
Configuring Your Resources the UVM Way! 

 
Parag Goel,  

Synopsys, India 

91.80.40188000 

paragg@synopsys.com 

Amit Sharma, 

Synopsys, India 

+91.80.40188000 

amits@synopsys.com 

Rajiv Hasija, 

LSI, India 

+91.80.41977811 

rajiv.hasija@lsi.com 

 

ABSTRACT  

 
With increasing complexity of semiconductor designs, and 

with more and more IP blocks to be integrated in SoC's, there 

is an increasing need of verifying their numerous 

configurations. The large numbers of permutations through 

which different functionalities can be enabled at any given 

time require the verification environment to mimic the same. 

The testbench configuration classes with different properties 

are typically used in verification environments to model 

these various aspects. The constraints across the various 

properties ensure that the testbench can pick up valid 

configurations.  

 

Now, these configuration classes have to be available or 

accessible across all the testbench components. This ensures 

that all the components can independently configure 

themselves based on the testbench topology and the relevant 

DUT configuration that is currently being verified. 

Additionally, the testbench components need to be able to 

change the properties of the configuration classes 

dynamically based on the DUT responses and also be able to 

react to similar changes affected by the other components. 

Efficient resource management is also vital in such complex 

environments.  

 

The reference implementation of the base classes as specified 

in the Universal Verification Methodology (UVM) provides 

a lot of relevant functionality to achieve some of these 

requirements. To ensure that these capabilities are optimally 

leveraged, the paper helps the reader achieve a deeper 

understanding of the mechanism through which this 

functionality is delivered. The different usage scenarios 

demonstrated show how the desired benefits can be achieved 

in the effective configuration and management of testbench 

resources. 
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1. INTRODUCTION  
 

Managing the testbench configuration is a challenge in 

complex verification environments today. The different 

power modes, performance optimizations, memory accesses 

modes and their management, and other interrelated 

functionality require different components in the verification 

environment to be configured differently. Each component in 

a verification environment would typically support different 

capabilities which might not be required for a specific project 

or a DUT configuration. Thus, different testbench 

components could require information to be passed to it from 

external sources. To encapsulate this information, there is a 

need for a structured container, with appropriate constraints, 

and values which are themselves configurable. This 

container or class needs some knowledge of the circumstance 

at hand so that it can alter its topology or behavior 

accordingly. 

 

Thus, dynamic testbench reconfiguration and modeling of 

configurable scenarios are required to verify real world 

scenarios for the complex chips.  From a horizontal and 

vertical reuse point of view, it is imperative that that the 

components are made sufficiently configurable. The 

specification of the base classes in the Universal Verification 

Methodology (UVM) provides a convenient interface for 

achieving some of these requirements. Leveraging the UVM 

configuration mechanism, we will show how a resource 

management infrastructure can be created which will make 

all the components configurable by design. We would also 

demonstrate the usage of the capabilities available to achieve 

different verification requirements. Specific guidelines 

would be highlighted so that optimal usage is achieved. 
 

2. UVM Configuration Mechanism: A Feature 

Description 

 
From Figure 1, it can be seen that each component ideally 

needs a „configuration‟ component to bring in the desired 

„flexibility‟ or „reusability‟. The configuration of each 

component needs to be changed based on the different 

requirements. Depending on the configuration changes, the 

components need to be Also, as the various configurations 

are changed or applied across the testbench; individual 

components have to be aware of all such changes. 
 

 
Figure 1: Configuration Requirements in a Verification 

Environment 

 

For efficient synchronization and integration, a uniform 

configuration should be propagated across the hierarchy. 

Hence, as a general recommendation, the attributes that 

control functional aspect of a verification component must be 

encapsulated in a class wrapper. This class object can be 

passed down to different components in the testbench 

environment. The testbench configuration attributes which 

decides on the topology and coarse testbench controls can 

continue to be distributed across discrete elements.  

 
Figure 2: A Typical Configuration Class 
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A typical example of a Configuration class is shown in 

Figure 2. The constraints across the various properties ensure 

that the valid combinations are generated when the class is 

randomized. The Configuration class should be implemented 

by extending the uvm_object or the  uvm_sequence_item 

base class. This object must be factory-enabled. 

 

How do we ensure that this Configuration class can easily be 

propagated across the testbench environment? In UVM, 

objects are often instantiated through the factory 

infrastructure. The factory infrastructure is responsible for 

invoking the constructors and the user does not have the 

possibility to modify constructor arguments. Hence, it is not 

recommended to pass configuration objects in constructor 

arguments. Thus, we need a capability through which 

functions can put or retrieve configuration attributes and 

objects from a central database dynamically.  

 

UVM provides a facility called 'resources' which provides 

the configuration infrastructure and API. It is comprised of 

polymorphic resource containers, a database for storing those 

resource containers and an infrastructure for locating 

resources in the database. This infrastructure can then be 

used to propagate configuration information to different 

components. Each component retrieves a value from the 

resource pool and uses the retrieved value to control its 

behavior.  
 

2.1 Understanding UVM Resources  
 

The generic resource database provided by UVM is a low-

level database which has its own access classes and methods. 

The Figure 3 represents the organization of the resource 

database., The UVM Resources provides multiple APIs 

which are distilled down to the user to access, retrieve, audit, 

query, lock and set priority levels while interfacing with the 

underlying database.  For the user, UVM configuration 

facility provides two separate API interface. These are the  

uvm_resource_db and uvm_config_db. These two classes 

interface between the UVM resource facility and the actual 

user. 

 

 
Figure 3: UVM BCL Organization of Resource Facility 

 

The class uvm_resource_db#(T) is a convenience layer on 

top of the low-level database.  It can be used on its own and 

different layers of type-specific specializations can be built 

on top of it. A collection of static functions operate on the 

resources and the resource pool. The uvm_config_db#(T) 

class provides a layer on top of the  uvm_resource_db#(T) to 

enable the accesses in the hierarchical context. These classes 

enable the users to retrieve different attributes and objects  

with the appropriate look-up names. User can "set" a default 

configuration object in the environment, "get" the 

configuration object in the test and modify it, then "get" the 

modified configuration object in the VIP or the block level 

agents. 

Users can retrieve a testbench attribute  from the resource 

database or dump an attribute into the database either by the  

„type‟ or by „name‟ of the attribute. Given that both these 

parameterized classes share the same underlying database, it 

is possible to write to the database using 

uvm_config_db::set() and retrieve from the database using 

uvm_resource_db::read_by_name(). With respect to usage, 

uvm_config_db is a type-specific UVM configuration 

mechanism which creates a visibility of a resource over a 

specified scope defined by the uvm_component hierarchy 

whereas uvm_resource_db is mainly for general purpose 

usage, which is used to set shared resource which can be 

accessed anywhere in the testbench scope. A resource is set 

through non-hierarchical context while for uvm_config_db, a 

hierarchical uvm_component context is required. Hence, the 

APIs provided by both these interfaces differ primarily in 

ability to provide the hierarchical context as shown in Figure 

4.  

 

 
Figure 4: UVM Resource Access API’s 

 

Also, there are distinct methods for the retrieval of a 

configuration object or attribute in case of uvm_resource_db 

by name or by type. These are: 

 
uvm_resource_db#(type)::read_by_name(“scope”, 

key, type_var, accessor); 

uvm_resource_db#(type)::read_by_type(“scope”,  

type_field, accessor); 

 

The scope can be a regular expression in „set‟ only. In „get‟, 

it must be an actual value.  

Now, going back to the “Configuration” class, once it is 

randomized, the test writer can use the uvm_config_db::set() 

mechanism to assign the configuration object to one or more 

environments within the testbench.  

 
 

2.2. Basic Use Cases 

 
2.2.1 ‘Getting’ and ‘Setting’ Configuration Attributes: 

 

Using uvm_resource_db : The following will create a new 

„resource‟, populate it and insert it into the resource pool. 

 
uvm_resource_db#(int)::set(”top.env*,”A”,",12

34,this); 

 

The above code snippet will create a new „resource‟ of type 

int, assign  a value of "1234" to it, and „set‟ it in the database 

using the name “A”. This „resource‟ would be made visible 



in the scopes identified by "top.env.*". This assumes there is 

only one matching argument „A‟ in top*, which happens to 

be top.env.A. The last argument is used for auditing. 

 

The component that retrieves this resource would read the 

value from the database. 

 

if(!uvm_resource_db#（int)::read_by_name(get_

full_name(),”A”,value,this)) 

`uvm_error(get_full_name(),"The resource A 

cannot be retrieved. It is not found in the 

specified scope "); 

 

Here, read_by_name() returns a bit that indicates whether or 

not the lookup succeeded. It is always a good coding practice 

to check the return value of uvm_config_db::get() or 

uvm_resource_db::read_by_name(). An appropriate message 

can be issued to report whether a retrieval was successful or 

not. This can help avoid unnecessary debug cycles. 

 

Using uvm_config_db:  

 
class my_mon extends uvm_monitor; 

     bit check_en; 

     `uvm_object_utils(my_mon) 

     . . . 

     function void build_phase(uvm_phase 

phase) 

       uvm_config_db #(bit)::get(this, “”, 

“check_en”, check_en) 

     endfunction 

endclass 

 

The corresponding code snippet for setting the value of the 

check_en  attribute would be the following : 

 
uvm_config_db #(bit)::set(this, “.*mon*”, 

“check_en”, 1); 

 

The above code ensures that the „setting‟ of the value 

happens in the monitor instance path only.  The 

uvm_config_db #(bit)::get() call can be avoided if the field 

automation macros are used in the UVM component instance 

as shown below: 

 
`uvm_field_int(check_en, UVM_PRINT| 

UVM_COPY); 

 

The uvm_component, which in this case is the Monitor class 

should be instantiated in the component hierarchy and that 

super.build_phase() or apply_config_settings() should be 

called in the component's build_phase(). In this case, the 

„get‟ call is implicitly invoked. However, the 

recommendation is not to rely on the field automation 

macros, and invoke an explicit uvm_config_db::get(). This 

enables better type checking and traceability through the 

issuing of a warning/error message on an unsuccessful get).   

 

2.2.2 Propagating the Configuration Object Across 

the Testbench Hierarchy 
 

To set the configuration object across the hierarchy, see Figure 5. 

 

 
Figure 5: Setting the Configuration Object Across Components 

 

Here, irrespective of whether the field automation macros are 

used or not, an explicit get() for the class object in the driver 

class is required. This is because the data type of the 

configuration class, drv_cfg, is strongly typed. A get() call 

could be avoided if the configuration object passed was of 

type uvm_object. In this case, an explicit cast has to be made 

to the extended configuration class handle. 

 

The precedence rules ensure that when multiple overrides or 

„sets are applied, the one applied at the end succeeds. For a 

testbench configuration class, it is always intended that 

configurations „set‟ at the highest-level of testbench 

hierarchy always override the configurations set from the 

lower-level components. 

 

The configuration object can also be propagated down to 

classes which is not necessarily an uvm_component 

extension as shown in Figure 6  
 

 
Figure 6: Configuration Passing Across Component and Object 

Hierarchy 

 

Here, the important thing to note is that the „scope‟ is made 

„null‟. Not doing the same will result in an error. This is 

because the „set‟ is invoked the uvm_component scope and 

the corresponding „get‟ in the uvm_object scope. 
 

3. Addressing Verification Requirements Using 

UVM Resources 

 
Here, we look at the common verification challenges and see 

how the UVM configuration mechanism help us address 

some of them. 
 

3.1 Propagating Virtual Interfaces 
 

The Resource Database works with all SystemVerilog data 

types. One ubiquitous requirement across all verification 

environments is to have a mechanism which enables passing 

the virtual interfaces easily across different verification 

components. It is important to avoid using cross-module 

references (XMRs) in environments as it makes it impossible 

to put them in packages and thus compile them separately. It 

also makes the environment inherently non-reusable. 

 

Thus, a better approach is to "push" the virtual interface into 

the Configuration Database from the top-level module. That 

top-level module is specific to the environment used to verify 

the DUT. It is thus perfectly acceptable to specify 

environment-specific hierarchical names in that module. 

Since the module is not an uvm_component, "null" is 

specified as the context argument and the absolute 

hierarchical name is specified for the agent where the virtual 

interface is assigned. As the environment is usually 

instantiated by the test, the absolute hierarchical name will 

start with "uvm_test_top.". 
 

 
Figure 7: Propagating Virtual Interfaces using UVM Resources  

 



Agents should extract their virtual interfaces from the 

Configuration Database entry named "vif" during 

the build phase. A fatal error should be issued if no virtual 

interface is retrieved. The agents are then responsible for 

propagating that virtual interface to the drivers and monitors 

it encapsulates. 

.

 
Figure 8: Trickling the Interface to the Sub-Components 

 

3.2 Configurability in Stimulus Generation and 

Execution  

 

There might be specific requirements when the sequence 

item's constraints depend on the values in configuration 

object. The Resource Database can be used in the sequences 

as well. Though the UVM configuration mechanism is 

designed around components, when a non-component object 

needs to access specific attributes, this non-component object 

must access the configuration field through a component 

handle. In the case of sequences, „m_sequencer‟ is the handle 

to the sequencer that is executing the sequence.  It is a built-

in member of the uvm_sequence class. The configuration 

object can be accessed through the „m_sequencer‟ handle as 

shown in Figure 9. 
 

 
Figure 9: Configurable Sequences 

 

The „m_sequencer‟ handle is no longer required if global 

configuration is desired. This can then be achieved through 

uvm_resource_db. 

 
uvm_resource_db#(int)::read_by_name("SEQ_CNTR

L", "item_count", item_count); 

 

The „item_count‟ value for the resource then can be set in the 

testcase as:  

 
uvm_resource_db#(int)::set("SEQ_CNTRL", 

"item_count", 10); 

 

This essentially allows the sequences to reconfigure 

themselves based on the scenarios at any point in time. For 

example, a sequence can retrieve the memory allocation 

patterns from the Register Model, and target the next set of 

accesses in the un-allocated regions. The sequences 

themselves become more reusable from a vertical reuse 

perspective as they reconfigure themselves based on newer 

constraints applied in the configuration space. 

 

With the new run time phases in the UVM domain, 

sequences can be made to run in different phases. This gives 

a lot of granularity in terms of stimulus control and ensuring 

that a right set of sequences are executed in different phases. 

Also, this allows the UVM components themselves to be 

generic in nature which makes them reusable easily across a 

wider range of requirements.  

To execute a sequence in a specific phase in UVM, one 

needs to override the „default_sequence‟ string for a specific 

sequencer for that phase. The easiest mechanism is to use the 

Resource Database to override the „default_sequence‟ string 

from the test case or in the environment.  

 
uvm_config_db 

#(uvm_object_wrapper)::set(this, 

“<path_to_sequencer>.main_phase”,              

“default_sequence”, 

sequence_name>::type_id::get()); 

 

The same or different sequences can be made to run in 

different phases easily as well. 
 

 
Figure 10: Setting Phase-Specific Sequences  

 

 

3.3 Improving Verification Throughput 
 

With long running simulations and the increasing times 

which are required to load up complex verification 

environments, it is desired to derive the maximum possible 

simulation throughput for each simulation.  
 

3.3.1 Using the Command Line Manager 
 

It is important to be able to propagate changes in the 

environment without having to recompile the design and also 

to ensure that these changes can also create new verification 

patterns. UVM provides for mechanism to capture values 

from the command line and again propagate them through 

the testbench through its configuration mechanism. This 

functionality can be leveraged appropriately by providing 

appropriate hooks in the testbench so that users are provided 

with a template to maximize the useful simulation data that 

can be extracted out of each simulation run. 

 

Configuration Parameters: The Command Line Processor 

class provides a general interface to the command line 

arguments that are provided for the given simulation. The 

uvm_cmdline_processor class also provides support for 

setting various UVM variables from the command line, such 

as components‟ verbosities and configuration settings for 

integral types and strings. As far as overriding configurations 

settings are concerned, the command line option can only be 

used for setting the integer/string only in a class derived from 

uvm_component. The control of the testbench configuration 

of the scalar types through command line can be done as 

follows: 

 
+uvm_set_config_int=<comp>,<field>,<value> 

+uvm_set_config_string=<comp>,<field>,<value> 

 

An example of the same would be :  
+uvm_set_config_int=uvm_test_top.*.drv,delay,

10 

 

It has to be ensured that the user must register the field which 

would be overridden using the field automation macros. 

There should not be any white spaces between the strings 

passed to the command line argument. This can be very 

easily extended to the sequence or sequence library specific 



parameters which can thus end up saving a lot of simulation 

cycles. In this case, the user has to explicitly do a „get‟ in the 

respective sequences as shown below. 
 

Figure 11: Controlling the Parameters of the Sequence Library 

 

Subsequently, the following command line will change the 

total number of sequences executed for a specific sequence 

library to be 25 instead of the default 10. 

 
+uvm_set_config_int=uvm_test_top.tb.sequencer

,default_sequence.max_random_count,25 

 

Thus, for specific values which are used as knobs and other 

discrete configuration parameters, additional tests do not 

have to be written. Different permutations can be tried out 

from the command line without requiring any recompiles. 

Debug modes can also be enabled through the same 

mechanism. 

 

Factory Overrides from the command line: The changes that 

can be propagated from the command line extends to factory 

overrides as well. The testbench objects which are registered 

with the UVM factory can be overridden globally or in a 

given hierarchy specified by an instance path in the 

command line. 

 
+uvm_set_inst_override=<req_type>,<override_t

ype>,<inst_path> 

+uvm_set_type_override=<req_type>,<override_t

ype> 

 

An example of the above overrides would be : 

 
+uvm_set_inst_override=driver,NewDriver,*.drv

0 

+uvm_set_type_override=packet,newPacket  

 

  

3.3.2 Randomization Control and Performance 
 

The cost that one has to pay for constrained randomization is 

the potential of degradation of simulation performance. The 

UVM Resources can conveniently be leveraged in the effort 

of cranking up simulation performance by avoiding 

redundant randomizations. A complex set of interleaved 

constraints can cause a significant impact on runtime 

performance. As the number of random variables and the 

associated constraints increase, the demand on the constraint 

solver can increase exponentially.  

 

The UVM Resource mechanism is sometimes used for 

overriding values of „random‟ parameters in the 

Configuration classes. When defining these classes, the user 

might not know whether a specific property would be 

through the Resource mechanism. If it is not overridden, the 

user might want that property to take a random value. If it is 

overridden, the user would want to ensure that the value is 

not subsequently randomized. How does he get the best of 

both worlds? 

 

For dynamic objects extending from uvm_object, the 

uvm_config_db::get() should  typically be in the constructor 

or a method which will subsequently be invoked post the 

creation of the object. Whenever a „get‟ on a specific 

property succeeds, we know that the property should not be 

randomized with the other members of the class whenever 

the class is randomized at a later point in time. This can be 

ensured by checking for the return value of the 

uvm_config_db#::get(). If the return value denotes a 

successful retrieval, the rand_mode() of that specific 

parameter can be turned to „0‟, so that the variable no longer 

participates in the randomization. 

 

if(uvm_resource_db#（int)::read_by_name("*",”

A”,value,this)) 

    A.rand_mode(0);  

 

 

3.3.3 Dynamic Feedback, Coverage Convergence 

and Modifying Cover Groups 
 

Coverage Convergence: 

 The SystemVerilog language provides capabilities to query 

the functional coverage results on the fly. An intelligent 

reactive testbench can thus use this information obtained 

through constructs like get_coverage() to change its 

stimulus. Thus, without quitting simulation, the testbench in 

an automated way identifies holes that it needs to target and 

changes the constrained random stimulus accordingly. One 

of the pre-requisites to achieve this is to create your 

constraints in a way that it can also be modified during 

simulation. This is made possible if variables are used to 

model the testbench constraints. Thus by dynamically 

changing the value of the variables during simulation, the 

overall stimulus sample space can be expanded or shrunk. 

Thus, an intelligent reactive testbench can help raise the 

productivity, by helping the user to cut down on the number 

of tests to reach his or her coverage goals.  

 

The coverage model itself can be „set‟ in the Configuration 

Database. It can be retrieved easily in the sequences through 

the Resource Mechanism, queried and based on the coverage 

query results, the generation of the subsequent sequence 

items can be biased by modifying specific constraint 

variables as well as testbench parameters across the 

environment [4].This can be done by biasing the weights on 

a randsequence branch, or by changing the distributions 

modeled through variables.  

 

Covergroup manipulation: 

The enabling or disabling a covergroup can be controlled 

through the UVM Resource mechanism. The coverage 

attributes like „weight‟, „at_least‟, coverpoint ranges can be 

changed as well. 
 

 
Figure 12: Modifying coverage shapes 

 

In the code snippet in figure 12, we can see that the 

coverage_collector class is retrieving the Configuration Coverage 

Model from the Resource Database. The Coverage Model is 

dumped into the Resource Database from the agent (figure 13) in 

the build_phase. The user sequence then queries the current 



coverage results and tweaks the constraint variables so that 

redundant stimulus is not generated.  

 
Figure 13: Stimulus Guidance through Coverage Feedback 

 

 

3.4 Synchronizing RTL and Testbench 

Configuration 
     

3.4.1 Verifying RTL Configurations 
 

Verification engineers have to come up with testbenches to 

verify  RTL which itself is configurable. The 

„configurability‟ of the RTL can vary from a few bus width 

parameters, or a configurable IP block with optional features 

to a whole chip with optional interfaces. Some of these can 

affect the physical interface between the testbench and RTL, 

for example, Bus widths, number of instances of external 

interfaces or the number of interrupts. In specific cases, it has 

to support partially specified RTL configurations, multiple 

instances of the same RTL module with different 

configurations, and  configurations which does not affect the 

physical interface, but does affect the way the test bench has 

to interact with the DUT functionally. For example,  FIFO 

Depth,  QoS algorithms. Finally, it is important to track the 

functional coverage across all these configurations too.  

   

  In a UVM testebench, this can be mapped as a UVM RTL 

configuration class like any testbench configuration class. 

This can be used to encapsulate the RTL configuration 

parameters for the design such as bus widths, FIFO sizes, 

number of I/O ports, etc. 

 

 
Figure 14: Class Containing Variable RTL Parameters 

 

The RTL Configuration class itself can be registered to the 

Configuration Database. It can be retrieved in the Testbench 

Configuration class which can then subsequently set 

testbench parameters. The additional methods to load or store 

the RTL configuration from an external file can be provided.  

This configuration object is then instantiated in the UVM 

environment as shown in Figure 15. 

 

 
Figure 15: Building Configurable Number of SRAM Models  
 

Now, it is important that the RTL Configuration class which 

is accessed across the  verification environment is used 

during the compilation of the RTL code as well.  Also, the 

testbench should then exercise its stimulus on the newly 

configured RTL. This basically calls for a two parse process. 

The first parse will generate the RTL configurations and the 

second will apply the configurations. The first parse will 

involve executing a UVM test which will insert a phase 

before the build_phase. In this phase, the RTL configuration 

will be randomized, the RTL configuration data packed and 

written out  into a RTL Configuration text file.. Then the test 

will cause simulation to skip all the remaining phases and 

jump to the final phase. 
 

 
Figure 16: Generating the Randomized RTL Configuration  
 
      % simv +UVM_TESTNAME=rtl_config_gen 

 

The generated file in the user defined phase can be suitably 

parsed to generate the RTL parameters or compile time 

macros which can be fed back to the RTL compilation.  For 

the actual testbench simulation, the base test will read back 

the RTL configuration from the generated file, unpack the 

data and then „set‟ the RTL configuration in the Resource 

Database. 
 

 
Figure 17: Loading the Randomized RTL Configuration 
 

In projects where highly configurable IP has to be verified, it 

is convenient to control and observe the progress of 

verification across, not only the modes of operation, but also 

those modes relating to specific RTL configurations. The 

added benefit of using this method is that constrained 

randomization and functional coverage collection can be now 

be used for RTL configurations. 
 

 

 



3.4.2 Leveraging Dynamic Reconfiguration 
 

As designs grow in size, memory size and simulation speed 

are becoming critical issues for many customers. It is 

becoming increasingly difficult to accommodate large 

designs in 32-bit memory. Although the entire design may 

need a 64-bit for simulation, only a portion of the design may 

be necessary to run many tests. The simulation speed can be 

improved by removing or replacing part of the design 

hierarchy with alternate models. The removing portions of 

the hierarchy by replacing modules with empty modules,   

simpler modules or higher-level models allows the design 

size to be reduced, resulting in decreased memory 

requirements.  This has the additional benefit of faster 

simulation due to the pruned design size.   

The Dynamic Reconfiguration provides a flexible 

mechanism to replace portions of the design hierarchy at 

runtime. This enables many design configurations to be used 

without the need to re-compile the design. 
 

 
Figure 18: Reconfiguring Design Hierarchy 

 

This requires passing in a configuration file at compile time 

specifying all the instances that can be substituted or black 

boxed with empty shells. At run time, one or more 

„configuration‟ file gets passed to the executable which 

specifies the actual instance hierarchies for that simulation. 

As in the case of modeling RTL configurations, a similar file 

dumped out from the first parse can generate the appropriate 

„configuration‟ file which can be used for stubbing out 

specific hierarchies at runtime. This ensures that the 

testbench is aware of the changed hierarchy. Additionally, all 

different permutations and combinations of the actual RTL 

instances can be tracked in the testbench.  
 

3.5 Effective Resource Management (Bringing it All 

Together) 

 
For System Level verification, the complexities and the 

permutations of functionalities that have to be verified 

increases manifold. Some of these include:  

 Exercising modes of the peripherals with all the 

possible modes of system configuration  

 Bandwidth issues in the system when multiple 

peripheral devices contest for system resources 

 IRQ Handling 

 Power Modes and how that affects different 

components 

 Memory Allocation Management 

 

Typically, the verification environments need to have their 

own resource management infrastructure which enables 

coordination across different components and would have 

APIs to help the components be aware of all the changes in 

the verification environment. Mailboxes, TLM ports or 

shared queues are used for communication across threads but 

then any form of bi-directional communication is typically 

restricted to the subscriber and the producer. Also, creating 

such an infrastructure would typically require a 

parameterized interface to manage a set of resource 

descriptors which are doled out and returned as needed by 

the tests.  Creating such an infrastructure is a significant 

investment in time and resource. With the UVM Resource 

classes and the associated  APIs, the additional investment in 

creating a Resource Manager is no longer required. As 

different testbench elements are registered in the 

Configuration Database, their current status and values can 

be queried from across the testbench.  

The following APIs helps to ensure that different 

components can reconfigure themselves at any time when 

there is a relevant change in any of the attributes registered in 

the Configuration Database. 

 “wait_modified”: Waits for a configuration setting to be 

set for a testbench attribute in a specific context and for 

a specific instance name. 

 “exists”: Checks if a value for a specific testbench 

attribute  is available in an instance with a specific 

context as a starting point. 

As described earlier, the UVM sequences would look up the 

Resource Database to generate appropriate stimulus based on 

the current configuration. They can be reactive when the 

need arises. The coverage model would sample the 

appropriate cover bins, the scoreboard and protocol checkers 

would verify and validate the traffic based on the dynamic 

parameters. With all the components feeding in relevant 

statistics back to the resource manager, different 

performance metrics at the system level can be assessed and 

improved upon.  Thus, a significantly smaller yet 

configurable verification setup can target a bigger chunk of 

DUT functionality and avoid wasteful debug cycles to rule 

out false negatives. 
 

4. DEBUG Infrastructure for UVM Resources 
 

There is a lot of functionality and convenience that the UVM 

Resources provides. Along with the functionality, it is 

important that appropriate debug hooks are provided so that 

the user can easily decipher any unexpected behavior is seen 

in the Testbench. 

 

UVM Configuration debug API‟s enables the recording of all 

reads and writes done to the Database. It stores information 

about the accesses. It records the number of times a resource 

is read or written at what times from which hierarchical 

component. A mechanism to turn off recording is provided 

as simulation performance can be affected because of the 

same. Based on the information analyzed from the resource 

dump, one can improvise on the usage of UVM 

configuration API‟s and use them more optimally 

 

Figure 19 shows the hierarchy of functions that are used in 

debugging UVM Resources. The user is not expected to 

invoke all of these and the pictorial representation basically 

illustrates the internal debug process. Invoking the dump() 

function of the uvm_resource_db triggers the entire process 

provided the user has set the auditing parameter as arguments 

when invoking the Resource APIs.  

 

 
Figure 19: UVM BCL Resource Debug API  

 

The Command line arguments +UVM_CONFIG_DB_TRACE 

and +UVM_RESOURCE_DB_TRACE would also help trigger 

this process and the user can find out from the trace 

messages in STDOUT as to which overrides succeeded, 



which failed and what has been registered to the 

Configuration Database.  

 
UVM_INFO 

<path_to_uvm_install>/src/base/uvm_resource_d

b.svh(129) @ 0: reporter [CFGDB/SET] 

Configuration 'uvm_test_top.env.*.A' (type 

logic signed[4095:0]) set by uvm_test_top.env 

= (uvm_bitstream_t) 1011 

 

UVM_INFO 

<path_to_uvm_install>/src/base/uvm_resource_d

b.svh(129) @ 0: reporter [CFGDB/GET] 

Configuration 'uvm_test_top.env.leaf1.A' 

(type logic signed[4095:0]) read by 

uvm_test_top.env.leaf1 = (uvm_bitstream_t) 

1011 

 

Additionally, after setting all the testbench configurations, 

the user is provided with API‟s to check whether the 

topology of the environment mimics what was expected 

based on the configuration overrides. This can be done 

through a simple call to “print_topology()” for the structural 

correctness. 

 
uvm_top.print_topology(); 

factory.print(); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Conclusion 
 

The objective was to present an overview of the UVM 

Configuration mechanism and demonstrate how the   

functionality provided in the UVM base classes can be used 

to model configurable testbench environments. This 

understanding is then applied to come up with relevant usage 

scenarios and to demonstrate how complex verification 

requirements can be met. We have seen very encouraging 

results with the different applications. With the save-restore 

flow, we were able to have multiple runs to share single 

initialization. This gave us a 1.5x Regression Farm Speedup 

for initialization sequence taking 33% of the complete 

simulation. For the application of UVM resources in the 

dynamic reconfiguration flow, there was a considerable 

reduction in the verification cycle time. The disk space 

requirement was reduced by around 90% for the example 

design.  Compute requirement was also reduced by 

approximately 85%. Additionally, we brought in a lot of 

configurability to our coverage and constraint models to 

enable faster convergence.  The testbench configuration and 

resource management is one piece of the overall puzzle, but 

to tackle this well using robust and powerful built-in 

functionality ensures that the verification engineer is well 

positioned to tackle the rest of the challenges in SoC 

verification. 
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