
NTC….Where do they come from?
• Originated from combining multiple

cells e.g. Scan flops.

• D1 and D2 are internal delays: logic
and/or wires.

• Pre characterized sequential element
timing check is the same but input
pins and associated delays are differ-
ent.

• What if D1 > D2 (or D2 > D1) and (D2
– D1) or (D1 – D2) > limit?

• Nowadays NTC has no physical basis.

• Limit values are generated by mathe-
matical interpolation by STA tool.

NTC….Where do they come from?
• Originated from combining multiple

cells e.g. Scan flops.

• D1 and D2 are internal delays: logic
and/or wires.

• Pre characterized sequential element
timing check is the same but input
pins and associated delays are differ-
ent.

• What if D1 > D2 (or D2 > D1) and (D2
– D1) or (D1 – D2) > limit?

• Nowadays NTC has no physical basis.

• Limit values are generated by mathe-
matical interpolation by STA tool.

1

Problem Statement
• Timing checks with negative limits need to be transformed to

restore normal sequence of data and reference events (simulator
cannot predict the future!)

• NTC algorithm: Find the input signal delays that needs to be
inserted so that all NTC negative limits are transformed into
positive limits.

• Non-convergence issues with newer technology cells due to timing
checks conditions.

• Typically conditions on input signals are:

 - Mutually exclusive
- Active in different regions of cell operation.

• Example checks that can cause problems:
 (SETUPHOLD (posedge EN) (COND D (posedge CK)) (0.306::0.308) (-0.245::-0.243))

(SETUPHOLD (posedge EN) (COND ~D (posedge CK)) (0.182::0.184) (-0.163::-0.162))

2

NTC Convergence Using Linear
Programming
• Formulate NTC convergence as an LP maximization:

 maximize CTX

 subject to AX ≤ B and X ≥ 0

• Every 2 limits timing check is equivalent to two linear constraints:

 D2 - D1 < limit1

 D1 – D2 > -limit2 (limit2 is the negative limit)

• The objective function is:

• Objective is equivalent to minimizing the inserted delays.

• Solve by Simplex method.

4

Sample Results
Working on module: FF1 at scope: tbench.top_dut.dut

NTC_LP is modifying the HOLD limit from -1141 PS to -1130 PS at location: 211 : ./lib.v
NTC_LP is modifying the HOLD limit from -1130 PS to -818 PS at location: 211 : ./lib.v

The following delays have been derived for the NTC topology:

8

12
11

Conclusion
• An innovative solution to the NTC convergence problem is

presented.

• The solution is based on linear programming and the Simplex
solution algorithm.

• A novel conditional delay construct was described together with
its inherent usage assumptions.

• Sample results were given.

• A new methodology was proposed that will generate the input
signal internal delays directly by the STA tool.

• The new methodology will bypass the need for the NTC
convergence solution in this paper.

11

Problem Example Illustration�
(Not to scale)

3

• SETUPHOLD (posedge EN) (COND ~D (posedge CK)) (0.182::0.184) (-0.163::-0.162))

 SETUPHOLD (posedge EN) (COND D (posedge CK)) (0.306::0.308) (-0.245::-0.243))

• Conditions D and ~D are mutually exclusive

• One single delay cannot be found to transform all limits to
positive values

• Conditional delays are needed!

NTC Convergence Using Linear
Programming (Continued)
• The objective function is extended with a penalty function that weighs the dif-

ference between the rising and falling delays of the same net : Reducing the
penalty is equivalent to minimizing the difference.

• Conditions can be added by a simple extension: An LP variable (object) can
thus be:

 - Signal e.g. CLK

 - Signal with an edge e.g. (posedge CLK)

 - Signal with an edge and an associated condition e.g. (posedge CLK
 &&& cond4).

• Simplex solution determines all LP variables.

• A single input delayed net can potentially have different delays depending on
conditions.

5

Conditional Delay Construct
• For input signal D:

 if (cond1) delay = D + d1
if (cond2) delay = D + d2
…
if (condn) delay = D + dn
ifnone delay = D + d0

• d0, d1…dn are determined by the LP solution.

• Delays with zero value result in a wire short.

• Inherent assumption: Conditions are mutually exclusive.

• If multiple conditions are simultaneously true: Warn and select most
pessimistic delay.

• Pessimistic delay depends on timing check type and signal role in
check (data or reference).

6 7

Simplex Solution
• Two phases Simplex algorithm:

 - Phase 1: Feasibility
- Phase 2: Optimization.

• Resulting linear system is sparse: Used sparse compressed storage
matrix representation.

• Adapted algorithm and search to specific problem at hand: Special-
ized solution techniques e.g. limit modification.

• Resultant solution is fast and space efficient.

• New solution is integrated into IUS.

• Tested and recently released for customer usage

Present Methodology�
• STA tool generates SDF annotation values

for timing check limits.

• Annotation values are calculated using
mathematical procedure e.g. table interpola-
tion, with no physical basis.

• Simulator, by an inverse procedure, tries to
recover the input signal delay values that
will result in the given timing check limits.

• Game of hide and seek between the STA
tool and the simulator

• Should we continue the game?

9

New Proposal
• What if the STA tool is used to generate the internal delays directly?

• Delays will better reflect physical reality inside the cell.

• Timing check limit values will be adjusted consistently with the NTC delay
values

• NO more negative limits!

• New SDF construct is needed to annotate internal delays e.g.:

 (NTC (D Dint) COND (riseDelay fallDelay))

• Simulator performance improvement: No need for NTC convergence and limit
modifications.

10

Conditional Delays for Negative Limit Timing Checks
in Event Driven Simulation

N. Kalil and D. Roberts, Cadence Design Systems

D

CK

CLK
Setup: .182

~D
Hold: -.163

D
Setup: .306

Hold: -.245

1

1

2

2

Check
Posedge

EN

