
Comprehensive Register Description Languages
The case for standardization of RDLs across design domains

David C Black
Doulos Inc
Austin, TX

David.Black@Doulos.com

Doug Smith
Doulos Inc
Austin, TX

Doug.Smith@Doulos.com

Abstract— Registers are pervasive in the design of electronics
systems and components. Many systems contain literally
hundreds of registers. The ability to quickly model registers in
a variety of formats is extremely useful. There are many use
cases for modeling registers ranging from software that access
registers to the fundamental design and verification issues.
Simply having a register accurate model of the hardware often
suffices to allow early software design without many of the
details behind the registers. It also happens that register
descriptions and functionalities are remarkably simple to
describe, and is often described in a tabular form in
specifications. Mapping from register description tables to
implementation is fairly straight forward, but tedious due to
the sheer number of registers present in designs. Fortunately,
since the number of variations is fairly small, the task is
automatable. A formal Register Layer as promoted by UVM
and others can help because it provides a basis to automated
tools (i.e. EDA) to work from.

We open with a review of various use cases that benefit from a
Register Description Language (RDL) and provide motivations
for the development of a RDL. Use cases include System Level
(architectural), Virtual System Platforms, verification, High
Level Synthesis (HLS), RTL, verification, embedded software,
validation and even design for test. This establishes a
framework for discussion of features that need to be accounted
for.

The paper then examines the features needed in order to
support the use cases. For example, register and bit
addressability, back-door access, notification, model
performance and overhead. The goal is to broaden the view of
registers from beyond any one discipline.

Currently, there are a number of propriety register solutions
(some open source) available with a variety of input and output
formats. For example, UVM provides a framework for
creating registers as a part of the verification environment.
Larger commercial vendors (e.g. Cadence, Mentor, Synopsys)
and a variety of small commercial vendors (e.g. Duolog,
Semifore, and others) supply frameworks, methodologies and
tools to address the issues, but they tend to address niche
solutions (i.e. a subset of the use cases) and use proprietary
formats (i.e. not portable across domains). Additionally, the
author is aware of numerous internal solutions by user
companies. A few standards (e.g. Spirit IP-XACT, SystemRDL,
and UVM), provide partial solution to this problem area as
well. An overview of some current standards activities relating
to RDLs will be presented (e.g. Accellera SystemRDL, OSCI’s

CCI). This paper provides an overview of these different
solutions, relates them to the use cases, and considers their
value.

We close with a look at attributes needed to make a more
universal RDL standard, a successful approach for the EDA
industry as a whole. For example, besides the ability to rapidly
create models, and verification environments, RDL may
benefit by providing a synthesizable framework when initiating
new IP and verification frameworks to enable rapid validation
of designs. There are also considerations for software and
documentation. The paper concludes with suggestions for the
standards community on where to take RDL with a goal of
minimizing reinvention and maximizing reuse.

Keywords – Registers, ESL, Modeling, RTL, Verification,
Documentation, CSR, RDL, UVM, RDL, IP-XACT

I. INTRODUCTION
Control and Status Registers (CSR’s) or simply “registers”
are a common feature in most electronic designs. This is
particularly true of any design that includes processors and
programming.

Figure 1 Example of registers in a system

1 of 6

Figure 1 is a common diagram of any modern system, and
graphically spells out the presence of registers throughout
evan a small portion of a design. It is not uncommon for
designs to have hundreds of registers for the control and
observation of hardware.

A CSR appears to a programmer as one or more memory
accessible storage locations, but often with very different
behavior than an ordinary memory. CSR’s may be used as a
means of data input or output. Writing to a CSR often
controls the behavior of hardware devices in the system.
Reading a CSR may obtain status information as the name
implies. Oddly to some, even the act of reading may affect or
control the operation of a piece of hardware (e.g. clearing
status or initiating an operation). In fact, reading a CSR
multiple times will often yield different information, leading
programmers to consider a CSR as volatile unlike a normal
memory.

Back in the 1980’s, one of the authors was involved in a
number of ASIC projects where it became painfully obvious
that the specification of registers was a tedious task. In those
days, we either did repetitive manual implementations or
occasionally wrote simple scripts to help automate some of
the process.

More recently, tools have begun to show up commercially to
address these issues, but most of these tools show up in
different application domains. For example, software tools
help manage register management for embedded design,
hardware designers have tools to help describe register
description. Architects are starting to see tools that help with
the specification. In most cases, the tools are somewhat
narrow in their scope, and miss all the applications.

II. TERMINOLOGY
Before proceeding much further it is good to establish some
terminology.

CSR – Control and Status Register, a

ESL – Electronic System Level of abstraction includes TLM
and above. Used by architects to describe a system at a more
vague level than RTL. May include timing or may be
untimed.

HDL – Hardware Design Language

HVL – Hardware Verification Language

RAL – Register Abstraction Layer

RDL – Register Description Language

Register – used by itself usually refers to a CSR

RTL – register transfer level of abstraction

SoC – System on a Chip

SVA – System Verilog Assertions

TLM – Transaction Level Modeling describes a model in
terms of transactions and high level function calls rather than
wires and low-level interconnect.

Verification – refers to the process of verifying that the
hardware design (RTL) matches the specification. Focused
on functional correctness and finding design bugs at a
detailed level.

Validation – a process that occurs usually at the end of the
design process using the real hardware to confirm
performance and functional characteristics match the original
specification.

III. PROBLEM
Any discussion with other engineers will confirm that
copying or cut-n-paste is a common engineering practice
when dealing with any sort of repetitious design, and register
design follows that pattern. This process is error prone.

Another concern is how pervasive registers are as they affect
the design process in many application domains. Registers
affect all of the following areas:

 Specification in multiple areas

 Hardware Implementation

 Software Implementation

 Verification

 Validation

 Documentation (sometimes even end-users)

 Power (retention and activity)

 Debug

 IP

There is a need for a solution that addresses all of the
preceding in a consistent and compatible manner. It is
important to recognize that these domains may use different
“languages” including but not limited to:

Architects – C/C++, UML (possibly SysML), SystemC

Software – typically C/C++ or Java

Verification – SystemVerilog, PSL, e, Vera

Hardware – Verilog, VHDL, SystemVerilog

Of course it is also important to recognize natural language
barriers in terms how architects, programmers and engineers
understand the design issues. The goal is to assure no
surprises, and these language issues can be fundamental
causes.

Another problem has to do with the size and complexity of
register designs. Modern designs often contain hundreds to
thousands of registers in a single design. Subsystems may
contain fewer, but even dealing with tens of registers is error
prone. Part of the issue is simplifying the descriptions and
making them more concise at the same time.

The acquisition of complex IP, whether internal or external,
leads to even more problems because designers need to
address issues with address maps and behaviors in designs
not of their own making.

2 of 6

There are also problems with relationships among registers.
Often there are dependencies on the order of access or
interactions between configurations/status of different
registers. These need to be expressed and understood by all
the design domains. Along similar lines, addressing from
some designs can be dynamic. In other words, the register
address may be configurable via another register, or possible
based on external switching or connections.

Finally, there is the issue of design maintenance. As a design
progresses, there are often design changes to registers.
Additions or modifications to the registers need to be
propagated to the entire design hierarchy consistently.

To summarize the problems we see:

1. Error prone process

2. Inability to share across design domains

a. Design language

b. Domain language

3. Sheer size dictates need to simplify description

4. Problems with integrating and collaborating with
register designs from different sources

5. Problems communicating register interactions

6. Problems with incremental updates to the entirety

IV. HISTORY & LITERATURE
It is worth looking as some of the available history and
literature on this subject.

The earliest paper I could easily locate was a paper presented
to the Synopsys User’s Group (SNUG) conference in 2006
by Julian Gorfajn, an employee of Maxtor at the time. The
paper outlined two generations of tools used internally to
manage the problems described here. They created two
different input languages and then generated a variety of
outputs. The tools and specification remained proprietary.

A year later, a paper presented by Cisco at DVCon outlined
another internal tool effort. It was strikingly similar to the
Maxtor effort; however, apparently quite independent as
confirmed by telephone interviews conducted with the
authors of both papers. One very positive aspect of the Cisco
effort is that Cisco recognized it was not in their best interest
to develop EDA tools and they wanted to divest themselves
of maintenance and perhaps create an eco-system to support
the concept. This resulted in two transfers of the technology.
First, they transferred the tool to Denali, but with the
stipulation that the input format be standardized. As a result,
they started the SystemRDL effort with Accellera.

In 2005, the standard was formalized and became an official
Accellera standard; however, it has yet to be submitted to the
IEEE. In addition to the formal standard, there is an ANTLR
specification available for download. ANTLR is a language
used to specify languages that provides a modern alternative
to the tried and true LEX and YACC.

The book Hardware/Firmware Interface Design ©2010 by
Gary Stringham provides some excellent advice on how

hardware and software teams should work together, and lots
of best practices for hardware. It should probably be required
reading for anybody involved in the specification and design
of hardware.

V. AVAILABLE SOLUTIONS
There are a number of available tools and technologies that
offer partial solutions, but all of them tend to fall somewhat
short of a comprehensive solution. This is partly because
they each embrace a proprietary input format, which tends to
exclude the ability to share designs with groups that do not
use the selected technology. This section explores some of
the issues with each of these offerings. The URL
www.garystringham.com/rdt.shtml provides an excellent
collection of this information focused on tools. Here is a
summary with a focus on the input languages used to
describe registers and the outputs available.

A. Open Source
Reggen – An Google project that creates RTL from an XML
format taken from stylized Excel spreadsheets. Not mature.

UVM RGM – A Cadence package released under Apache
2.0 license that contains an implementation of the UVM
Register Layer and a converter that reads IP-XACT and
outputs SystemVerilog utilizing the UVM Register Layer.
There is an implication where System RDL is supported.

UVM Register Layer – The register layer of UVM is not a
register description language, but rather an API to support
verification of registers in the universal verification
methodology.

B. Standards
IEEE 1685 IP-XACT – A standard created by the SPIRIT
consortium (now Accellera) that defines a schema for
describing components with their registers for configuration
and integration. The IP-XACT format has a limited syntax
for describing registers, but it can be extended using
proprietary vendor extensions.

SystemRDL – A standard created by Accellera, which
includes an ANTLR description. No tools are provided;
however, the ANTLR provides a good basis for the creation
of tools.

SystemC CCI – Currently under development in the
Accellera Systems Initiative, the Configuration, Control and
Inspection standard represents a standard API for tools and
models to configure and control parameters in simulation
models. While not directly addressing registers, there have
been uses of this to set parameters that are often put into
device registers.

C. Commercial
Duolog Bitwise – A graphical, Java-based tool built upon
the Eclipse platform for graphically entering and maintaining
register descriptions in a design. Bitwise read in SPIRIT IP-
XACT format, and outputs most common output formats,
including generating documentation for functional
specifications.

3 of 6

Semifore CSRcompiler - A command-line tool that reads in
register descriptions in IP-XACT, SystemRDL, Excel, or
CSRSpec language. Like other commercial tools, various
target outputs are supported and documentation and
verification models can be generated.

Cadence Verification Builder – A graphical tool for building
verification components including register models. Supports
multiple languages for outputs like e, SystemVerilog, and
SystemC.

Mentor Certes Testbench Studio (Register Assistant) – A
graphical tool that can read in CSV, IP-XACT, or XML and
generate a UVM register model and documentation.

Agnisys IDesignSpec – A register model generator
supporting input formats like SystemRDL, IP-XACT, XML,
and CSV. Many outputs can be generated and IDesignSpec
can be used as a command-line tool or office-suite plug-in.

Synopsys Ralgen – A command-line tool that reads in a
register description in IP-XACT or RALF format. Provided
free for VCS simulator users or with Synopsys’ VMM open
source download.

VI. DESIRED CHARACTERISTICS
Several desired characteristics are needed in any real
solution:

1. Flow and ease of integration

2. Simplicity and learning curve

3. Cost of acquisition

4. Cost of maintenance

5. Flexibility

6. Outputs

a. Documentation (RTF, XML, MIF)

b. Synthesizable RTL (Verilog)

c. SystemC TLM for Virtual Platform

d. Verification (SystemVerilog, UVM, OVM)

e. Software definitions (C/C++, Java)

7. Standards compliance

The flow we are trying to achieve is illustrated in the
following diagram. Although, many tools allow for multiple
input sources, we believe a single source is the ideal
situation. By using a single standard, it is easier when
exchanging IP to expect a single format from the provider,
and it is easier to understand the system when there is a
single specification to learn.

Figure 2 Tool Flow based on RDL

Flow and ease of integration refers to the manner in which a
solution fits into existing design workflows and processes.
Many proprietary/private solutions start with the
documentation and move towards implementation. This is
somewhat problematic in that they usually presume a word
processor as the original input, and a formatting style to go
with it. The common word processor selections include
Microsoft Word, Adobe Framemaker, Open Office, or an
XML editor. By contrast, a formal register description
language (RDL), would allow for plain text from any source.
XML is somewhat clumsy for a human to enter by hand and
presumes some sort of entry tool to check for consistency. A
more ideal solution to this characteristic is probably a more
formalized syntax such as an RDL.

An RDL description must be able to:

1. Provide register groupings (register blocks)

2. Provide a register name

3. Identify bit fields

4. Specify reset characteristics

5. Specify read/write characteristics of fields for
software including volatility, persistence, illegal,
and ignored

6. Specify read/write characteristics with respect to
hardware

7. Identify the addressing from various points of view
(even from masters on different buses with bridges)

8. Allow description of interactions between registers
(e.g. access ordering requirements and exclusivity)

9. Specify streaming (e.g. two registers that are written
to in a ping-pong fashion)

10. Specify time ordering aspects (one register must be
read before the second)

11. Identify component instances in the hardware

12. Allow for reuse of a description of a block
definition (same register block may have several
copies)

Documen
-tation

RDL
input

EDA
Tool

RTL HDL

UVM

SystemC
Software
Development

Synthesis
Implementation

Verification
Simulation

Performance
Analysis

4 of 6

Furthermore, an RDL must be text only to allow simple
entry, have no dependence or restrictions from a GUI, be
usable for IP exchange, and encourage a tool support
ecosystem.

Consider the following two descriptions. The first is an IP-
XACT description, and the second is SystemRDL. Notice
how much simpler the SystemRDL is to read when presented
as text.

<?xml version="1.0" encoding="UTF-8" ?>
<spirit:memoryMaps
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/S
PIRIT/1.4"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.spiritconsortium.org/XMLS
chema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/ind
ex.xsd">
 <spirit:memoryMap>
 <spirit:name>some_register_map</spirit:name>
 <spirit:displayName>RDL Example
 Register</spirit:displayName>
 <spirit:addressBlock>
 <spirit:name>some_register_map</spirit:name>
 <spirit:displayName>RDL Example
 Register</spirit:displayName>
 <spirit:description>This address map
 an example register.</spirit:description>
 <spirit:baseAddress>0x0</spirit:baseAddress>
 <spirit:range>0x2000</spirit:range>
 <spirit:width>32</spirit:width>
 <spirit:usage>register</spirit:usage>
 <spirit:volatile>true</spirit:volatile>
 <spirit:register>
 <spirit:name>chip_id_reg</spirit:name>
 <spirit:displayName>This chip part
 number and revision
 #</spirit:displayName>
 <spirit:description>This register
 cotains the part # and revision #
 for XYZ ASIC</spirit:description>
 <spirit:addressOffset>0x0</spirit:addressOffset>
 <spirit:size>32</spirit:size>
 <spirit:volatile>true</spirit:volatile>
 <spirit:access>read-write</spirit:access>
 <spirit:reset>
 <spirit:value>0x12345671</spirit:value>
 <spirit:mask>0xffffffff</spirit:mask>
 </spirit:reset>
 <spirit:field>
 <spirit:name>rev_num</spirit:name>
 <spirit:description>This field
 represents the chips revision
 number</spirit:description>
 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:bitWidth>4</spirit:bitWidth>
 <spirit:access>read-only</spirit:access>
 </spirit:field>
 <spirit:field>
 <spirit:name>part_num</spirit:name>
 <spirit:description>This field
 represents the chips part
 number</spirit:description>

 <spirit:bitOffset>4</spirit:bitOffset>
 <spirit:bitWidth>28</spirit:bitWidth>
 <spirit:access>read-only</spirit:access>
 </spirit:field>
 </spirit:register>
 </spirit:addressBlock>
 </spirit:memoryMap>
</spirit:memoryMaps>

Figure 3 Example Register definition using IP-XACT

Figure 4 Example Register definition using SystemRDL

It may be argued that XML editing tools can make the IP-
XACT look simple as well; however, it is well known
practice within the industry for engineers to edit the XML
directly. Because of the complexities of XML, it is easy for
engineers to make a mistake. Also, all XML editing tools are
not alike; whereas, text formats and their editors are well
known throughout the engineering industry.

VII. CONCLUSION
Several useful register implementations are available today,
but implementations are not idyllic because they tend to
target too specific of application domains and they fail to
embody an industry standard. Of the available industry
standards, SystemRDL comes the closest to meeting the
desired characteristics and we recommend it be considered as
the RDL language of choice for the numerous commercial
generators and open-source implementations. However,
SystemRDL may have some complexities that are difficult,
impossible to use, or even overkill for meeting the ideal
requirements. While we are not advocating a new standard
since SystemRDL is a comprehensive solution, we suggest
that a variant or subset of SystemRDL may be order—one
that distills SystemRDL down to just the salient set of
features required—and that Accellera make a more concerted
effort to promote and standardize that RDL across its various
subcommittees.

VIII. REFERENCES
[1] Faust, J. Michael. “The Register Description Language as a

Foundation for Modern System Design,” Cisco Systems Whitepaper,
2006.

5 of 6

[2] Gorfajn, Julian. “RDL – Register Description Language,” Maxtor
Corporation, 2005.

[3] “IEEE 1685-2009: IEEE Standard for IP-XACT, Standard Structure
for Packaging, Integrating, and Reusing IP within Tool Flows,” IEEE
Computer Society, 2009.

[4] Stringham, Gary. Hardware/Firmware Interface Design: Best
Practices for Improving Embedded Systems Development. Elsevier,
2010.

[5] “SystemRDL v1.0: A specification for a Register Description
Language,” The SPIRIT Consortium, 2009.

[6] Barry, Peter and Crowley, Patrick “Modern Embedded Computing:
Designing Connected, Pervasive, Media-Rich Systems” Elsevier ,
2012

6 of 6

