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Abstract— Modern Analog-Mixed-Signal designs require comprehensive verification of both analog functionality 

and digital-analog-interaction. This paper outlines some new techniques to simplify and automate analog real-number 

modelling, as well as maximizing re-use of models both in System-Verilog and Matlab®. It also outlines how these 

techniques have been integrated into a UVM environment to enhance analog and full-system verification with 

randomization of analog stimulus, and analog functional coverage.  
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I.  INTRODUCTION 

Mixed signal design complexity has increased dramatically in recent years. A number of factors have led to this 

– increasing integration of analog functionality in SoCs, digitally-assisted-analog for performance/cost/power 

optimization, and advances in analog architectures to take advantage of the latest process nodes. This integration 

has led to tightly coupled interaction between analog and digital which requires comprehensive verification, while 

at the same time delivering fast run-time, low-overhead and above-all functional accuracy. Real-Number-

Modelling (RNM) via SystemVerilog (SV) is beneficial when it comes to analog modelling – though the cost of 

model generation can be high, and checking the model and DUT performance and functionality is still required.  

 

This paper outlines 3 techniques we have used to address these challenges: 

 Automated Netlist-based RNM to facilitate model generation and re-use. 

 SV-Octave interface to facilitate results checking, predictor-model writing, and analog stimulus 

generation. 

 UVM based environment to combine these components together and provide randomization, coverage 

and results scoring of both digital and analog functionality [1]. 

 

A key advantage of all the approaches outlined here is that they are completely vendor neutral, allowing the 

approaches to be applied independently of the simulator being used. 

 

II. NETLIST BASED REAL NUMBER MODELLING[2] 

Real number modelling is a method of writing behavioural models of analog circuits using SystemVerilog. The 

main enabling feature for RNM is the ability to define the ‘real’ data-type as a port on a module. Previously where 

ports were limited to a values of 1, 0, X or Z, now a signal representing any discrete analog value can be used, 

and passed between modules. There are a few limitations when using the real type, and this will be explored in 

detail in this section. 

 

A. Breaking Down Design Complexity 

It is commonly the case that complex systems are composed of a number of interconnected 'building blocks'. This 

is true in general for analog designs - where even very complex circuits can be reduced to a combination of simpler 

components. Taking advantage of this fact is a key enabler for reducing the complexity of real-number model 

generation. Rather than model complex blocks at a high-level and risk mistakes, instead models should be built 

from a hierarchy of much simpler models. The ideal situation is one where the sub-models are easy to write, while 

still behaving exactly the same as the real analog circuit overall. This also enables re-use across designs and 

projects as many ‘building-block’ models can be made generic, or can be tweaked for use a new application. 



 

B. Schematics are Golden 

Analog designs are largely schematic driven - and it is the schematic that is used as the ultimate reference for the 

design that is to be taped-out. The schematic also contains a lot of information purely due to its structure - it brings 

together multiple analog-sub blocks, describes signal-flow, and includes custom control logic. Given this, it makes 

sense that as much information as possible should be extracted (re-used) from the existing schematics when 

generating a RNM of the analog system. For example, all custom-digital logic in the analog hierarchy should be 

used directly in the RNM, and only low-level analog blocks should be modelled. This allows re-use of the majority 

of the analog schematic hierarchy and hook-up - and reduces the number and complexity of items to be modelled 

dramatically. We refer to this as the netlist-based approach to RNM generation, and as will be shown much of this 

model generation can be automated. 

 

For example: As a test-case we targeted a complex analog-switch matrix which consisted of >50 input sources, 

numerous different multiplexer types, switch-cells and decoding/control logic. This was completely modelled by 

using the netlist-based approach. This model only required the writing of a single core switch-cell RNM in 

SystemVerilog, and the rest of the model was auto-generated from the schematic netlist. Any subsequent updates 

to the schematic to add new inputs or modify the hierarchy simply required re-netlisting to re-generate the model 

with the same core switch-cell.  

 

Results: This test-case (partially illustrated in Figure II-1) also found a number of analog functional issues in the 

initial analog schematic hook-up, including contention, polarity inversion and mismatches vs the spec. This 

illustrates another key benefit to the netlist-based RNM approach – not only does it provide accurate analog 

models for digital verification, but it also enables coverage of the analog functionally throughout the design phase. 

 

 
Figure II-1: Example 2:1 Netlisted multiplexer RNM Model 

 

C. Guidelines to Enable Automatic Netlist-Based RNM Generation 

While not required - in order to take the best advantage of the netlist-based approach, analog schematics should 

ideally be structured to partition the low-level analog functionality from the digital/control logic associated with 

it. Similarly, the design hierarchy should be careful to not expose any 'bare transistors/passives' at a higher level 

of the hierarchy, as this could prevent efficient automation of the model generation. The tweaks required to 

existing analog schematics to follow this recommended structure are usually small, and local. E.g. simply 

wrapping a purely analog function in a level of hierarchy is usually sufficient to enable the automatic RNM 

generation. 



 

The high-level schematics guidelines are: 

 

 Take advantage of the netlist where possible - model at the lowest feasible level of analog sub-block. 

 Partition digital logic from analog functionality - even locally. 

 Use signal-flow – ‘inouts’ are to be avoided on RNM signals where possible. 

 Encapsulate analog-feedback within the model where possible. 

o E.g. an amplifier gain-stage should only expose the input and output nodes. 

 

These guidelines have other side benefits when followed. - This up-front design partitioning allows for flexibility 

of mixing various views of the design to enable other verification tasks, such as schematic <-> Verilog co-

simulation, or schematic <-> Verilog-A simulations. 

 

D. Methodology 

Combining what has been discussed in sections A. B. and C. into a methodology, we used a script to automatically 

convert the standard schematic netlist into a fully-functional RNM. The methodology is described as follows: 

 

 

Figure II-2: Automatic RNM Generation Methodology 

         

After this process, the RNM outputted consists of a modified netlist with all real-signals propagated to all analog 

sub-blocks. If the analog schematics change during the design phase, the process can be re-run. As the flow is 

automated, this leads to very low overhead model updates with the additional benefit of maintaining model 

functional integrity with the analog design. A key advantage of this method over some proprietary methods is that 

the modified output netlist is available for inspection and to aid in debug. This can be a powerful tool when 

modelling complex systems and interactions. 

E. Model Validation 

The maintenance and validation of the RNMs of the lower-level analog sub-blocks (e.g. comparators, amplifiers, 

etc.) is critical to ensure the system is accurate modelled, and can be achieved by a number of methods:  

 



 

1) In-system co-simulation where some or all RNMs can be replaced by their spice/spectre equivalents 

2) Side-by-Side co-simulation where common stimulus is provided to the RNM and spice/spectre block and 

the output compared 

3) The use of EDA tools for model comparison [4]. 

 

However, the key point here is that by modelling at the lowest level feasible, the maintenance requirements of 

these models is very low. Re-using these low-level models for other designs also allows for re-use of the model 

verification, which is an added benefit.  

F. Handling Contention 

The SV real data-type has some limitations when modelling analog designs - the most prominent of which is that 

ports must be input or output – inouts and multiple drivers are not allowed. As a result, X or Z states cannot be 

modelled directly. The nettype feature which removes some of these limitations is discussed in the next section - 

however, here we outline an alternative that proved to be very powerful and only required the conventional types 

to be used. 

 

As previously mentioned, where possible the schematics should always use the correct signal flow via input and 

output ports on blocks. However, in certain cases, as in the analog-multiplexer example Figure II-1, there are 

legitimate multiple drivers on nets, and inouts must be used in the schematic. To model this behaviour in SV – 

the script auto-detects these situations and in the case of multiple drivers, it converts the reals to 64-bit ‘logic’ 

values using $realtobits(). This allowed the ‘logic’ data-types to resolve any contention, and then the result is 

converted the result back to reals using $bitstoreal().  

 

G. Nettype 

SystemVerilog-2012 [4] introduced a number of features enable RNMs, one of the most useful being nettype, 

which has the ability to allow a user to define resolution functions. This is an advantage over the method of 

handling contention outlined in the previous section. However, it was observed at the time of writing to have 

inconsistent support across vendors, and in some cases required extra licenses. The license cost is a particular 

burden, as a key advantage of RNMs is that they can be incorporated into large regression runs and any extra 

licenses required for them will limit the RNMs utility. A final limitation was the incompatibility of nettype with 

certain co-simulation flows. These issues are not inherent to the specification, so can be resolved by EDA vendors. 

However, the limitations precluded its use in our environment at this time. Once broadly adopted and supported 

by vendors, both nettype and the type-less ‘interconnect’ keyword should enhance the ability to use netlists 

directly without transformation, which will be very welcome for AMS verification.  

 

H. Summary of Examples 

Table II-1 illustrates the results achieved in terms of numbers/lines of unique RNM code written by following this 

netlist-based methodology versus to number of modules that were auto-generated to build up the total number of 

modules in the analog block being modelled. As is shown, there are significant reductions in the effort required 

to model these systems. It should be noted that some of the RNMs written had only small differences from others 

– so with better schematic partitioning the numbers shown could be improved further. 

 
Table II-1: Netlist-based RNM Productivity Improvement 

Test Case 

RNM Statistics 

#Modules (Written / Auto-Gen / Total) 
% Modules 

Written 
#Lines Written / Auto-Gen / Total 

% Lines 

Written 

Analog Multiplexer (example) 7 / 61 / 68 10% 204 / 4900 / 5104 4% 

ADC with Sensors 41 / 412  / 453 9% 1418 / 27587 / 29005 4.8% 

 

 



 

III. INTEGRATING SYSTEMVERILOG WITH MATLAB/OCTAVE 

Modern analog designs and the higher-level systems they are integrated into often begin by first being modelled 

in Matlab®. This high-level Matlab modelling environment also commonly provides both stimulus generation as 

well as analysis routines for the analog results. For example, an ADC system being designed in Matlab could 

consist of a model of the ADC and any associated calibration, plus signal-processing of the data. As a lot of effort 

goes into developing these system reference models - is it natural to desire maximal re-use of them during all 

stages of verification. Traditional methods of doing this would be to dump vectors from Verilog-simulations and 

do offline comparisons between these vectors and the Matlab result. However, for modern systems which may 

include dynamic calibration and analog-digital feedback, a vector based approach may be cumbersome. This is 

further compounded when trying to verify these systems in a constrained-random UVM environment, where 

thousands of scenarios may be required to be run in order to hit coverage goals. Generating and managing these 

'vector-dumps' and their results can become a large overhead. 

 

Instead, we propose a more stream-lined solution, which not only handles the comparison of the DUT with the 

Matlab-based reference model, but also provides for analog stimulus generation, analog based performance 

measurements and metric collection. 

 

A. Overview and Advantages 

The system described here consists of the direct integration of Octave with SystemVerilog. GNU/Octave [5] is an 

open-source alternative to Matlab®, which supports a large sub-set of its features. While it may not be able to 

replace the advanced Matlab® tool-boxes that are commonly used in the generation/derivation of systems, it is 

complete enough to implement the verification part – i.e. stimulus generation, numerical evaluation of the system, 

and results data-processing. Integrating SystemVerilog with Octave, has another advantage in that it can be used 

as part of a parallel regression environment without incurring additional license overheads. 

 

There are a number of advantages to integrating System-Verilog and Octave for verification: 

 Realistic analog stimulus generation – coherent sine-waves, multi-tone, single-tone, etc. 

 Low-cost predictor model generation – Matlab® analog-model reuse, DSP, filtering, etc. 

 Real performance verification - reuse the same analysis code from Matlab. 

 Directly carries over to Co-Simulation – reuse UVM testbenches directly in schematic cosim.   

B. Integration Method 

The method of integration uses the SV-Direct Programming Interface (DPI). This is a C/C++ based interface to 

SV that builds on similar interfaces provided in previous generations of the Verilog language. Octave is also 

C/C++ based, and the octave-core runtime is provided as a C library. The Octave language is designed to be able 

to be embedded [6] into other programs, and as a result integrating it with the DPI is very straight-forward. 

 

The core of the integration is a C++ wrapper file that translates/passes the data from the SystemVerilog DPI 

interface to the Octave library interface. What this means is that the octave-interpreter is running as a child-process 

of the SystemVerilog simulator, and data is passed between them directly. This provides for maximum 

performance during simulation and results very low overhead. 

 

The wrapper exposes functions to SystemVerilog that can be called directly from testbenches. The code shown in 

Listing 1 outlines a very simple example testbench usage – which consists 3 parts:  

 

1) The testbench-DPI interface,  

2) The C-DPI-Interface,  

3) An example calling of the code from the testbench 

 

The first 2 parts are portable and re-usable between projects and testbenches. The example also illustrates the 

potential for returning multiple results from Octave via SV ‘structs’ which further aids the readability of the 

testbench code. 



 

 

Listing 1: Upper-Left: SV wrapper, Lower-Left: Example of calling Octave from SV, Right: DPI-C-Octave Bridge 

 

In the above example, the function ‘fft()’ calls the ‘oct_fft()’ function directly via the DPI. This C wrapper in turn 

calls the Octave function ‘fanalyze’. It should be noted that ‘fanalyze’ is not an octave built-in function, but instead 

a user written Matlab®/Octave script. The ability to call full scripts to process data and return the result directly 

within the simulation further underscores the power of this method – as many numerically intensive processing 

tasks can chained together in a single Octave .m file and the overall result returned to SV for result checking and 

score-boarding. It is also possible to use Octave to export results in the form of plots and images, as can be seen 

here: 

 

Figure III-1: Example FFT result image output from SV (via Octave) 

C. Performance and Results 

The SV-Octave integration greatly enhances an AMS-UVM environment by making maximal re-use of already 

verified reference Matlab code. This reduces the effort require to generate predictor models of complex AMS and 

signal processing data-paths. It also provides access from SV to the same tools uses to analyse the results of mixed 

signal systems, without requiring these to be re-implemented within SV. This method also allows for interactivity 

and feedback between the testbench and Octave – where SV randomization can be used to generate inputs to 

Octave which in turn can generate analog stimulus on-the-fly. These kinds of interactive and dynamic simulations 

are very difficult and cumbersome to achieve with a traditional vector-file based approach. The DPI interface was 

tested with a number of leading commercial Verilog simulators and shown to work with them all, which 

demonstrates the portability of the method. The direct integration also has a performance advantage of at least 



 

1.5x over a vector-file approach as outlined in Table III-1. This performance delta increases for smaller data-

packets, as the file-system overhead would be more significant. 

 

Table III-1: Performance of Direct Integration vs Vector-File Approach 

Test Case 
Measured Performance 

Proposed Method (time/1000 ops) Vector-File Method (time/1000 ops) Performance Delta 

FFT (1024-point) 3.6s 5.7s 1.58x 

 

IV. UVM ENVIRONMENT 

UVM is a methodology for the functional verification of primarily digital hardware, however with some 

modifications it can be extended to aid verification of both analog and digital hardware. The proposed UVM 

environment is shown in Figure IV-1 Here the design-under-test (DUT) is surrounded by a number of 

SystemVerilog interface components [7]. These interface components facilitate interactions between the DUT and 

components of the verification environment. Most verification activity involves driving and observing the DUT’s 

top-level I/O’s which are connected directly to interfaces.  
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Figure IV-1: System Verilog UVM Environment using of the netlisted RNM, and Octave processing 

A. Analog Agent 

As the DUT in question here is a mixed-signal design, parts of the DUT and their corresponding SystemVerilog 

interfaces and verification components will need to support real numbers in order to fully verify the combined 

analog and digital functionality of the design. The signals on each interface in the harness are driven and observed 

by a corresponding UVM agent.  

 

Each agent in the environment will typically use the standard UVM agent pattern: sequencer, driver, and monitor 

sub-blocks. Also, in order to configure agents to behave differently from one test to the next, each agent will have 

a configuration object which can be modified from the test level. Dealing with real numbers is a departure from 

the standard digital verification environment that is supported by UVM. Therefore the structure of the UVM 

agents that will be interacting with real ports will be architected to handle real numbers. Figure IV-1 presents a 

proposed architecture of such an agent. 

 

It is envisaged that the transactions generated by the sequencer will encode the real number value using integers. 

Integers can be randomized and coverage collected on then. The integer value is converted to a real number by 

the driver, which applies it via the interface to the real number port on the DUT. The analog transaction will be a 

sine wave of N Points and frequency F. The driver will call Octave functions in order to generate the analog 



 

stimulus for the DUT. The monitor collects the transactions via the same interface, and converts the real number 

back to its integer equivalent to be sent to various subscribers such as the scoreboard and coverage collector. 

 

B. Predictor Model & Scoreboard 

In order to fully exploit the power of constrained random stimulus generation, the verification environment needs 

to be able to automatically predict the state of the DUT and its outputs. Therefore a predictor model, as shown in 

Figure IV-1, is required. 

 

The predictor model will generate output transactions in response to the same input transaction that are applied to 

the DUT. This model also calls on Octave functions to generate the expected output. 

 

The scoreboard will compare the DUT’s responses against the predictor model’s output transactions in order to 

determine the functional correctness of the DUT. Again the scoreboard will call on Octave functions to implement 

the comparison. 

C. Re-use 

With ever more complex designs combining analog and digital verification productivity is a major issue. 

Productivity can be greatly improved through the re-use of verification components. One of the main benefits of 

using a UVM environment is that it facilitates this re-use of multiple verification elements in the form of 

SystemVerilog classes and other components. In addition, having the flexibility to configure individual components 

and import elements such as Octave greatly expands the verification space. 

D. Application to Co-Simulation 

Co-Simulation between SystemVerilog and schematic (Spice/Spectre) is a key requirement for AMS sign-off. 

However, porting/developing test-cases that can deal with the non-ideal behaviour of the analog circuit vs the 

model can be difficult. These methods, which allows the SV-UVM testbench to re-use the typical analog analysis 

functions (such as the FFT show here) allows not only for direct portability between the RNM and the Co-

Simulation, but also allows the actual analog performance to be evaluated and reported accurately.  

 

V. CONCLUSION 

In this paper we have outlined a comprehensive AMS verification environment that enables the power of UVM to 

be extended to include AMS verification. The standard UVM structure is combined with Real Number Modelling 

and Octave to enable high-quality analog modelling, realistic stimulus generation, and results analysis. The 

combination of these methods allows functional coverage in the analog domain to be included as part of the UVM 

environment, with allows much greater coverage of analog use-cases, modes and interactions via regression and 

constrained-random based testing. The methods outlined are fully compatible with the major SystemVerilog 

simulators. Finally, the environment ensures low-overhead via automation and re-use, while at the same time 

providing high-performance in terms of simulation run-time and system level verification coverage. 
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