
Configuring Your Resources the UVM Way!

Parag Goel,

Synopsys, India

91.80.40188000

paragg@synopsys.com

Amit Sharma,

Synopsys, India

+91.80.40188000

amits@synopsys.com

Rajiv Hasija,

LSI, India

+91.80.41977811

rajiv.hasija@lsi.com

ABSTRACT

With increasing complexity of semiconductor designs, and

with more and more IP blocks to be integrated in SoC's, there

is an increasing need of verifying their numerous

configurations. The large numbers of permutations through

which different functionalities can be enabled at any given

time require the verification environment to mimic the same.

The testbench configuration classes with different properties

are typically used in verification environments to model

these various aspects. The constraints across the various

properties ensure that the testbench can pick up valid

configurations.

Now, these configuration classes have to be available or

accessible across all the testbench components. This ensures

that all the components can independently configure

themselves based on the testbench topology and the relevant

DUT configuration that is currently being verified.

Additionally, the testbench components need to be able to

change the properties of the configuration classes

dynamically based on the DUT responses and also be able to

react to similar changes affected by the other components.

Efficient resource management is also vital in such complex

environments.

The reference implementation of the base classes as specified

in the Universal Verification Methodology (UVM) provides

a lot of relevant functionality to achieve some of these

requirements. To ensure that these capabilities are optimally

leveraged, the paper helps the reader achieve a deeper

understanding of the mechanism through which this

functionality is delivered. The different usage scenarios

demonstrated show how the desired benefits can be achieved

in the effective configuration and management of testbench

resources.

Categories and Subject Descriptors
Testbench Methodology, UVM, Testbench Configuration.

General Terms
Management, Performance, Verification, Design

Keywords
Testbench, Configuration, UVM, SystemVerilog

1. INTRODUCTION

Managing the testbench configuration is a challenge in

complex verification environments today. The different

power modes, performance optimizations, memory accesses

modes and their management, and other interrelated

functionality require different components in the verification

environment to be configured differently. Each component in

a verification environment would typically support different

capabilities which might not be required for a specific project

or a DUT configuration. Thus, different testbench

components could require information to be passed to it from

external sources. To encapsulate this information, there is a

need for a structured container, with appropriate constraints,

and values which are themselves configurable. This

container or class needs some knowledge of the circumstance

at hand so that it can alter its topology or behavior

accordingly.

Thus, dynamic testbench reconfiguration and modeling of

configurable scenarios are required to verify real world

scenarios for the complex chips. From a horizontal and

vertical reuse point of view, it is imperative that that the

components are made sufficiently configurable. The

specification of the base classes in the Universal Verification

Methodology (UVM) provides a convenient interface for

achieving some of these requirements. Leveraging the UVM

configuration mechanism, we will show how a resource

management infrastructure can be created which will make

all the components configurable by design. We would also

demonstrate the usage of the capabilities available to achieve

different verification requirements. Specific guidelines

would be highlighted so that optimal usage is achieved.

2. UVM Configuration Mechanism: A Feature

Description

From Figure 1, it can be seen that each component ideally

needs a „configuration‟ component to bring in the desired

„flexibility‟ or „reusability‟. The configuration of each

component needs to be changed based on the different

requirements. Depending on the configuration changes, the

components need to be Also, as the various configurations

are changed or applied across the testbench; individual

components have to be aware of all such changes.

Figure 1: Configuration Requirements in a Verification

Environment

For efficient synchronization and integration, a uniform

configuration should be propagated across the hierarchy.

Hence, as a general recommendation, the attributes that

control functional aspect of a verification component must be

encapsulated in a class wrapper. This class object can be

passed down to different components in the testbench

environment. The testbench configuration attributes which

decides on the topology and coarse testbench controls can

continue to be distributed across discrete elements.

Figure 2: A Typical Configuration Class

mailto:paragg@synopsys.com
mailto:amits@synopsys.com
mailto:rajiv.hasija@lsi.com

A typical example of a Configuration class is shown in

Figure 2. The constraints across the various properties ensure

that the valid combinations are generated when the class is

randomized. The Configuration class should be implemented

by extending the uvm_object or the uvm_sequence_item

base class. This object must be factory-enabled.

How do we ensure that this Configuration class can easily be

propagated across the testbench environment? In UVM,

objects are often instantiated through the factory

infrastructure. The factory infrastructure is responsible for

invoking the constructors and the user does not have the

possibility to modify constructor arguments. Hence, it is not

recommended to pass configuration objects in constructor

arguments. Thus, we need a capability through which

functions can put or retrieve configuration attributes and

objects from a central database dynamically.

UVM provides a facility called 'resources' which provides

the configuration infrastructure and API. It is comprised of

polymorphic resource containers, a database for storing those

resource containers and an infrastructure for locating

resources in the database. This infrastructure can then be

used to propagate configuration information to different

components. Each component retrieves a value from the

resource pool and uses the retrieved value to control its

behavior.

2.1 Understanding UVM Resources

The generic resource database provided by UVM is a low-

level database which has its own access classes and methods.

The Figure 3 represents the organization of the resource

database., The UVM Resources provides multiple APIs

which are distilled down to the user to access, retrieve, audit,

query, lock and set priority levels while interfacing with the

underlying database. For the user, UVM configuration

facility provides two separate API interface. These are the

uvm_resource_db and uvm_config_db. These two classes

interface between the UVM resource facility and the actual

user.

Figure 3: UVM BCL Organization of Resource Facility

The class uvm_resource_db#(T) is a convenience layer on

top of the low-level database. It can be used on its own and

different layers of type-specific specializations can be built

on top of it. A collection of static functions operate on the

resources and the resource pool. The uvm_config_db#(T)

class provides a layer on top of the uvm_resource_db#(T) to

enable the accesses in the hierarchical context. These classes

enable the users to retrieve different attributes and objects

with the appropriate look-up names. User can "set" a default

configuration object in the environment, "get" the

configuration object in the test and modify it, then "get" the

modified configuration object in the VIP or the block level

agents.

Users can retrieve a testbench attribute from the resource

database or dump an attribute into the database either by the

„type‟ or by „name‟ of the attribute. Given that both these

parameterized classes share the same underlying database, it

is possible to write to the database using

uvm_config_db::set() and retrieve from the database using

uvm_resource_db::read_by_name(). With respect to usage,

uvm_config_db is a type-specific UVM configuration

mechanism which creates a visibility of a resource over a

specified scope defined by the uvm_component hierarchy

whereas uvm_resource_db is mainly for general purpose

usage, which is used to set shared resource which can be

accessed anywhere in the testbench scope. A resource is set

through non-hierarchical context while for uvm_config_db, a

hierarchical uvm_component context is required. Hence, the

APIs provided by both these interfaces differ primarily in

ability to provide the hierarchical context as shown in Figure

4.

Figure 4: UVM Resource Access API’s

Also, there are distinct methods for the retrieval of a

configuration object or attribute in case of uvm_resource_db

by name or by type. These are:

uvm_resource_db#(type)::read_by_name(“scope”,

key, type_var, accessor);

uvm_resource_db#(type)::read_by_type(“scope”,

type_field, accessor);

The scope can be a regular expression in „set‟ only. In „get‟,

it must be an actual value.

Now, going back to the “Configuration” class, once it is

randomized, the test writer can use the uvm_config_db::set()

mechanism to assign the configuration object to one or more

environments within the testbench.

2.2. Basic Use Cases

2.2.1 ‘Getting’ and ‘Setting’ Configuration Attributes:

Using uvm_resource_db : The following will create a new

„resource‟, populate it and insert it into the resource pool.

uvm_resource_db#(int)::set(”top.env*,”A”,",12

34,this);

The above code snippet will create a new „resource‟ of type

int, assign a value of "1234" to it, and „set‟ it in the database

using the name “A”. This „resource‟ would be made visible

in the scopes identified by "top.env.*". This assumes there is

only one matching argument „A‟ in top*, which happens to

be top.env.A. The last argument is used for auditing.

The component that retrieves this resource would read the

value from the database.

if(!uvm_resource_db#（int)::read_by_name(get_

full_name(),”A”,value,this))

`uvm_error(get_full_name(),"The resource A

cannot be retrieved. It is not found in the

specified scope ");

Here, read_by_name() returns a bit that indicates whether or

not the lookup succeeded. It is always a good coding practice

to check the return value of uvm_config_db::get() or

uvm_resource_db::read_by_name(). An appropriate message

can be issued to report whether a retrieval was successful or

not. This can help avoid unnecessary debug cycles.

Using uvm_config_db:

class my_mon extends uvm_monitor;

 bit check_en;

 `uvm_object_utils(my_mon)

 . . .

 function void build_phase(uvm_phase

phase)

 uvm_config_db #(bit)::get(this, “”,

“check_en”, check_en)

 endfunction

endclass

The corresponding code snippet for setting the value of the

check_en attribute would be the following :

uvm_config_db #(bit)::set(this, “.*mon*”,

“check_en”, 1);

The above code ensures that the „setting‟ of the value

happens in the monitor instance path only. The

uvm_config_db #(bit)::get() call can be avoided if the field

automation macros are used in the UVM component instance

as shown below:

`uvm_field_int(check_en, UVM_PRINT|

UVM_COPY);

The uvm_component, which in this case is the Monitor class

should be instantiated in the component hierarchy and that

super.build_phase() or apply_config_settings() should be

called in the component's build_phase(). In this case, the

„get‟ call is implicitly invoked. However, the

recommendation is not to rely on the field automation

macros, and invoke an explicit uvm_config_db::get(). This

enables better type checking and traceability through the

issuing of a warning/error message on an unsuccessful get).

2.2.2 Propagating the Configuration Object Across

the Testbench Hierarchy

To set the configuration object across the hierarchy, see Figure 5.

Figure 5: Setting the Configuration Object Across Components

Here, irrespective of whether the field automation macros are

used or not, an explicit get() for the class object in the driver

class is required. This is because the data type of the

configuration class, drv_cfg, is strongly typed. A get() call

could be avoided if the configuration object passed was of

type uvm_object. In this case, an explicit cast has to be made

to the extended configuration class handle.

The precedence rules ensure that when multiple overrides or

„sets are applied, the one applied at the end succeeds. For a

testbench configuration class, it is always intended that

configurations „set‟ at the highest-level of testbench

hierarchy always override the configurations set from the

lower-level components.

The configuration object can also be propagated down to

classes which is not necessarily an uvm_component

extension as shown in Figure 6

Figure 6: Configuration Passing Across Component and Object

Hierarchy

Here, the important thing to note is that the „scope‟ is made

„null‟. Not doing the same will result in an error. This is

because the „set‟ is invoked the uvm_component scope and

the corresponding „get‟ in the uvm_object scope.

3. Addressing Verification Requirements Using

UVM Resources

Here, we look at the common verification challenges and see

how the UVM configuration mechanism help us address

some of them.

3.1 Propagating Virtual Interfaces

The Resource Database works with all SystemVerilog data

types. One ubiquitous requirement across all verification

environments is to have a mechanism which enables passing

the virtual interfaces easily across different verification

components. It is important to avoid using cross-module

references (XMRs) in environments as it makes it impossible

to put them in packages and thus compile them separately. It

also makes the environment inherently non-reusable.

Thus, a better approach is to "push" the virtual interface into

the Configuration Database from the top-level module. That

top-level module is specific to the environment used to verify

the DUT. It is thus perfectly acceptable to specify

environment-specific hierarchical names in that module.

Since the module is not an uvm_component, "null" is

specified as the context argument and the absolute

hierarchical name is specified for the agent where the virtual

interface is assigned. As the environment is usually

instantiated by the test, the absolute hierarchical name will

start with "uvm_test_top.".

Figure 7: Propagating Virtual Interfaces using UVM Resources

Agents should extract their virtual interfaces from the

Configuration Database entry named "vif" during

the build phase. A fatal error should be issued if no virtual

interface is retrieved. The agents are then responsible for

propagating that virtual interface to the drivers and monitors

it encapsulates.

.

Figure 8: Trickling the Interface to the Sub-Components

3.2 Configurability in Stimulus Generation and

Execution

There might be specific requirements when the sequence

item's constraints depend on the values in configuration

object. The Resource Database can be used in the sequences

as well. Though the UVM configuration mechanism is

designed around components, when a non-component object

needs to access specific attributes, this non-component object

must access the configuration field through a component

handle. In the case of sequences, „m_sequencer‟ is the handle

to the sequencer that is executing the sequence. It is a built-

in member of the uvm_sequence class. The configuration

object can be accessed through the „m_sequencer‟ handle as

shown in Figure 9.

Figure 9: Configurable Sequences

The „m_sequencer‟ handle is no longer required if global

configuration is desired. This can then be achieved through

uvm_resource_db.

uvm_resource_db#(int)::read_by_name("SEQ_CNTR

L", "item_count", item_count);

The „item_count‟ value for the resource then can be set in the

testcase as:

uvm_resource_db#(int)::set("SEQ_CNTRL",

"item_count", 10);

This essentially allows the sequences to reconfigure

themselves based on the scenarios at any point in time. For

example, a sequence can retrieve the memory allocation

patterns from the Register Model, and target the next set of

accesses in the un-allocated regions. The sequences

themselves become more reusable from a vertical reuse

perspective as they reconfigure themselves based on newer

constraints applied in the configuration space.

With the new run time phases in the UVM domain,

sequences can be made to run in different phases. This gives

a lot of granularity in terms of stimulus control and ensuring

that a right set of sequences are executed in different phases.

Also, this allows the UVM components themselves to be

generic in nature which makes them reusable easily across a

wider range of requirements.

To execute a sequence in a specific phase in UVM, one

needs to override the „default_sequence‟ string for a specific

sequencer for that phase. The easiest mechanism is to use the

Resource Database to override the „default_sequence‟ string

from the test case or in the environment.

uvm_config_db

#(uvm_object_wrapper)::set(this,

“<path_to_sequencer>.main_phase”,

“default_sequence”,

sequence_name>::type_id::get());

The same or different sequences can be made to run in

different phases easily as well.

Figure 10: Setting Phase-Specific Sequences

3.3 Improving Verification Throughput

With long running simulations and the increasing times

which are required to load up complex verification

environments, it is desired to derive the maximum possible

simulation throughput for each simulation.

3.3.1 Using the Command Line Manager

It is important to be able to propagate changes in the

environment without having to recompile the design and also

to ensure that these changes can also create new verification

patterns. UVM provides for mechanism to capture values

from the command line and again propagate them through

the testbench through its configuration mechanism. This

functionality can be leveraged appropriately by providing

appropriate hooks in the testbench so that users are provided

with a template to maximize the useful simulation data that

can be extracted out of each simulation run.

Configuration Parameters: The Command Line Processor

class provides a general interface to the command line

arguments that are provided for the given simulation. The

uvm_cmdline_processor class also provides support for

setting various UVM variables from the command line, such

as components‟ verbosities and configuration settings for

integral types and strings. As far as overriding configurations

settings are concerned, the command line option can only be

used for setting the integer/string only in a class derived from

uvm_component. The control of the testbench configuration

of the scalar types through command line can be done as

follows:

+uvm_set_config_int=<comp>,<field>,<value>

+uvm_set_config_string=<comp>,<field>,<value>

An example of the same would be :
+uvm_set_config_int=uvm_test_top.*.drv,delay,

10

It has to be ensured that the user must register the field which

would be overridden using the field automation macros.

There should not be any white spaces between the strings

passed to the command line argument. This can be very

easily extended to the sequence or sequence library specific

parameters which can thus end up saving a lot of simulation

cycles. In this case, the user has to explicitly do a „get‟ in the

respective sequences as shown below.

Figure 11: Controlling the Parameters of the Sequence Library

Subsequently, the following command line will change the

total number of sequences executed for a specific sequence

library to be 25 instead of the default 10.

+uvm_set_config_int=uvm_test_top.tb.sequencer

,default_sequence.max_random_count,25

Thus, for specific values which are used as knobs and other

discrete configuration parameters, additional tests do not

have to be written. Different permutations can be tried out

from the command line without requiring any recompiles.

Debug modes can also be enabled through the same

mechanism.

Factory Overrides from the command line: The changes that

can be propagated from the command line extends to factory

overrides as well. The testbench objects which are registered

with the UVM factory can be overridden globally or in a

given hierarchy specified by an instance path in the

command line.

+uvm_set_inst_override=<req_type>,<override_t

ype>,<inst_path>

+uvm_set_type_override=<req_type>,<override_t

ype>

An example of the above overrides would be :

+uvm_set_inst_override=driver,NewDriver,*.drv

0

+uvm_set_type_override=packet,newPacket

3.3.2 Randomization Control and Performance

The cost that one has to pay for constrained randomization is

the potential of degradation of simulation performance. The

UVM Resources can conveniently be leveraged in the effort

of cranking up simulation performance by avoiding

redundant randomizations. A complex set of interleaved

constraints can cause a significant impact on runtime

performance. As the number of random variables and the

associated constraints increase, the demand on the constraint

solver can increase exponentially.

The UVM Resource mechanism is sometimes used for

overriding values of „random‟ parameters in the

Configuration classes. When defining these classes, the user

might not know whether a specific property would be

through the Resource mechanism. If it is not overridden, the

user might want that property to take a random value. If it is

overridden, the user would want to ensure that the value is

not subsequently randomized. How does he get the best of

both worlds?

For dynamic objects extending from uvm_object, the

uvm_config_db::get() should typically be in the constructor

or a method which will subsequently be invoked post the

creation of the object. Whenever a „get‟ on a specific

property succeeds, we know that the property should not be

randomized with the other members of the class whenever

the class is randomized at a later point in time. This can be

ensured by checking for the return value of the

uvm_config_db#::get(). If the return value denotes a

successful retrieval, the rand_mode() of that specific

parameter can be turned to „0‟, so that the variable no longer

participates in the randomization.

if(uvm_resource_db#（int)::read_by_name("*",”

A”,value,this))

 A.rand_mode(0);

3.3.3 Dynamic Feedback, Coverage Convergence

and Modifying Cover Groups

Coverage Convergence:

 The SystemVerilog language provides capabilities to query

the functional coverage results on the fly. An intelligent

reactive testbench can thus use this information obtained

through constructs like get_coverage() to change its

stimulus. Thus, without quitting simulation, the testbench in

an automated way identifies holes that it needs to target and

changes the constrained random stimulus accordingly. One

of the pre-requisites to achieve this is to create your

constraints in a way that it can also be modified during

simulation. This is made possible if variables are used to

model the testbench constraints. Thus by dynamically

changing the value of the variables during simulation, the

overall stimulus sample space can be expanded or shrunk.

Thus, an intelligent reactive testbench can help raise the

productivity, by helping the user to cut down on the number

of tests to reach his or her coverage goals.

The coverage model itself can be „set‟ in the Configuration

Database. It can be retrieved easily in the sequences through

the Resource Mechanism, queried and based on the coverage

query results, the generation of the subsequent sequence

items can be biased by modifying specific constraint

variables as well as testbench parameters across the

environment [4].This can be done by biasing the weights on

a randsequence branch, or by changing the distributions

modeled through variables.

Covergroup manipulation:

The enabling or disabling a covergroup can be controlled

through the UVM Resource mechanism. The coverage

attributes like „weight‟, „at_least‟, coverpoint ranges can be

changed as well.

Figure 12: Modifying coverage shapes

In the code snippet in figure 12, we can see that the

coverage_collector class is retrieving the Configuration Coverage

Model from the Resource Database. The Coverage Model is

dumped into the Resource Database from the agent (figure 13) in

the build_phase. The user sequence then queries the current

coverage results and tweaks the constraint variables so that

redundant stimulus is not generated.

Figure 13: Stimulus Guidance through Coverage Feedback

3.4 Synchronizing RTL and Testbench

Configuration

3.4.1 Verifying RTL Configurations

Verification engineers have to come up with testbenches to

verify RTL which itself is configurable. The

„configurability‟ of the RTL can vary from a few bus width

parameters, or a configurable IP block with optional features

to a whole chip with optional interfaces. Some of these can

affect the physical interface between the testbench and RTL,

for example, Bus widths, number of instances of external

interfaces or the number of interrupts. In specific cases, it has

to support partially specified RTL configurations, multiple

instances of the same RTL module with different

configurations, and configurations which does not affect the

physical interface, but does affect the way the test bench has

to interact with the DUT functionally. For example, FIFO

Depth, QoS algorithms. Finally, it is important to track the

functional coverage across all these configurations too.

 In a UVM testebench, this can be mapped as a UVM RTL

configuration class like any testbench configuration class.

This can be used to encapsulate the RTL configuration

parameters for the design such as bus widths, FIFO sizes,

number of I/O ports, etc.

Figure 14: Class Containing Variable RTL Parameters

The RTL Configuration class itself can be registered to the

Configuration Database. It can be retrieved in the Testbench

Configuration class which can then subsequently set

testbench parameters. The additional methods to load or store

the RTL configuration from an external file can be provided.

This configuration object is then instantiated in the UVM

environment as shown in Figure 15.

Figure 15: Building Configurable Number of SRAM Models

Now, it is important that the RTL Configuration class which

is accessed across the verification environment is used

during the compilation of the RTL code as well. Also, the

testbench should then exercise its stimulus on the newly

configured RTL. This basically calls for a two parse process.

The first parse will generate the RTL configurations and the

second will apply the configurations. The first parse will

involve executing a UVM test which will insert a phase

before the build_phase. In this phase, the RTL configuration

will be randomized, the RTL configuration data packed and

written out into a RTL Configuration text file.. Then the test

will cause simulation to skip all the remaining phases and

jump to the final phase.

Figure 16: Generating the Randomized RTL Configuration

 % simv +UVM_TESTNAME=rtl_config_gen

The generated file in the user defined phase can be suitably

parsed to generate the RTL parameters or compile time

macros which can be fed back to the RTL compilation. For

the actual testbench simulation, the base test will read back

the RTL configuration from the generated file, unpack the

data and then „set‟ the RTL configuration in the Resource

Database.

Figure 17: Loading the Randomized RTL Configuration

In projects where highly configurable IP has to be verified, it

is convenient to control and observe the progress of

verification across, not only the modes of operation, but also

those modes relating to specific RTL configurations. The

added benefit of using this method is that constrained

randomization and functional coverage collection can be now

be used for RTL configurations.

3.4.2 Leveraging Dynamic Reconfiguration

As designs grow in size, memory size and simulation speed

are becoming critical issues for many customers. It is

becoming increasingly difficult to accommodate large

designs in 32-bit memory. Although the entire design may

need a 64-bit for simulation, only a portion of the design may

be necessary to run many tests. The simulation speed can be

improved by removing or replacing part of the design

hierarchy with alternate models. The removing portions of

the hierarchy by replacing modules with empty modules,

simpler modules or higher-level models allows the design

size to be reduced, resulting in decreased memory

requirements. This has the additional benefit of faster

simulation due to the pruned design size.

The Dynamic Reconfiguration provides a flexible

mechanism to replace portions of the design hierarchy at

runtime. This enables many design configurations to be used

without the need to re-compile the design.

Figure 18: Reconfiguring Design Hierarchy

This requires passing in a configuration file at compile time

specifying all the instances that can be substituted or black

boxed with empty shells. At run time, one or more

„configuration‟ file gets passed to the executable which

specifies the actual instance hierarchies for that simulation.

As in the case of modeling RTL configurations, a similar file

dumped out from the first parse can generate the appropriate

„configuration‟ file which can be used for stubbing out

specific hierarchies at runtime. This ensures that the

testbench is aware of the changed hierarchy. Additionally, all

different permutations and combinations of the actual RTL

instances can be tracked in the testbench.

3.5 Effective Resource Management (Bringing it All

Together)

For System Level verification, the complexities and the

permutations of functionalities that have to be verified

increases manifold. Some of these include:

 Exercising modes of the peripherals with all the

possible modes of system configuration

 Bandwidth issues in the system when multiple

peripheral devices contest for system resources

 IRQ Handling

 Power Modes and how that affects different

components

 Memory Allocation Management

Typically, the verification environments need to have their

own resource management infrastructure which enables

coordination across different components and would have

APIs to help the components be aware of all the changes in

the verification environment. Mailboxes, TLM ports or

shared queues are used for communication across threads but

then any form of bi-directional communication is typically

restricted to the subscriber and the producer. Also, creating

such an infrastructure would typically require a

parameterized interface to manage a set of resource

descriptors which are doled out and returned as needed by

the tests. Creating such an infrastructure is a significant

investment in time and resource. With the UVM Resource

classes and the associated APIs, the additional investment in

creating a Resource Manager is no longer required. As

different testbench elements are registered in the

Configuration Database, their current status and values can

be queried from across the testbench.

The following APIs helps to ensure that different

components can reconfigure themselves at any time when

there is a relevant change in any of the attributes registered in

the Configuration Database.

 “wait_modified”: Waits for a configuration setting to be

set for a testbench attribute in a specific context and for

a specific instance name.

 “exists”: Checks if a value for a specific testbench

attribute is available in an instance with a specific

context as a starting point.

As described earlier, the UVM sequences would look up the

Resource Database to generate appropriate stimulus based on

the current configuration. They can be reactive when the

need arises. The coverage model would sample the

appropriate cover bins, the scoreboard and protocol checkers

would verify and validate the traffic based on the dynamic

parameters. With all the components feeding in relevant

statistics back to the resource manager, different

performance metrics at the system level can be assessed and

improved upon. Thus, a significantly smaller yet

configurable verification setup can target a bigger chunk of

DUT functionality and avoid wasteful debug cycles to rule

out false negatives.

4. DEBUG Infrastructure for UVM Resources

There is a lot of functionality and convenience that the UVM

Resources provides. Along with the functionality, it is

important that appropriate debug hooks are provided so that

the user can easily decipher any unexpected behavior is seen

in the Testbench.

UVM Configuration debug API‟s enables the recording of all

reads and writes done to the Database. It stores information

about the accesses. It records the number of times a resource

is read or written at what times from which hierarchical

component. A mechanism to turn off recording is provided

as simulation performance can be affected because of the

same. Based on the information analyzed from the resource

dump, one can improvise on the usage of UVM

configuration API‟s and use them more optimally

Figure 19 shows the hierarchy of functions that are used in

debugging UVM Resources. The user is not expected to

invoke all of these and the pictorial representation basically

illustrates the internal debug process. Invoking the dump()

function of the uvm_resource_db triggers the entire process

provided the user has set the auditing parameter as arguments

when invoking the Resource APIs.

Figure 19: UVM BCL Resource Debug API

The Command line arguments +UVM_CONFIG_DB_TRACE

and +UVM_RESOURCE_DB_TRACE would also help trigger

this process and the user can find out from the trace

messages in STDOUT as to which overrides succeeded,

which failed and what has been registered to the

Configuration Database.

UVM_INFO

<path_to_uvm_install>/src/base/uvm_resource_d

b.svh(129) @ 0: reporter [CFGDB/SET]

Configuration 'uvm_test_top.env.*.A' (type

logic signed[4095:0]) set by uvm_test_top.env

= (uvm_bitstream_t) 1011

UVM_INFO

<path_to_uvm_install>/src/base/uvm_resource_d

b.svh(129) @ 0: reporter [CFGDB/GET]

Configuration 'uvm_test_top.env.leaf1.A'

(type logic signed[4095:0]) read by

uvm_test_top.env.leaf1 = (uvm_bitstream_t)

1011

Additionally, after setting all the testbench configurations,

the user is provided with API‟s to check whether the

topology of the environment mimics what was expected

based on the configuration overrides. This can be done

through a simple call to “print_topology()” for the structural

correctness.

uvm_top.print_topology();

factory.print();

9. Conclusion

The objective was to present an overview of the UVM

Configuration mechanism and demonstrate how the

functionality provided in the UVM base classes can be used

to model configurable testbench environments. This

understanding is then applied to come up with relevant usage

scenarios and to demonstrate how complex verification

requirements can be met. We have seen very encouraging

results with the different applications. With the save-restore

flow, we were able to have multiple runs to share single

initialization. This gave us a 1.5x Regression Farm Speedup

for initialization sequence taking 33% of the complete

simulation. For the application of UVM resources in the

dynamic reconfiguration flow, there was a considerable

reduction in the verification cycle time. The disk space

requirement was reduced by around 90% for the example

design. Compute requirement was also reduced by

approximately 85%. Additionally, we brought in a lot of

configurability to our coverage and constraint models to

enable faster convergence. The testbench configuration and

resource management is one piece of the overall puzzle, but

to tackle this well using robust and powerful built-in

functionality ensures that the verification engineer is well

positioned to tackle the rest of the challenges in SoC

verification.

10. REFERENCES

[1] UVM User Guide

[2] UVM Reference Manual

[3] Accellera Verification IP Technical Subcommittee

Documents

 http://www.accellera.org/apps/org/workgroup/vip

[3] UVM World Website http://www.uvmworld.org/

[4] A Practical Look @ SystemVerilog Coverage –

Tips, Tricks, and Gotchas, Doug Smith, John Ansley

[5] Synopsys UVM CES Training

[6] http://www.vmmcentral.org/vmartialarts

[7] Advanced Testbench Configuration with Resources,

Mark Glasser, Mohamed Elmalaki

http://www.accellera.org/apps/org/workgroup/vip
http://www.uvmworld.org/
http://www.vmmcentral.org/vmartialarts

