
COMPREHENSIVE SYSTEMVERILOG-SYSTEMC-VHDL 
MIXED-LANGUAGE DESIGN METHODOLOGY 

 
 

Rudra Mukherjee 
Mentor Graphics Corporation 
rudra_mukherjee@mentor.com 

 

Gaurav Kumar Verma 
Mentor Graphics Corporation 

gaurav-kumar_verma@mentor.com 
 

Sachin Kakkar 
Mentor Graphics Corporation 
sachin_kakkar@mentor.com 

 
 
 
ABSTRACT  
Due to increased complexity in today's SoC designs, the importance 
of design reuse, verification, and debug becomes inescapable. 
SystemVerilog [1], VHDL [2], and SystemC [3] have unique 
strengths which make them more suitable to certain application 
domains. Mixed-language designs are proliferating because 
designers want use the powerful features of one language for creating 
test benches for designs written in the other language. Diversity of 
design teams with their different preferences, and integrating a 
growing number of IP blocks in a SoC, often written in different 
languages, also leads to a mixed-language scenario. 
 
This paper provides guidelines and recommends an industry-proven, 
standardized way of writing a mixed-language design which will also 
aid in its integration in a mixed-language Verification Environment. 
The concept of SystemVerilog constrained testing and other 
SystemC verification offerings are combined with various VHDL 
constructs for design to build a verification environment with a 
common look and feel. This approach decouples the IP development 
from any stand alone RTL design development and ensures that the 
new IPs can operate and fully verified in mixed-language 
environment. 
 
Beyond describing how to create and verify such IPs, this paper also 
describes how such compliant test benches are rapidly composed 
based on reusing existing components and other generic verification 
components, such as scoreboards and reference models. 
 
The concepts presented in this paper provide a standard way of 
writing IPs and ensure that no glue is required. It allows components 
to be reused without modification in a scalable way. Restrictions on 
the use of certain features from certain languages provide uniformity 
and avoid some common pitfalls.  
 
These features are comprehensive enough to provide an efficient 
framework for the design & verification of large and complex 
designs, all the way from the block to the system level. 
 

 

1. INTRODUCTION 
 
Current Design and Verification framework is very flexible and 
allows verification components to be written in many different ways, 
including different languages. As a result it can be difficult to 
combine and reuse existing verification components coming from 
different sources and it often requires a considerable amount of effort 
to glue them together. 
 
While adding numerous new tools for verification and design to an 
engineer’s toolbox, SystemVerilog, VHDL, and SystemC also 
challenges the engineer with a steep learning curve and an increased 
amount of complexity in the areas of languages, tools and 
methodologies; something that initially threatens to lower 
productivity, often significantly. To address these challenges, it is of 
great importance to be able to employ a high degree of reusability in 
designing and verification of components; which necessitates the 
need for a mixed-language environment. 
 
Before starting the designing process, the unique strengths and 
weaknesses of different languages must be studies carefully to decide 
which language is most suitable for writing particular components of 
an IP. The first section of this paper discusses these unique strengths 
and weaknesses offered by the different languages. 
 
The second section of the paper lays the foundation for supporting 
interactions between different languages by identifying equivalent 
types and defining rules for mapping these types. It discusses ways 
to import a package in any language irrespective of the language of 
origin. Importing a package across the language boundary makes all 
data-types, constants and functions available in the other language as 
if they were written in that language. 
 
Section four presents all the different ways available today for 
making mixed- language connections, while discussing some 
common as well as not so common, but useful, techniques that 
designers can directly use to increase the efficiency of their mixed-
language connections. Practical examples with scaled down versions 
of real world designs will be used to cover the aspects that designers 
need to understand while introducing mixed-language in their 
designs, and discuss methodologies to help him do so efficiently. 
 
Section five discusses the guidelines and recommends an industry-
proven, standardized way of writing mixed-language design and 
verification. The concept of SystemVerilog constrained testing and 
other SystemC verification offerings are combined with various 
VHDL constructs for design to build random verification 
environment with a common look and feel.  
 



A customer case study is presented in section six of the paper 
highlighting productivity improvement results from real world 
mixed-language designs integration. 
 

2. UNIQUENESS OF LANGUAGES 
 
SystemVerilog [1], VHDL [2] and SystemC [3] have unique 
strengths which make them more suitable to certain application 
domains. This section discusses the unique strengths and weaknesses 
of different languages to help designers decide which language is 
most suitable for writing particular components of their IPs. 
 
2.1 SystemVerilog 
One of the most important languages to emerge for advanced design, 
verification, and modeling is IEEE STD 1800 SystemVerilog with its 
advanced verification, modeling and hardware design capabilities. It 
equips verification engineers with several tools like random 
constraints, assertions, and functional coverage to help write not only 
the designs but also test benches with ease. 
 
SystemVerilog also offers an advanced support for interfaces, by 
offering it as a separate construct in the language. This, together with 
support for classes and inheritance facilitates multiple abstraction 
levels, which eases reuse of components. 
 
It also offers named events, dynamic process creation, semaphores, 
mailboxes, associative arrays, and a direct C language interface, 
making it a popular language of choice for verification engineers. 
 
2.2 VHDL 
IEEE STD 1076-2002 VHDL needs no introduction. It has been, and 
still is in some parts of the globe, the preferred language of choice 
for writing designs.  VHDL is a strongly and richly typed language.  
It is derived from the Ada programming language which makes it so 
much more verbose than SystemVerilog and VHDL, that the designs 
written in VHDL are often self-documenting. Since VHDL 
emphasizes on unambiguous semantics, race conditions, as a artifact 
of the language and tool implementation, are not a concern for 
VHDL designs. 
 
The explicit support for physical types, FPGA library, ability to 
define signal/net resolutions and a strong support for configurations 
makes it a strong contender wherever these features are essential. 
 
The new standards of VHDL are aimed at adding test bench and 
extended assertion capabilities to the language; the two areas where 
it lags behind SystemVerilog and SystemC. 
 
2.3 SystemC 
IEEE STD 1666 SystemC is another important language, with its 
powerful modeling features and tight links to the C/C++ 
programming languages. SystemC is essentially a set of C++ classes 
and macros which provide an event-driven simulation kernel in C++. 
Although it is strictly a C++ class library, SystemC is often viewed 
as being a language in its own right. Together with SystemC 
Verification Library (SCV), it offers several test bench features like 
random constraints, and assertions which make it the language of 
choice for writing test benches. 
 
SystemC is generally used for system-level modeling, architectural 
exploration, performance modeling, software development, 
functional verification, and high-level synthesis. SystemC is often 

associated with Electronic system level (ESL) design, and with 
Transaction-level modeling (TLM). 
 

3. LAYING THE FOUNDATION 
 
The challenge faced by many SOC teams is how to use these 
languages together for mixed-language, mixed-abstraction level 
verification. 
 
In this section, we will discuss using these three very capable 
languages for verification, RTL design, and modeling, in a mixed-
language environment. 
 
3.1 Sharing Types 
Data types play a vital role in connecting mixed-language 
components. They form the backbone of signals that are used to 
transfer data across the language boundary. It is very important that 
the types connected across the boundary share an equivalent data 
representation model. 
 

 
Figure 1: Using types across the boundary 

 
While SystemVerilog and VHDL allow defining user-defined data 
types inside packages, SystemC allows defining user-defined data 
types inside header files. Designers should be able to directly include 
the equivalent object model for data types defined in packages (or 
header files), in any language to any other language, facilitated by 
the mixed-language design tools. For example, if an IP is written in 
VHDL, and uses types defined in a VHDL package, compatible data 
types can be imported to define SystemC variables and constants, 
while writing a test bench for that IP. 
 
Example: SystemVerilog data types import 
SystemVerilog Package 
package sv_pack; 
   typedef struct { 
       int flags; 
       bit[0:31] data; 
       bit[0:31] addr; 
   } record_t; 
endpackage 
 
SystemC Module 
SC_IMPORT(std_logic_1164); 
SC_IMPORT(vhdl_pack); 
 
//Data-Types imported from SV 
record_t in1; 
const record_t a = {0, 0}; 
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Table 1 explores compatible data types in SV, VHDL, and SystemC 
to assist designers and mixed design EDA tools to relate cross HDL 
data types. 
 

Table 1: SV-SC-VHDL Compatible Data Types 
SystemVerilog VHDL SystemC 

bit 
logic 
reg 
wire 

bit 
std_logic 
boolean 

sc_bit 
sc_logic 
bool 

bit vector 
logic vector 
reg vector 
wire vector 

bit_vector 
std_logic_vector 

sc_bv<n> 
sc_lv<n> 

int integer int 
shortint integer short 
longint integer long long 
byte integer char 
enum enum enum 
struct record struct 
real real double 
shortreal real float 
char character char 
class N.A. class 
union N.A. union 
shortint (W=16) 
int (W=32) 
longint (W=64) 
bit vector 

integer (W=32) 
bit_vector 

sc_int 
sc_uint 
sc_signed 
sc_unsigned 
sc_bigint 
sc_biguint 

 
3.2 Operator Overloading 
All three languages, i.e. SystemVerilog, VHDL and SystemC, allow 
operator overloading. The need for operator overloading arises from 
the fact that the operators in the language are defined only for 
operands of some predefined type. Operator overloading can be used 
in conjunction with data-type import to allow the defined arithmetic 
operators to be applied to the imported data types, such as structures, 
unions, classes, and enumerations. 
 
Example: 
SystemVerilog 
bind == function ethernet_frame comp_frames (ethernet_frame, 
ethernet_frame); 
 
SC Module 
SC_IMPORT(ethernet_ip_pack); 
 
ethernet_frame frame1, frame2; 
… 
// implicit call to overloaded SV “==” operator 
if (frame1 == frame2) ... 
 
3.3 Procedures and Overloaded Functions 
While VHDL provides subprogram facilities in the form of both 
procedures and functions, SystemVerilog provides these facilities in 
the form of tasks and function. SystemC extends all the functionality 

of C++ when it comes to support for functions. This allows reuse of 
procedures, tasks and functions in an efficient and intuitive manner. 
 
While calling tasks, functions or procedures with complex argument 
types across the language boundary, equivalent data types can be 
specified as argument types to any of the argument types. 
 
Example: SystemC using VHDL procedure. 
VHDL Package 
package vhdl_pack is 
-- VHDL procedure declaration 
procedure word_32_or (driver1, driver2 : in 
word_32; en: in bit := '0'; or_out : out bit ); 
end vhdl_pack; 
 
SC Module 
SC_IMPORT(vhdl_pack); 
... 
void module_func() { 
// function interface for VHDL subprogram call. 
word_32_or(data1, data2, 1, &sum_or); 
end 
 

4. METHODS TO CONNECT MIXED-
LANGUAGE IP BLOCKS 

 
Often designers are not aware of various mixed-language design 
integration options. Other times the knowledge on various options is 
available, but it is difficult for a user to choose the best suitable 
option based on their mixed language design scenario. This difficulty 
in mixed-language IP integration and reuse often leads to finding 
issues late during the design cycle, which impacts the overall 
productivity. In this section we will introduce the five methods for 
making mixed-language connections and discuss their pros and cons. 
 
4.1 Direct Instantiation 
In the direct instantiation method, an IP block written in any 
language is instantiated directly inside the target IP block (written in 
any language) within the SoC. Here the instantiation statement 
follows the syntax of the target IP block, as if the instantiated IP 
block was written in the same language as the target IP block. 
 
Example: 
Clock Generator IP Block 
module clockgen # (parameter period = 5 …)  
(input period, input delay,  input duty_cycle, output clk); 
  … 
endmodule 
 
Instantiating  Clock Generator IP Block inside VHDL Stimulus 
Generator 
clockgenInst: entity clkgenlib.clockgen port map(clk => clk); 
 
4.2 Integration through Configuration 
Configurations specify how a design is assembled during the 
elaboration phase of simulation. The sheer power offered by 
configurations offers incredible flexibility to designers while making 
mixed-language integrations. 
 
A Verilog configuration can be referenced in the VHDL region as 
though it was a VHDL configuration, and vice versa. It can also be 
referenced in the configuration aspect of a VHDL component 



configuration by just specifying a Verilog configuration name 
instead of a VHDL configuration name. 
 
Example: 
VHDL Entity top 
entity top is 
end entity; 
architecture arch of top is 
begin 
   stiminst : vh_stimgen; 
   clkinst : vh_clkgen; 
end architecture arch; 
 
Verilog Configuration vl_stimgen_config 
config vl_stimgen_config; 
   design work.vl_stimgen; 
   instance vl_stimgen.gen_data use work.vh_gen_data; 
endconfig 
 
VHDL Configuration to Configure Instances stiminst & clkinst 
configuration conf1 of top is 
for arch 
  for clkinst : vh_clkgen use entity work.vl_clkgen; 
  end for; 
  for inst1 : vh_stimgen use configuration work.vl_stimgen_config; 
  end for; 
end for; 
end; 
 
4.3 SystemVerilog Bind Construct 
The SystemVerilog bind construct provides an IP block access to 
both external ports and internal signals in the target IP block. The 
selected and target IP blocks can be written in any design language. 
This method provides a powerful capability that, together with a 
specifically designed use-model, can be used to conveniently connect 
the two IP blocks independent of their languages. The SystemVerilog 
bind construct is increasingly becoming the preferred method for 
connecting IP blocks in SoC’s today, as it offers hook-up 
connections between two IP blocks without requiring their source 
code to be present. 
 
Example: 
Clock Generator IP Block 
module ClockGen # (parameter period = 5) (input output clk); 
  … 
endprogram 
 
Binding Clock Generator IP Block to SystemC Stimulus Generator 
bind StimGen ClockGen clockgenInst(.clk(clock)); 
 
4.4 SystemC Verification Connect 
SystemC Verification Connect is a powerful construct that allows 
connection of signals across the hierarchy of a SystemC IP block to 
any other signal across the hierarchy of another IP block written in 
SystemVerilog or HDL. It can also be used on pre-compiled 
SystemVerilog and HDL IP blocks, but the SystemC IP block where 
scv_connect() constructs are used must have source-code visibility. 
This method cannot be used on compiled IP blocks. 
 
Example: 
Clock Generator IP Block 
module clockgen #(parameter period = 5) (input output clk); 
  … 
endprogram 

Using SCV_Connect to Connect Clock inside SystemC Stimulus 
Generator 
scv_connect(clk, “/clkgeninst/clk”, SCV_INPUT); 
 
4.5 SC-DPI 
The SystemC Direct Programming Interface (SC-DPI) method 
provides an interface between SystemVerilog and SystemC that 
facilitates inter-language function calls. This means a SystemVerilog 
IP can call a function defined in a SystemC IP, and vice versa. It is a 
fast and suitable technique of connecting SystemVerilog IP blocks 
with SystemC IP blocks that have their external interfaces defined in 
the form of methods only. 
 
Example: 
SystemC Stimulus Generator 
sc_module (sc_stimgen) { 
... 
    return_status gen_stim(void); 
... 
}; 
 
Importing the SystemC Method ‘gen_stim' in SystemVerilog: 
import "SC-DPI" function return_status gen_stim(); 

 
5. RULES AND GUIDELINES 

 
This section provides guidelines and recommends industry-proven, 
standardized ways of writing a design which will aid in its 
integration in a mixed-language Verification Environment, or with 
other blocks written in different languages in a SoC.  
 
5.1 Choice of Hardware Verification Language 
SystemVerilog with its advanced verification capabilities like 
random constraints, assertions, and functional coverage is 
recommended as language to write re-usable test benches for new 
IPs.  
 
VHDL designs are recommended for designing IPs that is used in 
critical applications. Its unambiguous semantics reduces the chances 
of race conditions, glitches and timing violations in a design. 
 
SystemC language is recommended wherever there is a need for tight 
linking with existing C/C++ based verification components. The 
authors do not recommend this language for synthesizable design 
because it based on C++ classes which are not yet synthesized by 
any industry standard tool. SystemC along with its various 
verification components (SCV) are recommended for Electronic 
system-level (ESL) modeling, architectural exploration, performance 
modeling, software development. 
 
5.2 Inter-Language Communication 
This section discusses the guidelines with the perspective of inter-
language communication. 
 
5.2.1 Type Compatibility 
The most imperative rule for writing mixed-language ready designs 
is to always follow the mixed-language mapping table at the external 
interfaces, and avoid types that do not have any equivalent type in 
other languages. For example, sc_fixed types should be avoided at 
external interfaces of a SystemC design block, because they don’t 
have any equivalence in SystemVerilog or VHDL. Connecting such 
blocks involve tricky wrappers which are more error prone. 



Following the mapping table at the boundaries will allow 
components to be reused without modification from the block level 
to the system level in a scalable way. Restrictions on the use of 
certain features from certain languages provide uniformity and avoid 
some common pitfalls. 
 
Authors also recommend re-use of common packages for sharing 
signal/variable values across mixed boundaries. Mixed-language 
designs should be able to directly include the equivalent object 
model for data types defined in packages (or header files). For 
example, if an IP is written in VHDL, and uses types defined in a 
VHDL package, compatible data types can be imported to define SC 
or SV variables and constants, while writing a test bench for that IP. 
 
Section 3.1 of this paper should be referred for the recommended 
data types to facilitate re-use of the created design in a mixed-
language environment. 
 
5.2.2 Mixed language hierarchy 
Authors recommend direct instantiation and SystemVerilog bind 
construct as the preferred ways of developing a hierarchy with mixed 
language components i.e. SV-VHDL, SV-SC, or SC-VHDL. There 
are other EDA vendor specific ways to allow communication 
between cross boundary components like system task, which are not 
considered here. 
 
5.3 Language Semantics 
Ensuring the correctness across mixed components is a key 
requirement and this can be ensured by avoiding the following at the 
external interfaces: 

a) Events, classes, and other such types, which do not have 
any equivalence in all the languages, to appear at external 
interfaces. 

b) Ensuring outputs at mixed boundaries are registered. 
c) 2 state types being driven by 4 state types. 
d) Multiple identifiers having the same case-insensitive name. 
e) Reserved keywords of all other language. 
f) Unnamed port declarations. 
g) External interface defined as a SystemVerilog interface. 
h) Parameterized types. 
i) SystemVerilog parameters without types. 

   
5.3.1 Classes 
Classes should be avoided at external interfaces. However, classes 
offer some significant benefits because of which it sometimes 
becomes indispensable. If classes must be used at any external 
interface, designers must be aware that classes don’t have any 
equivalent type in VHDL. As such, they’ll have to do extra work 
while connecting the developed design in a mixed-language 
environment while connecting it to a VHDL block. 
 
Classes allow coupling at a higher level of abstraction which enables 
complex components to work together seamlessly, obviating any 
extra piece of code required to map complex aggregate types to 
scalar data types at interfaces. It also helps designers to partition 
complex designs at any logical boundary that makes best use of both 
languages. 
 
Since all class declarations must precisely correlate with classes 
declared across the language boundary, a class must not use 
constructs that are not available in classes in the other language. For 
example, SystemC classes with overloaded functions will not be 

allowed at the mixed-language boundary, as function overloading is 
not allowed in SystemVerilog. 
 
Table 2 shows compatible class constructs in SV and SystemC to 
assist designers and mixed-language design EDA tools relate cross-
HDL data types. 
 

Table 2: Corresponding Class Constructs 
SystemVerilog SystemC 

base class(extends)  base class(public)  
virtual base class  virtual base class  
class property  public data member  
local class property  private data member  
protected class property  protected data member  
static class property  static data member  
const class property  const data member  
class method  public member functions  
constructor(new)  constructor  
static class method  static member function  
parameterized classes  class template  

 
Some SystemC class constructs (such as multiple inheritance, friend 
declarations, and copy constructors) do not have equivalent 
constructs in SystemVerilog and, hence, may not be allowed for 
classes crossing the language boundary. 
 
5.3.2 Events 
The equivalent of a SystemVerilog event is sc_event in SystemC, but 
there is no equivalent type for an event in VHDL. As such, use of an 
event should be avoided at external interfaces while writing a design. 
However, since an event equips designers with some very powerful 
features, which are not available otherwise, it cannot be completely 
dispensed with in some situations. An event should only be used at 
an external interface if it is guaranteed that the design will never be 
connected to VHDL in the VE or SoC. 
 
An event passed across the SystemC-SystemVerilog interface 
follows the same semantics as used for passing regular data types. 
Passing an event leads to creation of an event in the other language. 
These two events point to the same underlying synchronization 
object, so triggering one will trigger its counterpart. As described in 
the SV LRM, assigning an SV event to the special value of NULL or 
to another event will break the link with the SystemC event. 
 
5.3.3 Non-32 bit integer types 
Since the only integer type available in VHDL is a 32 bit 2-state 
signed integer, integer types of sizes other than 32-bits (e.g. SV 
shortint, SV longint, SC short, SC long long, etc.) should be avoided 
at external interfaces to avoid issues arising due to range of data at 
the mixed-language boundary. 
 
6. MIXED-LANGUAGE IN THE INDUSTRY 
 
This section presents the results of our customer survey highlighting 
the challenges they face while integrating mixed-language in their 
designs, and the general trends that are prevalent in the industry. 
 
A common observation that we made from customers across all 
regions is that they do not integrate mixed-language in their design 
by choice. Most of the time, they are forced to work on mixed-
language boundaries in their designs either because they’re 



integrating a third party IP, or because they want to use some legacy 
code written in another language. There is a fairly good correlation 
between re-using components in a design and introducing mixed-
language boundaries. Increasing the amount of re-use generally leads 
to an increase in the number of mixed-language boundaries in a 
design. 
 
The biggest problem that designers face during mixed-language 
integrations is the lack of a standard. There is no LRM for mixed-
language interactions, which forces designers to be dictated by the 
use models followed by EDA tools. These use-models vary from 
vendor to vendor, making their designs customized to a particular 
vendor. What works in one vendor’s tool is not guaranteed to work 
exactly the same way in the other. What the industry desperately 
needs at this point of time is a standard way of making mixed-
language connections. 
 
Each language has its own set of rules and semantics, and the 
moment flow crosses the language boundary, rules of the other 
language take over. While a designer writes his blocks keeping in 
mind an environment written in a single language, and expects them 
to work in a certain way; the moment the other language takes over, 
they are not guaranteed to work in the same way. This leads to some 
intricate scenarios, which need careful handling on a case by case 
basis, often requiring some very interesting solutions like adding 
extra buffers at the boundary, creating extra wrappers, changing the 
method of connection, etc. 
 
We found that the most popular methods of making mixed-language 
connections are direct-instantiation, because of the simplicity of its 
use-model, and SystemVerilog bind construct, because of the 
flexibility it offers to the users. Designers also often use VHDL 
configurations calling Verilog configurations, or vice-versa, in their 
designs to connect a Verilog region with a VHDL region.  
 

Designers are also finding re-using packages across the SV-VHDL 
language boundary, i.e. either writing a package in SystemVerilog 
and including it directly in VHDL, or writing a package in VHDL 
and importing it directly in SystemVerilog, a very effective 
technique for mixed-language integrations.  
 

7. CONCLUSION 
 
The productivity of complex hardware system designs directly 
depend on reusable components. The reusability of cross language 
IPs is crucial in coping with the challenges in ASIC as well as FPGA 
domains. The proposed guidelines and recommendations on ways of 
writing a design will aid in its integration in a mixed-language 
Verification Environment, or with other blocks written in different 
languages in a SoC.  The extensions to the type of reusability by 
importing cross-HDL packages (and SystemC header files) and 
raising the abstraction level during component reuse will result in 
complex mixed designs which will be far better and efficient than 
single HDL designs. The idea can be realized to take advantage of 
unique design and verification features offered by different 
languages without rewriting functionality available with legacy IPs. 
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