxing
removed irrelevant design logic. The IFV tool
now has the ability to freely drive the
connectivity endpoints. Benefits are
exhaustive connectivity verification and high
performance by removing logic irrelevant to
verifying the top level connectivity.

5. The IFV tool was run to execute the
assertions to verify connections. The tool can
be invoked to run through the above-
mentioned steps individually, or steps 3, 4
and 5 can be combined in a single invocation
command as follows:

%irun –ifv –connectivity <specfile> -f

ifv_top.f -bb_list <bb_file> –input

top.tcl

6. Any connectivity failures encountered were
debugged using a schematic tracer. The
schematic tracer provides cross-probing with
the results log and source code views, and is
illustrated in Figure 9.

V. RESULTS

The formal connectivity verification flow proved
very easy to setup and use, and highly reusable.
From project to project, our customer proved that

Figure 9: Schematic Debug

they can just update the changes in the spreadsheet,
and automatically create the new project’s
connectivity verification environment. Exhaustive
verification could be achieved with only 0.5-1 full-
time equivalent verification engineers per project.
There was minimal set-up, consisting only of the
creation of the .csv file. Normally no constraints
required, clock definition is only required for
pipelined connections and is configured in the
spreadsheet as described earlier. No other
constraints or mode setup is required, except as
defined in the spreadsheet. We are only concerned
with verifying connectivity. No counter-examples
tend to be generated for connectivity tests, as one
might think would be a result of this loosely-
constrained environment. The black-box list is one
area that does need careful attention. Black-boxing
removes the functional logic so the formal tool is not
presented with unnecessary complexity and has
access to signals at their endpoints. Initially, it took
about 1 day to prepare the first test case, and then

our customer was able to progress at a rate of a few
test cases per day. For the 15 test cases, they were
all done in less than 1 month.

The application of formal connectivity
verification method in this case study also showed
that verification was more exhaustive. An example
of a real connectivity bug that our customer was able
to find involved two blocks connected together.
Block A’s clock was supposed to be connected to
clock A, but instead it was connected to clock B. In
normal operation, this did not matter since the
clocks were identical. However, there was a special
case when one clock was off that was not covered.
Formal verification caught this, and the directed
tests did not.

It is still early days for application of this formal
verification method at this customer, but in the
projects completed so far no connectivity bugs have
escaped connectivity tests, needing to be fixed with
the ECO process, since the adoption of the formal
flow.

In terms of limitations to the current formal
connectivity verification process, our customer
made some suggestions for improvements that could
be made to improve the spreadsheet specification
stage. These changes would enable easier
documentation of the connectivity specification
earlier in the flow. There was also a suggestion to
improve the debug capabilities to save time to close
on reasons for failures. Many of the failures
experienced were due to errors in the manual black
box list. These seemed to occur on larger designs.
The tool could be improved to add better debug
information to help trace the problems caused by an
incorrect black-box list to the right design module.

Once the black box list was correct, we found
that connectivity verification was not as demanding
on compute resources as many other applications of
formal analysis. It was also usual for the assertions
created for connectivity verification to attain a
definitive pass or fail result in a reasonable time –
usually seconds or minutes – even the with the
complex wide multiplexed connectivity illustrated in
Figure 1. With the number of assertions generated
typically in the low thousands for designs of the
complexity verified by our customer, and small
state-depths, total execution times were much better
than simulation. Pipelined connectivity with high

latency can result in higher state depths that increase
execution time, but this was not an issue in this case.

VI. CONCLUSIONS

The formal verification flow has reduced the time
for connectivity verification down to one month,
compared with 3 months previously, for this
customer’s typical SoCs. This represents a 3X
productivity improvement and two months reduced
design time at a critical phase of the design flow.
Additionally and probably more importantly, the
flow has proven to be exhaustive, with no

connectivity bugs escaping beyond RTL freeze and
invoking the ECO process.

REFERENCES

[1] Verification Apps User Guide, Product Version

13.1, Cadence Design Systems Inc., 2013

© 2014 Cadence Design Systems, Inc. All rights

reserved worldwide. Cadence, and Incisive are

registered trademarks of Cadence Design Systems, Inc.

in the United States and other countries. All other

trademarks are the property of their respective owners.

APPENDIX 1: CONNECTIVITY SPECIFICATION IN SPREADSHEET FORM

