
Comprehensive IP to SoC Clock Domain Crossing Verification Using Hybrid Data Model

Anwesha Choudhury, Ashish Hari

anwesha_choudhary@mentor.com, ashish_hari@mentor.com
IC Verification Solutions

Mentor, A Siemens Business

Abstract: Clock domain crossing (CDC) verification is a critical step in the design verification cycle. Traditionally flat

CDC verification on SoCs has been the preferred methodology. However as the industry inches towards multi-billion gate

designs, flat CDC analysis on an SoC becomes performance intensive, time-consuming and difficult to debug, stretching ver-

ification schedules. In addition, with the increasing frequency of third-party IP usage and design reuse, clean integration

gains focus along with verification of the internals of the block. So the need of the hour is a CDC verification approach that

supports an IP-based flow using which SoC teams can seamlessly integrate IP and verify CDC issues that may arise due to

incorrect integration. This paper presents an automated hierarchical CDC verification methodology that is based on a Hybrid

Data Model (HDM), which is equivalent to a CDC IP. The model encapsulates the CDC intent of the block for accurate results

and intuitive debug. It also captures the IP configurations and associated integration rules to guarantee IP designer intent is

propagated and verified at the SoC level. The HDM-based CDC IP can be distributed along with the design IP and reused dur-

ing SoC integration. This paper proposes an automated methodology based on HDM that leads to foolproof IP-to-SoC CDC

verification and accelerates CDC verification closure.

I. INTRODUCTION

Rapid growth in design functionality, speed, size and number of asynchronous clocks poses multiple challenges for Clock

Domain Crossing (CDC) verification at the SoC level. Flat CDC runs on an SoC are often performance intensive, time-

consuming, result in high noise and prolongs the verification effort. There is also redundancy in debug as the same CDC bug

could be replicated across multiple instances of the same module in the full chip. Also, as different modules of an SoC are de-

veloped by different designers in different geographies, there is a need for a distributed CDC verification mechanism, where

each module can be verified separately and then integrated for complete CDC verification on the SoC. However this distributed

CDC verification methodology should be scalable to handle multi-billion gate designs and at the same time should not com-

promise accuracy or ease-of-debug.

With the increasing frequency of third-party IP and design reuse, the need to accordingly adapt the traditional, flat CDC

verification approach has arisen. Often the IP blocks are already verified to be free of CDC issues (i.e., they are CDC clean), so

the focus shifts to validating the integration of IPs rather than verifying the internals of the IP blocks. Also there needs to be

some mechanism to hide the IP internal details and still verify the integration comprehensively. So the need of the hour is a

CDC IP-based flow that SoC teams can use to simply integrate the CDC IP models and verify any CDC issues that may arise

due to incorrect integration.

In this paper we present a new hierarchical CDC verification approach that supports an IP-based flow and can be used as

an alternate to the flat CDC verification flow. We describe the backbone of this solution , which is the Hybrid Data Model

(HDM). HDM is equivalent to a portable CDC IP that captures the CDC intent of any block along with its integration rules. It is

a generic data model that can be seamlessly reused across releases and across designs wherever the IP is reused. We also re-

view the existing hierarchical verification methodologies, why they fail to meet the industry needs , and how an HDM-based

flow addresses those challenges .

II. NEED FOR AN IP-BASED CDC VERIFICATION FLOW

Typically an SoC comprises different blocks developed by different teams spread across different geographies. CDC verifi-

cation of each block is done independently as part of block-level verification signoff. Once the block is finalized and verified, it

can be used in one or more SoCs. In most cases CDC verification on the blocks and on the SoC starts in parallel and eventually

CDC clean blocks are integrated in the SoC. Hence, during block integration in the SoC, CDC verification for the block internals

is not desirable – as it is not only redundant verification, but it also increases runtime, stretches capacity limits and eventually

leads to delays in verification sign-off. So flat CDC verification is not suitable for large SoCs comprising multiple IP blocks.

mailto:anwesha_choudhary@mentor.com
mailto:ashish_hari@mentor.com

The desirable use-model is where the SoC verification engineer can simply integrate the blocks and focus on block integra-

tion and top-level issues. Figure 1 illustrates the possible CDC issues in the SoC. The intra-block violations are the ones where

both transmitting and receiving signals are inside the block. Such violations are detected and cleaned up during block-level

CDC verification. The SoC-level verification should ensure all inter-block and top-level issues are addressed, as shown in the

figure. So there is a need for a CDC verification methodology that allows independent block-level and SoC-level verification

and ensures that all possible CDC issues due to incorrect integration are detected without any compromise in accuracy or de-

bug. This will lead to faster CDC closure.

 Fig 1: CDC issues example in SoC

III. EXISTING HIERARCHICAL METHODOLOGIES AND THEIR SHORTCOMINGS

Multiple hierarchical CDC verification methodologies exist in the industry, but there are shortcomings that have been detri-

mental to their universal adoption. In this section we will discuss the existing methodologies, the challenges associated with

them, and why they fail to meet the IP-specific flow requirements.

 IP blackbox methodology: This is the simplest hierarchical CDC verification methodology, where IP blocks are blackboxed

during SoC-level CDC verification. In this approach, the runtime of CDC analysis is reduced considerably. Also it ensures

that CDC issues inside the block are not reported during SoC CDC verification, thus reducing the verification effort. How-

ever, this methodology is flawed and significantly compromises accuracy. Using this methodology, users will be able to

detect the top-level CDC issues but will miss the CDC issues across the IP block interfaces. Also there might be clock or

reset signals passing through the IPs. And since the IPs are blackboxed, the clock and reset tree will be broken , which will

lead to incorrect results. So even though the IP blackboxing methodology allows a quick turnaround, it cannot be used for

verification signoff.

 IP graybox methodology: In this methodology, an IP block is considered as a gray box during SoC-level CDC verification.

In this approach, CDC paths completely inside the IP blocks are ignored and only CDC paths at the IP interfaces are ana-

lyzed and reported. This methodology is better than the blackbox approach in terms of accuracy as it can detect the basic

CDC issues across the IP blocks. However there are some inherent drawbacks with this approach. This methodology as-

sumes the IP blocks to be CDC clean and does not perform any validation checks on the IP interface. For example, it might

be possible that during IP-level verification two clocks were treated as synchronous, whereas during IP integration asyn-

chronous clocks were connected to them. In such a case, either the clock connections need to be corrected, or the IP

needs to be re-verified with the asynchronous clocks. But a graybox methodology will miss such issues.

 Abstract model or constraints based methodology: The constraints based or abstract model based CDC verification meth-

odology have been present in the industry for some time now. The underlying principle of this methodology is that during

IP-level CDC verification, an abstract model in the form of constraints is generated. This constraints file is then passed on

to the SoC team who use the file for SoC-level CDC verification. This approach is significantly better than the IP blackbox

and graybox methodologies since it can handle the primary drawbacks mentioned above. In this approach, clock paths and

reset paths can be reconstructed in an SoC-level run by using the contraints generated in a block run. Also this methodol-

ogy can detect simple CDC issues across IP block interfaces and also flag and validate the block-level constraints, such as

clock relationships and constant specifications. However there are multiple challenges associated with this methodology

as described below.

o Limited accuracy and debug capabilities: These hierarchical methodologies were conceptualized with the primary

objective to address capacity challenges of larger SoCs. Most of the hierarchical approaches banked on the fact

that this is a faster way to run CDC verification on designs that would take long time to verify in flat mode. Hence,

it was considered acceptable to produce 80% of the real issues in 50% of the flat run time with limited debug ca-

pabilities. However this assumption is flawed. A single missed CDC re-convergence bug can lead to a silicon

respin and undo months of verification effort and costs. Since the abstract model is captured in the form of con-

straints, there is a limit to the amount of block-level information that can be captured through constraints and

complex logic cannot be stored in the abstract model. So there is always a possibility of missing complex CDC is-

sues. Also, in most cases the IP block schematic is not available in the SoC run. This lack of debug information al-

so proves costly and ends up lengthening verification cycles. For example, users cannot debug or fix a CDC viola-

tion efficiently unless they see the actual complete path in the schematic. Partial debug increases risk of missing

real issues.

o Missing support for parameterized IP blocks : In general, IP blocks can have different parameters and, based on

the parameter values, the IP behavior changes. The same IP block can be instantiated with different parameter

configurations in the SoC. In such cases, using the same abstract model for all instances will lead to incorrect re-

sults. The existing methodologies do not address this challenge. There is a need for an automated methodology

which can automatically detect the configurations , intelligently use the relevant information of the IP, and ensure

no issues are missed or no false violations are flagged due to different parameter configurations.

o Limited capabilities for IP-specific requirements: With the increasing usage of IP blocks in diverse SoCs, there is

a need for a methodology where the design engineer can embed the IP integration specification along with the IP.

Whenever the IP is integrated, the specification needs to be verified. The current methodologies primarily focus

on verifying the CDC paths at the IP interface, but verifying the IP integration rules are not part of the methodolo-

gies. Also, since IP and SoCs can be developed and verified by completely different teams, there can be differ-

ences in environment settings and versions of tools. The existing methodologies assumes that the settings across

IP and SoC CDC verification will be similar, and it is the verification engineer’s responsibility to keep them con-

sistent. But if there is a difference in the settings, it might lead to false violations or missed CDC issues. So there

needs to be a methodology that can take into account these differences and take corrective action automatically

wherever needed.

o No concept of reusable CDC IP: Another assumption of the existing methodologies is that the CDC hierarchical

models can be regenerated on demand, whenever needed. There is no notion of a CDC IP that can be archived and

reused whenever the design IP is reused. It’s a major deterrent when users need to recreate definitions for IP

blocks that are reused across projects. IP blocks need to be associated with a CDC IP that can be created just

once and then reused forever without worrying about integration conditions, project scope or backward compati-

bility.

Hence, even though hierarchical methodologies have been around for a while, they are a long way from being absolutely

accurate and merit being the default flow for CDC verification signoff.

IV. HYBRID DATA MODEL BASED CDC VERIFICATION METHODOLOGY

In this paper, we propose a systematic, accurate, hierarchical verification methodology that addresses the challenges de-

scribed in the previous section and leads to faster CDC closure. The configurability and flexibility of this methodology ensures

it can cater to different needs to IP to SoC CDC verification.

The basic flow of the proposed hierarchical methodology is illustrated in Figure 2a and 2b.

Fig 2a: Hybrid Data Model generation during IP verification

Fig 2b: Hybrid Data Model usage in SoC verification

 Hybrid data model (HDM) generation during IP verification: During IP-level CDC verification, along with CDC results, a

data model is generated. This HDM contains all necessary information of the block needed to verify and debug issues dur-

ing block integration in the SoC. The IP designer can choose to generate the data model for each configuration of the IP.

Also the designer can embed the integration rules in the HDM. For example, if a clock port is expected to be connected to a

specific clock generator module, then such connection information can be provided during HDM generation. The IP de-

signer can also control the visibility level inside the IP. If the designer intends to provide only the CDC model and hide the

internal connectivity, then the HDM can be generated accordingly. Once the HDMs are generated for the intended con-

figurations, they can be archived or passed on to the SoC team.

 HDM usage in SoC verification: During SoC-level CDC verification, the SoC team just needs to include the HDM files pro-

vided by the IP team. All necessary information of the IP is extracted from the HDM and used in SoC CDC analysis , and all

the CDC issues across the IP block are reported to the user. Also, the user is notified about any differences between the

IP-level and SoC-level settings or constraints. The integration rules specified by the IP owners are also extracted from the

HDM and verified in the SoC-level CDC run. For example, if the clock port is not driven by the specified clock generator

module then the violation will be flagged.

The HDM is the backbone of this methodology. HDM is a lightweight portable data model that can capture various infor-

mation — like CDC intent of the block, schematic information of the block, integration rules, block configurations and run envi-

ronment. The data model is hybrid in the true sense of the word — it stores diverse information targeted to address every pos-

sible CDC verification challenge. Even though HDM is a binary database, the user can decompile it anytime to see the internals

and also modify it through constraints. Figure 3 shows an example of a decompiled HDM file.

Fig 3: User-readable version of HDM

V. ADVANTAGES OF HDM-BASED VERIFICATION METHODOLOGY

In this section, we will describe the advantages of the HDM-based methodology and how it addresses the challenges associ-

ated with existing methodologies.

 Parameterized IP support: In most cases the IP blocks have multiple parameterized configurations, each configuration

having different functionality. For accurate CDC verification, it is important to generate a hierarchical model with the

correct configuration which will be used in the SoC run. An SoC can also contain multiple instances of the IP with dif-

ferent configurations. It is the responsibility of the verification methodology to ensure that a hierarchical model with

the correct configuration is plugged in for the correct instance. The proposed HDM-based methodology addresses

this challenge by automatically selecting the correct configuration data model and alerts the user in case no match is

found. Figure 4 illustrates this use model.

 Figure 4: Use-model for design with parameterized IPs

As shown in Figure 4, the user can perform CDC analysis for each configuration of the IP and generate the HDM files.

When the HDM files are included in the SoC run, the proposed methodology automatically identifies the IP configura-

tions used in the SoC and uses the HDM files accordingly. If the HDM file is missing for any configuration, the error

will be flagged to alert the user.

 Accuracy: The primary advantage of the proposed methodology is the data model that stores all relevant information

to ensure accurate CDC verification at the SoC level without any compromise on debug. Any complex crossing that

can be detected by flat CDC analysis will also be detected by this proposed methodology. Also the reporting and de-

bug capabilities match flat run behavior. For example, if the IP block has multiple fanouts and fanins inside the block,

then CDCs for each fanout or fanin will be reported accurately in this methodology. Figure 5 shows one such example

where the IP input port is connected to synchronizers in the clk1 and clk2 domains inside Block IP1 and also drives

output port. Using the proposed methodology all crossings are correctly reported — two synchronized crossings and

one unsynchronized crossing through the output port.

Fig 5: Accurate crossing detection by proposed HDM-based flow

Through this methodology, complex divergence and reconvergence issues can also be detected. Figure 6 illustrates

one such example where a reconvergence issue spans across two different IP blocks; such issues can be identified us-

ing HDMs of Block IP1 and Block IP2.

Fig 6: Reconvergence detected by proposed HDM-based flow

 Debug capability: In most existing hierarchical methodologies, debugging violations across the block is a challenge. In

most cases the IP block is shown as blackbox in the schematic during SoC verification. The proposed methodology

preserves the block schematic in the data model and displays it to the user. This ensures the user can view the com-

plete CDC path even if part of it is inside the IP block. Figure 7 shows an example of a top-level schematic with a re-

dundant synchronization violation across two IP blocks reported in the SoC-level run.

Fig 7: Redundant synchronization across IP blocks schematic using HDMs

 Support for IP integration checks : The proposed methodology supports integration rule checking which is necessary

for IP-based flows. During CDC verification of the IP, designers can also provide specifications on properties that

should hold during IP integration. The recommendations will be verified through the data model during CDC verifica-

tion at the SoC level. For example, if an input port of an IP is connected to a synchronizer, then the user can specify

that this port should not be driven by combinational logic after integration. Similarly if some port of the IP is expected

to be connected to some specific module or specific clock domain, the IP designer can embed these rules in the HDM.

The proposed methodology will verify this property during SoC CDC verification and notify the user if any of the

specification rules fail. So this methodology not only ensures CDC clean IPs, but also ensures clean integration of the

IPs.

Figure 8 shows an example where a DMUX synchronizer is present at the boundary of the IP block. The DMUX syn-

chronizer is valid only when TXDATA and TXSEL are driven by the same clock domain. The IP designer can embed

this information through the “hier assume port” constraint as specified below. The proposed methodology will ensure

this rule is verified when the IP HDM is integrated in any SoC.

Fig 8: Example of integration rules for IP blocks

 Configurable visibility inside IP: The proposed methodology facilitates generation and use of each HDM with differ-

ent visibility levels. For example, during generation the IP owner can control whether to expos e IP internals through

the HDM or not. This ensures this methodology can be used for encrypted IPs as well as where the IP owner can pass

on the HDM with the integration rules without any visibility inside the IP. In such cases the block schematic will not

be available during SoC-level verification and CDC issues will be reported up to the IP block ports. Also if the IP own-

er has provided visibility permission, the SoC owner can control whether to use the IP internal information or not.

 Constraints-based methodology: The proposed methodology also provides flexibility to use a constraints-based hier-

archical model. Sometimes the SoC-level verification starts before the block development is complete. In such cases

generating an abstract model for the IP is not possible. In such cases, IP designers can describe the HDM through

constraints which can be used during SoC verification. The constraints can also be generated from a n HDM file. So in

the proposed methodology, there is flexibility to choose the use model for both IP and SoC verification engineers.

 Reusable CDC IP: The HDM is essentially a CDC IP that can be archived and used whenever the block is used in any

design. Generally, IP and SoC development happens independently by different teams. So both teams can use differ-

ent releases or different methodologies for verification. Also after IP development, it can be used in multiple SoCs

across different releases. Every time the IP is integrated, the hierarchical model does not need to be regenerated. Once

the IP is finalized the HDM can be generated and archived and then can be reused across designs and across releases.

VI. CASE-STUDIES

The proposed HDM-based methodology was benchmarked on multiple SoCs with IP blocks. The results were evaluated

versus traditional flat CDC verification methodology for different metrics: comparison of accuracy, performance in terms of

runtime and capacity, and debug capabilities. Following are the results on one SoC with five blocks.

 Traditional Flat CDC
Verification Methodology

Proposed HDM-based
Verification Methodology

Gain

Runtime 3.5 hr 2.7 hr 22%

Peak Memory 20 GB 12 GB 40%

CDC Violations 75000 59000 21%

As is evident from the results , significant improvements in runtime and capacity were observed with the new HDM-based

methodology. Also, the CDC violation count was reduced in by HDM-based methodology. This was primarily due to the same

CDC violations being replicated in multiple instances of the same block in the flat CDC run. This redundancy was removed in

the HDM-based run.

The new methodology could also catch a number of integration failures which would have been missed with prior hierar-

chical methods. For example, in one SoC there were instances of two IPs: fifo3_write_sync and fifo3_read_sync. For the FIFO

synchronizer to work correctly the WPTR_GRAY ports of both IPs were expected to be connected to each other and the

RPTR_GRAY ports were expected to be connected to each other. The integration rules were specified by the IP designers

through “hier assume connection” constraints , as shown in Figure 8. There were multiple instances of these IPs in the SoC

where one pair of instances of WPTR_GRAY ports were not connected. Using the proposed methodology this missing con-

nection was detected.

Fig 8: Connection rules specification

VII. CONCLUSION

In this paper we presented a Hybrid Data Model that is equivalent to a CDC IP. The HDM can be generated for any IP block

with multiple configurations and can be reused whenever the IP is integrated in any SoC. In this paper we also described an

HDM-based CDC verification methodology that seamlessly supports IP-based flows. It eliminates the risk of missing CDC is-

sues at the IP and SoC levels and also ensures clean IP integration by verifying the IP designer recommendations. The primary

advantage of this methodology is that it meets the various requirements of an IP-to-SoC verification flow and provides config-

urability to modify the flow as necessary. Because the HDM methodology has debug capabilities similar to a flat CDC run , it

ensures much faster analysis of CDC issues at the SoC level. Also, as observed from the case studies, the proposed approach

is faster than regular flat CDC verification methodologies, addresses capacity challenges of large SoCs, reduces redundancy in

CDC violations, and leads to faster CDC verification closure.

REFERENCES

[1] Clifford E. Cummings, “ Clock Domain Crossing (CDC) Design & Verification Techniques Using System Verilog”, S NUG-2008

[2] Ping Yeung, “ Five Steps to Quality CDC Verification” , Mentor Graphics, Advanced Verification White Paper
[3] Chris Ka-kei Kwok, “ Bridging block-level to top-level CDC verification: Hierarchical CDC verification”, Designcon-2008

