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Abstract— There are several aspects of SoC 

connectivity which are difficult to exhaustively 

test through functional simulations. In the past, 

we would test some arbitrarily chosen subset of 

such connections using the Verilog force/observe 

methodology. Formal verification provides a 

much more scalable solution, finding many more 

connectivity issues earlier in the process, with 

fewer verification resources. Formal is also 

inherently exhaustive, thus addressing the 

quality of testing.  

This paper will describe in detail the process 

to apply formal analysis to SoC connectivity 

verification. As well as showing the methodology 

and technology that achieves the main benefit of 

scalability, we will highlight some of the specific 

bugs found. Finally, we will discuss limitations to 

the current connectivity verification process, 

including the current spreadsheet-based 

connectivity specification method, and highlight 

improvements to be made. 

The paper provides an accurate account of 

real work carried out by a specific customer 

supported by the Author, during 2013. 

Unfortunately, the customer cannot be named. 
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I. INTRODUCTION 

Each generation of SoC design is more complex 
than the one before. For a number of design 
generations, our customer has needed to integrate IP 
blocks from both third-party suppliers and in-house 
design at the chip-level. Sometimes these IP blocks 
connect directly to other blocks or to the 
interconnect fabric via standardized interface 

protocols. In other cases the IP block connections 
need glue logic. There is always some glue logic 
between block interfaces and the I/O pad ring. 
Blocks from different design groups often have 
different assumptions on the interfaces.  

All of these connections need thorough 
verification. Protocol-based interfaces lend 
themselves more naturally to functional test. Other 
interfaces are more structural, with no specific 
timing, but signal connection paths are not 
necessarily straightforward, with many multiplexers 
and other components at the top level. Verifying 
such connections using simulation-based directed 
testing is time-consuming and inefficient. For each 
such connection to be tested, verification engineers 
had to write testbench code incrementally to add the 
force and observe points. As a result such testing 
was done very late in the project and often such 
bugs had to be fixed via ECOs. In addition, the 
exhaustiveness of this approach was always in 
question and subject to human error and 
interpretation. Our customer has found that this kind 
of testing is better suited to formal connectivity 
checking, using a spreadsheet-based chip-level 
connectivity specification. 

II. MOTIVATION 

Top-level connectivity relies on certain late-
arriving information, including programming for 
both functional operation and test modes. Often, in 
our customer’s design schedules, this information is 
only complete two months or so before scheduled 
tapeout, so there is enormous time pressure to 
complete verification and achieve RTL freeze. After 
RTL freeze, any bugs found are subject to a closely-
controlled ECO flow and are highly visible to 
management. Hence it is critical that top-level 
connectivity verification is not only completed 
quickly, but is also rigorous. 



Top-level connectivity is much more complex 
than engineers who may not have had the pleasure 
of verifying it might assume. In our customer’s 
typical designs, there are many miscellaneous 
memory port connections for DFT purposes, and test 
bus multiplexing. Depending on programming, test 
signals can be routed differently, connecting to top 
level I/O pads or memory.  

Muxes are also widely used between blocks from 
different teams, for example the configuration buses 
between baseband and radio. 

 
 

Figure1: Typical Signal Multiplexing for 32-bit 

SoC Port 
 

For example, Figure 1 shows a 32-bit output 
interface. Multiplexers are configured in a 32-wide 
gang and can select one of up to 256 bits each, for 
each bit of the 32-bit interface.  

Additionally, test signals and sequences change 
between one design and the next. As much as 50% 
change from one project to the next project is 
common. So our customer needed a verification 

solution that made it easy to reuse across projects, 
and also to easily manage the changing connectivity 
specifications. 

III. PREVIOUS CONNECTIVITY 

VERIFICATION METHODS 

Before adopting formal methods, the previous 
verification approach was to create directed tests 
that would test some arbitrarily chosen subset of 
such connections using the Verilog force/observe 
methodology. For each such connection to be tested, 
verification engineers had to write testbench code 
incrementally to add the force and observe points, 
forcing a value at one end of the signal path, and 
observing at other.  

This customer’s previous projects had between 
10 and 15 different directed test types. Building the 
test environment was tedious, taking between 2-3 
months – almost one week per test type. 
Additionally, the force / observe tests were not 
exhaustive, especially for the degree of signal path 
complexity illustrated in Figure 1. Furthermore, the 
existing methods were not reusable from project to 
project, considering the test bus signals and 
sequence changes we already described.  

As a result such testing was done very late in the 
project and bugs found had to be fixed via the 
highly-visible ECO process. More often than not, 
projects would have a bug needing ECO. In 
addition, the exhaustiveness of this approach was 
always in question and subject to human error and 
interpretation.  

One possible improvement our customer 
considered was to manually create assertions at the 
interfaces. An obvious downside to this approach is 
the need for verification engineers to code 
assertions. Also it would not fully address the need 
for reuse across changing connectivity 
specifications. However, while the verification 
engineers could do this, another problem is that the 
designers must also sign-off on connectivity 
specification and verification. In our customer’s 
experience, the designers are not as familiar with 
using assertions as the verification engineers. 

A connectivity specification approach based on a 
spreadsheet would be easier, and more 
understandable by other teams. As a baseline 
improvement, the spreadsheet would be an effective 



master documentation of the changing connectivity 
specification, enabling clearer communication 
between verification and design engineers, which in 
itself would eradicate many connectivity issues. 
Furthermore, if verification could be automated 
from the same specification, the benefits would be 
enormous. 

IV. FORMAL VERIFICATION FLOW FOR 

CONNECTIVITY 

Such a spreadsheet-based connectivity 
specification method, with automated assertion 
creation to check the specified connectivity, is 
nowadays available with commercially available 
formal verification tools. The case study we describe 
here used Incisive® Formal Verifier (IFV) from 
Cadence® Design Systems, Inc. The connectivity 
verification flow is illustrated in Figure 2. 

  
Figure 2: Formal Connectivity Verification Flow 

 
Steps to check connectivity were: 

1. The connectivity information was captured in 
a spreadsheet. See Appendix 1 for an 
illustration of a typical connectivity 
spreadsheet. Template and example 
spreadsheets are provided with the tool. The 
key fields the designer must complete in the 
spreadsheet are as follows: 

a. Complete a configuration table: the table 
is illustrated in Figure 3. The designer 
sets the assertion language (SVA, PSL or 
TCL); the design language (Verilog or 
VHDL); file names; and default 
parameters for clock, reset, delay and 
toggle covers. Note that for the assertion 

language selection, we use TCL as the 
default. This speeds up connectivity 
specification update iterations, as 
changes to the connectivity specification 
do not require recompilation.  PSA and 
SVA have the advantage that the 
generated assertions can also be used in 
simulation if desired. 

 

Figure 3: Configuration Table 

 
b. Complete the pad setup table: The I/O 

pads are specified in a simple table, as 
illustrated in Figure 4. This information 
is used to verify there are correct number 
of rows in the spreadsheet depending on 
the number of ports associated to the pad 
that need to be checked. If the number of 
rows is less than expected, an error 
issued. 

 

Figure 4: Pad Setup Table 

 
c. Complete the connectivity rows: Next, 

the source, destination and all 
intermediate points for Pad-IP and IP-IP 
connections are specified. The capability 
to define aliases is useful to minimize 
repetitive typing of signal names. 
Connections can be point-to-point, 
multipoint, multiplexed, or pipelined, 
with fixed or variable latencies. Figure 5 
illustrates a typical connectivity 
definition table for both muxed and non-
muxed types. 



 

Figure 5: Connectivity Definition Table 
 

2. The Microsoft Excel file created in step 1 was 
exported as a .csv file. 

3. The connectivity information present in the 
.csv file was converted to a set of assertions 
by IFV automatically. The types of checks 
and the code generated are determined by the 
connectivity specification described in step 1 
and there is nothing further the designer 
needs to do to specify or create the checks.  

Some examples are given below, to illustrate 
the relationship between the specification and 
the generated code, in this case in the tcl 
language: 

a. Basic connectivity with reset 

Figure 6 shows a simple connection with 
reset definition, which gives the abort 
construct.

 

Figure 6: Connectivity Assertion with reset 



 

Figure 7: Muxed Connectivity Assertions 
 

b. Muxed connectivity 

See Figure 7 above. Note how the select 
expression is defined. 

c. Pipelined connectivity 

See Figure 8 below. Note the clock 
expression and cycle latency definition. 

 

Figure 8: Pipelined Connectivity Assertions 

 
4. A list of modules to black box was manually 

created.  Since we are only interested in 
verifying top level connectivity black-boxing 
removed irrelevant design logic. The IFV tool 
now has the ability to freely drive the 
connectivity endpoints.  Benefits are 
exhaustive connectivity verification and high 
performance by removing logic irrelevant to 
verifying the top level connectivity. 

5. The IFV tool was run to execute the 
assertions to verify connections. The tool can 
be invoked to run through the above-
mentioned steps individually, or steps 3, 4 
and 5 can be combined in a single invocation 
command as follows: 

%irun –ifv –connectivity <specfile> -f 

ifv_top.f -bb_list <bb_file> –input 

top.tcl 



6. Any connectivity failures encountered were 
debugged using a schematic tracer. The 
schematic tracer provides cross-probing with 
the results log and source code views, and is 
illustrated in Figure 9. 

V. RESULTS 

The formal connectivity verification flow proved 
very easy to setup and use, and highly reusable. 
From project to project, our customer proved that  

 

Figure 9: Schematic Debug 

 
they can just update the changes in the spreadsheet, 
and automatically create the new project’s 
connectivity verification environment. Exhaustive 
verification could be achieved with only 0.5-1 full-
time equivalent verification engineers per project. 
There was minimal set-up, consisting only of the 
creation of the .csv file. Normally no constraints 
required, clock definition is only required for 
pipelined connections and is configured in the 
spreadsheet as described earlier. No other 
constraints or mode setup is required, except as 
defined in the spreadsheet.  We are only concerned 
with verifying connectivity. No counter-examples 
tend to be generated for connectivity tests, as one 
might think would be a result of this loosely-
constrained environment. The black-box list is one 
area that does need careful attention. Black-boxing 
removes the functional logic so the formal tool is not 
presented with unnecessary complexity and has 
access to signals at their endpoints. Initially, it took 
about 1 day to prepare the first test case, and then 

our customer was able to progress at a rate of a few 
test cases per day. For the 15 test cases, they were 
all done in less than 1 month. 

The application of formal connectivity 
verification method in this case study also showed 
that verification was more exhaustive. An example 
of a real connectivity bug that our customer was able 
to find involved two blocks connected together. 
Block A’s clock was supposed to be connected to 
clock A, but instead it was connected to clock B. In 
normal operation, this did not matter since the 
clocks were identical. However, there was a special 
case when one clock was off that was not covered. 
Formal verification caught this, and the directed 
tests did not. 

It is still early days for application of this formal 
verification method at this customer, but in the 
projects completed so far no connectivity bugs have 
escaped connectivity tests, needing to be fixed with 
the ECO process, since the adoption of the formal 
flow. 

In terms of limitations to the current formal 
connectivity verification process, our customer 
made some suggestions for improvements that could 
be made to improve the spreadsheet specification 
stage. These changes would enable easier 
documentation of the connectivity specification 
earlier in the flow. There was also a suggestion to 
improve the debug capabilities to save time to close 
on reasons for failures. Many of the failures 
experienced were due to errors in the manual black 
box list. These seemed to occur on larger designs. 
The tool could be improved to add better debug 
information to help trace the problems caused by an 
incorrect black-box list to the right design module. 

Once the black box list was correct, we found 
that connectivity verification was not as demanding 
on compute resources as many other applications of 
formal analysis. It was also usual for the assertions 
created for connectivity verification to attain a 
definitive pass or fail result in a reasonable time – 
usually seconds or minutes – even the with the 
complex wide multiplexed connectivity illustrated in 
Figure 1. With the number of assertions generated 
typically in the low thousands for designs of the 
complexity verified by our customer, and small 
state-depths, total execution times were much better 
than simulation. Pipelined connectivity with high 



latency can result in higher state depths that increase 
execution time, but this was not an issue in this case.  

VI. CONCLUSIONS 

The formal verification flow has reduced the time 
for connectivity verification down to one month, 
compared with 3 months previously, for this 
customer’s typical SoCs. This represents a 3X 
productivity improvement and two months reduced 
design time at a critical phase of the design flow. 
Additionally and probably more importantly, the 
flow has proven to be exhaustive, with no 

connectivity bugs escaping beyond RTL freeze and 
invoking the ECO process. 
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