
COMPREHENSIVE SYSTEMVERILOG-SYSTEMC-VHDL
MIXED-LANGUAGE DESIGN METHODOLOGY

Rudra Mukherjee
Mentor Graphics Corporation
rudra_mukherjee@mentor.com

Gaurav Kumar Verma
Mentor Graphics Corporation

gaurav-kumar_verma@mentor.com

Sachin Kakkar
Mentor Graphics Corporation
sachin_kakkar@mentor.com

ABSTRACT
Due to increased complexity in today's SoC designs, the importance
of design reuse, verification, and debug becomes inescapable.
SystemVerilog [1], VHDL [2], and SystemC [3] have unique
strengths which make them more suitable to certain application
domains. Mixed-language designs are proliferating because
designers want use the powerful features of one language for creating
test benches for designs written in the other language. Diversity of
design teams with their different preferences, and integrating a
growing number of IP blocks in a SoC, often written in different
languages, also leads to a mixed-language scenario.

This paper provides guidelines and recommends an industry-proven,
standardized way of writing a mixed-language design which will also
aid in its integration in a mixed-language Verification Environment.
The concept of SystemVerilog constrained testing and other
SystemC verification offerings are combined with various VHDL
constructs for design to build a verification environment with a
common look and feel. This approach decouples the IP development
from any stand alone RTL design development and ensures that the
new IPs can operate and fully verified in mixed-language
environment.

Beyond describing how to create and verify such IPs, this paper also
describes how such compliant test benches are rapidly composed
based on reusing existing components and other generic verification
components, such as scoreboards and reference models.

The concepts presented in this paper provide a standard way of
writing IPs and ensure that no glue is required. It allows components
to be reused without modification in a scalable way. Restrictions on
the use of certain features from certain languages provide uniformity
and avoid some common pitfalls.

These features are comprehensive enough to provide an efficient
framework for the design & verification of large and complex
designs, all the way from the block to the system level.

1. INTRODUCTION

Current Design and Verification framework is very flexible and
allows verification components to be written in many different ways,
including different languages. As a result it can be difficult to
combine and reuse existing verification components coming from
different sources and it often requires a considerable amount of effort
to glue them together.

While adding numerous new tools for verification and design to an
engineer’s toolbox, SystemVerilog, VHDL, and SystemC also
challenges the engineer with a steep learning curve and an increased
amount of complexity in the areas of languages, tools and
methodologies; something that initially threatens to lower
productivity, often significantly. To address these challenges, it is of
great importance to be able to employ a high degree of reusability in
designing and verification of components; which necessitates the
need for a mixed-language environment.

Before starting the designing process, the unique strengths and
weaknesses of different languages must be studies carefully to decide
which language is most suitable for writing particular components of
an IP. The first section of this paper discusses these unique strengths
and weaknesses offered by the different languages.

The second section of the paper lays the foundation for supporting
interactions between different languages by identifying equivalent
types and defining rules for mapping these types. It discusses ways
to import a package in any language irrespective of the language of
origin. Importing a package across the language boundary makes all
data-types, constants and functions available in the other language as
if they were written in that language.

Section four presents all the different ways available today for
making mixed- language connections, while discussing some
common as well as not so common, but useful, techniques that
designers can directly use to increase the efficiency of their mixed-
language connections. Practical examples with scaled down versions
of real world designs will be used to cover the aspects that designers
need to understand while introducing mixed-language in their
designs, and discuss methodologies to help him do so efficiently.

Section five discusses the guidelines and recommends an industry-
proven, standardized way of writing mixed-language design and
verification. The concept of SystemVerilog constrained testing and
other SystemC verification offerings are combined with various
VHDL constructs for design to build random verification
environment with a common look and feel.

A customer case study is presented in section six of the paper
highlighting productivity improvement results from real world
mixed-language designs integration.

2. UNIQUENESS OF LANGUAGES

SystemVerilog [1], VHDL [2] and SystemC [3] have unique
strengths which make them more suitable to certain application
domains. This section discusses the unique strengths and weaknesses
of different languages to help designers decide which language is
most suitable for writing particular components of their IPs.

2.1 SystemVerilog
One of the most important languages to emerge for advanced design,
verification, and modeling is IEEE STD 1800 SystemVerilog with its
advanced verification, modeling and hardware design capabilities. It
equips verification engineers with several tools like random
constraints, assertions, and functional coverage to help write not only
the designs but also test benches with ease.

SystemVerilog also offers an advanced support for interfaces, by
offering it as a separate construct in the language. This, together with
support for classes and inheritance facilitates multiple abstraction
levels, which eases reuse of components.

It also offers named events, dynamic process creation, semaphores,
mailboxes, associative arrays, and a direct C language interface,
making it a popular language of choice for verification engineers.

2.2 VHDL
IEEE STD 1076-2002 VHDL needs no introduction. It has been, and
still is in some parts of the globe, the preferred language of choice
for writing designs. VHDL is a strongly and richly typed language.
It is derived from the Ada programming language which makes it so
much more verbose than SystemVerilog and VHDL, that the designs
written in VHDL are often self-documenting. Since VHDL
emphasizes on unambiguous semantics, race conditions, as a artifact
of the language and tool implementation, are not a concern for
VHDL designs.

The explicit support for physical types, FPGA library, ability to
define signal/net resolutions and a strong support for configurations
makes it a strong contender wherever these features are essential.

The new standards of VHDL are aimed at adding test bench and
extended assertion capabilities to the language; the two areas where
it lags behind SystemVerilog and SystemC.

2.3 SystemC
IEEE STD 1666 SystemC is another important language, with its
powerful modeling features and tight links to the C/C++
programming languages. SystemC is essentially a set of C++ classes
and macros which provide an event-driven simulation kernel in C++.
Although it is strictly a C++ class library, SystemC is often viewed
as being a language in its own right. Together with SystemC
Verification Library (SCV), it offers several test bench features like
random constraints, and assertions which make it the language of
choice for writing test benches.

SystemC is generally used for system-level modeling, architectural
exploration, performance modeling, software development,
functional verification, and high-level synthesis. SystemC is often

associated with Electronic system level (ESL) design, and with
Transaction-level modeling (TLM).

3. LAYING THE FOUNDATION

The challenge faced by many SOC teams is how to use these
languages together for mixed-language, mixed-abstraction level
verification.

In this section, we will discuss using these three very capable
languages for verification, RTL design, and modeling, in a mixed-
language environment.

3.1 Sharing Types
Data types play a vital role in connecting mixed-language
components. They form the backbone of signals that are used to
transfer data across the language boundary. It is very important that
the types connected across the boundary share an equivalent data
representation model.

Figure 1: Using types across the boundary

While SystemVerilog and VHDL allow defining user-defined data
types inside packages, SystemC allows defining user-defined data
types inside header files. Designers should be able to directly include
the equivalent object model for data types defined in packages (or
header files), in any language to any other language, facilitated by
the mixed-language design tools. For example, if an IP is written in
VHDL, and uses types defined in a VHDL package, compatible data
types can be imported to define SystemC variables and constants,
while writing a test bench for that IP.

Example: SystemVerilog data types import
SystemVerilog Package
package sv_pack;
 typedef struct {
 int flags;
 bit[0:31] data;
 bit[0:31] addr;
 } record_t;
endpackage

SystemC Module
SC_IMPORT(std_logic_1164);
SC_IMPORT(vhdl_pack);

//Data-Types imported from SV
record_t in1;
const record_t a = {0, 0};

VHDL SystemVerilog

SystemC
in
te
ge
r

std_logic

in
t

bit [0:7]

sc_logic sc_bv<8>

Table 1 explores compatible data types in SV, VHDL, and SystemC
to assist designers and mixed design EDA tools to relate cross HDL
data types.

Table 1: SV-SC-VHDL Compatible Data Types
SystemVerilog VHDL SystemC

bit
logic
reg
wire

bit
std_logic
boolean

sc_bit
sc_logic
bool

bit vector
logic vector
reg vector
wire vector

bit_vector
std_logic_vector

sc_bv<n>
sc_lv<n>

int integer int
shortint integer short
longint integer long long
byte integer char
enum enum enum
struct record struct
real real double
shortreal real float
char character char
class N.A. class
union N.A. union
shortint (W=16)
int (W=32)
longint (W=64)
bit vector

integer (W=32)
bit_vector

sc_int
sc_uint
sc_signed
sc_unsigned
sc_bigint
sc_biguint

3.2 Operator Overloading
All three languages, i.e. SystemVerilog, VHDL and SystemC, allow
operator overloading. The need for operator overloading arises from
the fact that the operators in the language are defined only for
operands of some predefined type. Operator overloading can be used
in conjunction with data-type import to allow the defined arithmetic
operators to be applied to the imported data types, such as structures,
unions, classes, and enumerations.

Example:
SystemVerilog
bind == function ethernet_frame comp_frames (ethernet_frame,
ethernet_frame);

SC Module
SC_IMPORT(ethernet_ip_pack);

ethernet_frame frame1, frame2;
…
// implicit call to overloaded SV “==” operator
if (frame1 == frame2) ...

3.3 Procedures and Overloaded Functions
While VHDL provides subprogram facilities in the form of both
procedures and functions, SystemVerilog provides these facilities in
the form of tasks and function. SystemC extends all the functionality

of C++ when it comes to support for functions. This allows reuse of
procedures, tasks and functions in an efficient and intuitive manner.

While calling tasks, functions or procedures with complex argument
types across the language boundary, equivalent data types can be
specified as argument types to any of the argument types.

Example: SystemC using VHDL procedure.
VHDL Package
package vhdl_pack is
-- VHDL procedure declaration
procedure word_32_or (driver1, driver2 : in
word_32; en: in bit := '0'; or_out : out bit);
end vhdl_pack;

SC Module
SC_IMPORT(vhdl_pack);
...
void module_func() {
// function interface for VHDL subprogram call.
word_32_or(data1, data2, 1, &sum_or);
end

4. METHODS TO CONNECT MIXED-
LANGUAGE IP BLOCKS

Often designers are not aware of various mixed-language design
integration options. Other times the knowledge on various options is
available, but it is difficult for a user to choose the best suitable
option based on their mixed language design scenario. This difficulty
in mixed-language IP integration and reuse often leads to finding
issues late during the design cycle, which impacts the overall
productivity. In this section we will introduce the five methods for
making mixed-language connections and discuss their pros and cons.

4.1 Direct Instantiation
In the direct instantiation method, an IP block written in any
language is instantiated directly inside the target IP block (written in
any language) within the SoC. Here the instantiation statement
follows the syntax of the target IP block, as if the instantiated IP
block was written in the same language as the target IP block.

Example:
Clock Generator IP Block
module clockgen # (parameter period = 5 …)
(input period, input delay, input duty_cycle, output clk);
 …
endmodule

Instantiating Clock Generator IP Block inside VHDL Stimulus
Generator
clockgenInst: entity clkgenlib.clockgen port map(clk => clk);

4.2 Integration through Configuration
Configurations specify how a design is assembled during the
elaboration phase of simulation. The sheer power offered by
configurations offers incredible flexibility to designers while making
mixed-language integrations.

A Verilog configuration can be referenced in the VHDL region as
though it was a VHDL configuration, and vice versa. It can also be
referenced in the configuration aspect of a VHDL component

configuration by just specifying a Verilog configuration name
instead of a VHDL configuration name.

Example:
VHDL Entity top
entity top is
end entity;
architecture arch of top is
begin
 stiminst : vh_stimgen;
 clkinst : vh_clkgen;
end architecture arch;

Verilog Configuration vl_stimgen_config
config vl_stimgen_config;
 design work.vl_stimgen;
 instance vl_stimgen.gen_data use work.vh_gen_data;
endconfig

VHDL Configuration to Configure Instances stiminst & clkinst
configuration conf1 of top is
for arch
 for clkinst : vh_clkgen use entity work.vl_clkgen;
 end for;
 for inst1 : vh_stimgen use configuration work.vl_stimgen_config;
 end for;
end for;
end;

4.3 SystemVerilog Bind Construct
The SystemVerilog bind construct provides an IP block access to
both external ports and internal signals in the target IP block. The
selected and target IP blocks can be written in any design language.
This method provides a powerful capability that, together with a
specifically designed use-model, can be used to conveniently connect
the two IP blocks independent of their languages. The SystemVerilog
bind construct is increasingly becoming the preferred method for
connecting IP blocks in SoC’s today, as it offers hook-up
connections between two IP blocks without requiring their source
code to be present.

Example:
Clock Generator IP Block
module ClockGen # (parameter period = 5) (input output clk);
 …
endprogram

Binding Clock Generator IP Block to SystemC Stimulus Generator
bind StimGen ClockGen clockgenInst(.clk(clock));

4.4 SystemC Verification Connect
SystemC Verification Connect is a powerful construct that allows
connection of signals across the hierarchy of a SystemC IP block to
any other signal across the hierarchy of another IP block written in
SystemVerilog or HDL. It can also be used on pre-compiled
SystemVerilog and HDL IP blocks, but the SystemC IP block where
scv_connect() constructs are used must have source-code visibility.
This method cannot be used on compiled IP blocks.

Example:
Clock Generator IP Block
module clockgen #(parameter period = 5) (input output clk);
 …
endprogram

Using SCV_Connect to Connect Clock inside SystemC Stimulus
Generator
scv_connect(clk, “/clkgeninst/clk”, SCV_INPUT);

4.5 SC-DPI
The SystemC Direct Programming Interface (SC-DPI) method
provides an interface between SystemVerilog and SystemC that
facilitates inter-language function calls. This means a SystemVerilog
IP can call a function defined in a SystemC IP, and vice versa. It is a
fast and suitable technique of connecting SystemVerilog IP blocks
with SystemC IP blocks that have their external interfaces defined in
the form of methods only.

Example:
SystemC Stimulus Generator
sc_module (sc_stimgen) {
...
 return_status gen_stim(void);
...
};

Importing the SystemC Method ‘gen_stim' in SystemVerilog:
import "SC-DPI" function return_status gen_stim();

5. RULES AND GUIDELINES

This section provides guidelines and recommends industry-proven,
standardized ways of writing a design which will aid in its
integration in a mixed-language Verification Environment, or with
other blocks written in different languages in a SoC.

5.1 Choice of Hardware Verification Language
SystemVerilog with its advanced verification capabilities like
random constraints, assertions, and functional coverage is
recommended as language to write re-usable test benches for new
IPs.

VHDL designs are recommended for designing IPs that is used in
critical applications. Its unambiguous semantics reduces the chances
of race conditions, glitches and timing violations in a design.

SystemC language is recommended wherever there is a need for tight
linking with existing C/C++ based verification components. The
authors do not recommend this language for synthesizable design
because it based on C++ classes which are not yet synthesized by
any industry standard tool. SystemC along with its various
verification components (SCV) are recommended for Electronic
system-level (ESL) modeling, architectural exploration, performance
modeling, software development.

5.2 Inter-Language Communication
This section discusses the guidelines with the perspective of inter-
language communication.

5.2.1 Type Compatibility
The most imperative rule for writing mixed-language ready designs
is to always follow the mixed-language mapping table at the external
interfaces, and avoid types that do not have any equivalent type in
other languages. For example, sc_fixed types should be avoided at
external interfaces of a SystemC design block, because they don’t
have any equivalence in SystemVerilog or VHDL. Connecting such
blocks involve tricky wrappers which are more error prone.

Following the mapping table at the boundaries will allow
components to be reused without modification from the block level
to the system level in a scalable way. Restrictions on the use of
certain features from certain languages provide uniformity and avoid
some common pitfalls.

Authors also recommend re-use of common packages for sharing
signal/variable values across mixed boundaries. Mixed-language
designs should be able to directly include the equivalent object
model for data types defined in packages (or header files). For
example, if an IP is written in VHDL, and uses types defined in a
VHDL package, compatible data types can be imported to define SC
or SV variables and constants, while writing a test bench for that IP.

Section 3.1 of this paper should be referred for the recommended
data types to facilitate re-use of the created design in a mixed-
language environment.

5.2.2 Mixed language hierarchy
Authors recommend direct instantiation and SystemVerilog bind
construct as the preferred ways of developing a hierarchy with mixed
language components i.e. SV-VHDL, SV-SC, or SC-VHDL. There
are other EDA vendor specific ways to allow communication
between cross boundary components like system task, which are not
considered here.

5.3 Language Semantics
Ensuring the correctness across mixed components is a key
requirement and this can be ensured by avoiding the following at the
external interfaces:

a) Events, classes, and other such types, which do not have
any equivalence in all the languages, to appear at external
interfaces.

b) Ensuring outputs at mixed boundaries are registered.
c) 2 state types being driven by 4 state types.
d) Multiple identifiers having the same case-insensitive name.
e) Reserved keywords of all other language.
f) Unnamed port declarations.
g) External interface defined as a SystemVerilog interface.
h) Parameterized types.
i) SystemVerilog parameters without types.

5.3.1 Classes
Classes should be avoided at external interfaces. However, classes
offer some significant benefits because of which it sometimes
becomes indispensable. If classes must be used at any external
interface, designers must be aware that classes don’t have any
equivalent type in VHDL. As such, they’ll have to do extra work
while connecting the developed design in a mixed-language
environment while connecting it to a VHDL block.

Classes allow coupling at a higher level of abstraction which enables
complex components to work together seamlessly, obviating any
extra piece of code required to map complex aggregate types to
scalar data types at interfaces. It also helps designers to partition
complex designs at any logical boundary that makes best use of both
languages.

Since all class declarations must precisely correlate with classes
declared across the language boundary, a class must not use
constructs that are not available in classes in the other language. For
example, SystemC classes with overloaded functions will not be

allowed at the mixed-language boundary, as function overloading is
not allowed in SystemVerilog.

Table 2 shows compatible class constructs in SV and SystemC to
assist designers and mixed-language design EDA tools relate cross-
HDL data types.

Table 2: Corresponding Class Constructs
SystemVerilog SystemC

base class(extends) base class(public)
virtual base class virtual base class
class property public data member
local class property private data member
protected class property protected data member
static class property static data member
const class property const data member
class method public member functions
constructor(new) constructor
static class method static member function
parameterized classes class template

Some SystemC class constructs (such as multiple inheritance, friend
declarations, and copy constructors) do not have equivalent
constructs in SystemVerilog and, hence, may not be allowed for
classes crossing the language boundary.

5.3.2 Events
The equivalent of a SystemVerilog event is sc_event in SystemC, but
there is no equivalent type for an event in VHDL. As such, use of an
event should be avoided at external interfaces while writing a design.
However, since an event equips designers with some very powerful
features, which are not available otherwise, it cannot be completely
dispensed with in some situations. An event should only be used at
an external interface if it is guaranteed that the design will never be
connected to VHDL in the VE or SoC.

An event passed across the SystemC-SystemVerilog interface
follows the same semantics as used for passing regular data types.
Passing an event leads to creation of an event in the other language.
These two events point to the same underlying synchronization
object, so triggering one will trigger its counterpart. As described in
the SV LRM, assigning an SV event to the special value of NULL or
to another event will break the link with the SystemC event.

5.3.3 Non-32 bit integer types
Since the only integer type available in VHDL is a 32 bit 2-state
signed integer, integer types of sizes other than 32-bits (e.g. SV
shortint, SV longint, SC short, SC long long, etc.) should be avoided
at external interfaces to avoid issues arising due to range of data at
the mixed-language boundary.

6. MIXED-LANGUAGE IN THE INDUSTRY

This section presents the results of our customer survey highlighting
the challenges they face while integrating mixed-language in their
designs, and the general trends that are prevalent in the industry.

A common observation that we made from customers across all
regions is that they do not integrate mixed-language in their design
by choice. Most of the time, they are forced to work on mixed-
language boundaries in their designs either because they’re

integrating a third party IP, or because they want to use some legacy
code written in another language. There is a fairly good correlation
between re-using components in a design and introducing mixed-
language boundaries. Increasing the amount of re-use generally leads
to an increase in the number of mixed-language boundaries in a
design.

The biggest problem that designers face during mixed-language
integrations is the lack of a standard. There is no LRM for mixed-
language interactions, which forces designers to be dictated by the
use models followed by EDA tools. These use-models vary from
vendor to vendor, making their designs customized to a particular
vendor. What works in one vendor’s tool is not guaranteed to work
exactly the same way in the other. What the industry desperately
needs at this point of time is a standard way of making mixed-
language connections.

Each language has its own set of rules and semantics, and the
moment flow crosses the language boundary, rules of the other
language take over. While a designer writes his blocks keeping in
mind an environment written in a single language, and expects them
to work in a certain way; the moment the other language takes over,
they are not guaranteed to work in the same way. This leads to some
intricate scenarios, which need careful handling on a case by case
basis, often requiring some very interesting solutions like adding
extra buffers at the boundary, creating extra wrappers, changing the
method of connection, etc.

We found that the most popular methods of making mixed-language
connections are direct-instantiation, because of the simplicity of its
use-model, and SystemVerilog bind construct, because of the
flexibility it offers to the users. Designers also often use VHDL
configurations calling Verilog configurations, or vice-versa, in their
designs to connect a Verilog region with a VHDL region.

Designers are also finding re-using packages across the SV-VHDL
language boundary, i.e. either writing a package in SystemVerilog
and including it directly in VHDL, or writing a package in VHDL
and importing it directly in SystemVerilog, a very effective
technique for mixed-language integrations.

7. CONCLUSION

The productivity of complex hardware system designs directly
depend on reusable components. The reusability of cross language
IPs is crucial in coping with the challenges in ASIC as well as FPGA
domains. The proposed guidelines and recommendations on ways of
writing a design will aid in its integration in a mixed-language
Verification Environment, or with other blocks written in different
languages in a SoC. The extensions to the type of reusability by
importing cross-HDL packages (and SystemC header files) and
raising the abstraction level during component reuse will result in
complex mixed designs which will be far better and efficient than
single HDL designs. The idea can be realized to take advantage of
unique design and verification features offered by different
languages without rewriting functionality available with legacy IPs.

8. REFERENCES

[1] SystemVerilog LRM IEEE 1800-2005 (www.systemverilog.com)
[2] VHDL LRM IEEE 1076-2002 (www.vhdl.org)
[3] SystemC LRM IEEE 1666-2005 (www.systemc.org)
[4] Rudra Mukherjee and Sachin Kakkar, “System Verilog – VHDL Mixed

Design Reuse Methodology”, DVCon 2006.
[5] Rich Edelmen, Mark Glassar, et al. “Inter Language Function Calls

Between SystemC and SystemVerilog”, DVCon 2007
[6] Rudra Mukherjee, Gaurav Kumar Verma, et al. "SystemC Mixed-HDL

IP Reuse Methodology", IP-07
[7] Gaurav Kumar Verma and Rudra Mukherjee, “Adding New Dimensions

to Verification IP Reuse”, DVCon 2009

