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Abstract—Automation is a key to design technology.  As 

designs are getting more complex day by day, productivity, 

quality, efficiency and consistency of data become more 

important. Also as things get more sophisticated, human 

errors and mistakes becomes intolerable. In order to achieve 

this efficiently, automation of design steps becomes crucial. 

EDA tried to solve this problem by creating tools to automate 

the design flow. But EDA often has to cater large number of 

customers so they cannot make focused tools for particular 

domain problem. Also development cost of such focused 

tools will be very high and will not be affordable to design 

companies. 

In this paper we describe a model driven software 

technology approach which not only allows design 

companies to design their own automation but create 

sophisticated tools with very little effort. It also allows them 

to experiment with their data and quickly change the 

solution along with the specification. The idea with this 

domain specific approach is not to replace EDA and start 

creating all tools in design houses. But it is to complement 

EDA by helping reduce tool entry barriers by generating 

input tool views and commands from the specification. 

The infra-structure can also be used to create more 

complex tooling based on reusing existing building blocks. 

The other reason which makes this infra-structure easy to 

use is the code generation feature from a UML model – as 

usual in model driven engineering - which reduces almost 

80-90% effort for creating a new tooling. Further, features 

like generating automated transfer of data transfer, helps 

designers to reduce their effort and achieve better efficiency 

in their design steps. 

Keywords—metamodeling; code generation, design 

automation 

I.  INTRODUCTION 

About 25 years ago, EDA industry developed tools that 

successfully replaced many in-house tools at 

semiconductor companies and system houses. It was 

simply better and cheaper, to develop tools once and 

apply these tools in many development sites worldwide. 

Since then, EDA evolved continuously providing new 

solutions in areas as deep submicron or coverage driven 

verification to name only some. 

 

It’s obvious; EDA cannot do all specific things for 

everybody but has to focus on common approaches. 

Therefore it’s no wonder, that no widely usable 

synthesis above RTL synthesis is available. The design 

space beyond implementation level is very huge, 

continuously grows with the “More-than-Moore” 

diversification, and requires plenty of specific things. 

Also the design process above RTL is very 

heterogeneous concerning supported formats, intended 

abstraction, target architectures, interfacing modules or 

optimization targets. Therefore, today only point 

synthesis tools beyond RTL exist covering only a small 

design area. 

 

To provide a generic automation solution above 

implementation level, metagen a meta-modeling and 

code generation technology and methodology was 

developed at Infineon in the last 4 years. It has been 

successfully used already from the first days on and it 

has been continuously improved and highly beneficial 

applied in many Infineon designs. One success factor of 

the metagen methodology is following a domain – 

sometimes even a design – specific automation approach 

which is orthogonal to the EDA strategy. Also, 

automation is done by the designer and covers exactly 

the indented application including only the generality 

needed. 

 

In the next parts, terminology and history of meta-

modeling is introduced, since it is not a mainstream 

technology in hardware design yet. Afterwards, the taken 

approach is elaborated in more detail and application 

examples are given. 



II. TERMINOLOGY AND HISTORY OF META-

MODELING 

The target of meta-modeling and code generation is 
the replacement of manual entry by generation of the 
implementation formats and tools driving scripts as e.g. 
RTL for digital design, schematic for analog design, C 
for firmware, or TCL for UPF or other tool specific 
automation. 

Automating by specific scripts (see e.g. [10] as one of 
many examples) as such is not new, but meta-modeling 
follows a specific, partially automated and structured 
approach – namely a clear separation of model and view: 

• Target of generation is a so called view, which 
may be one of the formats mentioned in the introduction 
– since we want automation above today’s 
implementation - but also XML, documentation, or any 
other documents occurring in the design phases. 

• The view is generated by a so called “generator”, 
which is often a template engine. A template engine 
renders a so called template, a mix of target code, 
substitutions, and generation pragmas. 

    • In order to generate the view according to current 
design needs – often the specification - the template 
engine has to retrive data required appropriately. This 
data is stored in a structured way in a so called model. An 
API – which is generated in our approach – provides the 
generators access to the models. 

The terminology is derived from SW technology, since 
also software (e.g. coded in C++), firmware (e.g. coded 
in C), and documentation (e.g. represented in XML) can 
be generated. Therefore, RTL-Models or other hardware 
models are treated as views in this terminology. 

• The data of the model is read from a 
specification, parsed from any other document, imported 
from a description formulated in a so called domain 
specific language, or entered with a GUI 

• The structure of the model is defined in a so 
called meta-model. Here “meta” means above and meta-
model means a model above or more abstract than a 
model. A meta-model is also called a model of a model. 
The model and the model’s API (to set and retrieve data) 
must be compliant to the meta-model, so the model’s API 
offers to be automatically generated from the meta-
model. Since writer and reader access the model via the 
generated API, also they comply with the meta-model. 

• Since the meta-model requires formalisms for 
it’s definition, model driven engineering also knows the 
term meta-meta-model, which exactly describes this 
formulism. 

Figure 1 shows an overview on that terminology derived 
from OMGs MOF [5]. The different level from view to 
meta-metamodel are usually named M0 to M3. 

 

 

 Figure 1: Overview of Abstraction Levels 

 

In the example, the view describes a chart visualizing 
some data. This chart is one possible view of the model 
holding that data. The structure of the model – so to say 
to meta model – is defined by the headline. Last but not 
least, the headline is nothing else than a non empty 
sequence of names ( Name { Name } ), as defined in the 
meta-metamodel utilizing EBNF formula syntax. 

Figure 2 gives an overview on the interaction of the 
pieces. The design automation path (specification to 
implementation) is from left to right and the meta-model 
underlying automation (meta-model API) is from top-to-
down. 

It is worth mentioning, that the idea of structuring 
(hardware) design data or defining (hardware) design 
data in a structured way has been evolved in several 
technologies as entity relationship diagram, UML 
modeling [6], XML technology [7], and finally 
metamodeling. 
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Figure 2: Flow diagram of a meta-modeling 
environment 

III. TAKEN APPROACH 

 
Initial point was the search for automation in typing 

implementations as VHDL models or C programs. A 
solution was established by a cross functional approach 
i.e. by applying a relatively modern SW technology – 
meta-modeling – to the implementation automation of 
embedded systems.  

But there is no single aspect that alone enables our 
meta-modeling framework metagen to act as a core 
technology for domain specific design automation. From 
the implementation standpoint the use of Python showed 
to be beneficial, since it provides many features useful 
for the own implementation of a meta-modeling 
framework: 

• Object orientation as such is mandatory for 
structuring data and providing clear interfaces to each 
chunk of data. 

• The polymorphic underlying language allows 
focusing on the design domain when doing modeling. No 
inheritance needs to be introduced when polymorphism is 
needed. 

• The interpreted language allows for fast edit-
compile-execute important to fast rampup the new 
environment. Interestingly, performance of the 
interpreted language is mostly sufficient. 

• An easy integration of the template engine with 
the implementation language of the framework allows 
mixing both approaches for code generation, e.g. using 
templates for formatting statements and a programming 

language for formatting tokens. We use the Mako 
template engine [8] in our approach. 

• Also important is the openness of the framework 
supported by powerful introspection capabilities in order 
to allow designers – i.e. meta-modeling users – to adapt 
the solution for their needs. 

Nevertheless, the metamodeling and code generation 
take some benefits of our implementation strategy, the 
overall approach is not bound to metagen as such. 

• So, the eclipse modeling framework (EMF)[2] 
provides similar capabilities as metagen. Due to its 
eclipse nature, EMF is Java based, which impacts some 
overhead in implementation due to Java’s strict object 
oriented approach. Also the template engine is not that 
intuitive than the Python based template engine Mako. 

• A commercial solution is provided by MetaCase 
[3]; the tool is called MetaEdit. Here, a graphical domain 
specific language can be developed. From interest are the 
reported use cases from SW development, e.g. software 
for fish pound management, since they show the wide 
applicability of the technology. Metacase claims a 
productivity improvement using their technology in SW 
domain by up to a factor of 20x.  

But not only the underlying engine is important, also 
the following three implementation strategies showed to 
beneficial for the overall approach: 

• Required improvements are mostly implemented 
in the framework but in the model. So it is available for 
all generators build with metagen. Nevertheless, we had 
in the last four years only two major releases of the 
framework. 

So, the framework is very generic but the applications are 
much focused. 

• Also the metagen framework makes heavy use of 
generation – e.g. the model’s API is generated – the 
application of the meta-modeling and code generation 
technology in the framework itself contributes to a low 
development effort. 

• By providing an own reader, model, and 
generator, the smooth integration in owns design flow 
can be easily achieved – in contrast to existing tools, 
which require not neglectable effort to make them fit in 
owns design flow (please see EDA tool issue in the 
introduction).  

Even more important, own readers allow to setup a 
single source strategy for all implementation data and 
thus improves consistency from the beginning. 

 

 

 

reader

model

Spec
e.g. 
XML

re
a

d
s

sp
e

c
if

ic
a

ti
o

n

APIF
il

ls
m

o
d

e
l

writer

A
c
c
e

ss
e

s
m

o
d

e
l

G
e

n
e

ra
te

 
v
ie

w

View
e.g. SV 

RTL

Generate 
API

Meta-Model Confirms-ToConfirms-To

Graphical specification

Component

Name:   string

Port

Name:   string

Size:   int

Register

Name:   string

Size:   int

Function

Name:   string

Make Semi-
automatically

Make Semi-
automatically



IV. APPLICATION STRATEGY 

 

But not only the technology, also the application 
strategy important for the success of the approach: 

 

• First to mention is the radical domain specific 
approach as already mentioned in the introduction. The 
meta-model, the reader, and the generators implement 
only things that are absolutely needed for the application. 
This keeps implementation time low and allows a very 
focused and efficient verification. First applications are 
ready, in use, and provide benefits for the designer often 
in some days. When useful, automation scope is 
incrementally increased. So, the usage of the technology 
pays off from the first day. 

• The next thing is that the taken approach does 
not target full automation. Supported by the template 
based code generation approach, often an 80% 
automation leaving 20% manual work is appropriate. 
Let’s say gaining 80% productivity improvement using 
automation, an overall improvement of 64% is still 
achievable. 

• Last to mention that in our approach, the domain 
experts (i.e. designer, verification engineer etc) build 
model, reader and writer – or are at least heavily involved 
in building it. This makes sure, that the right things and 
the things bringing the best benefit are automated. 
Further on, it reduces needed domain specific knowhow 
at the metagen framework side for the price of 
convincing designers to get in touch and use the meta-
modeling approach. 

 

V. INHOUSE DESIGN APPLICATIONS USING METAGEN 

-  AIDING EDA TOOLS 

 

Many design applications have been executed inside the 

organization which helps to get a good start point before 

start using EDA tools. Many applications are in classical 

HW, SW and HW/SW areas as generation of structure, 

control flows or declarations. (see e.g. [9]) 
But also many other applications with the generation 

of more hardware related items are automated with 
metagen. One such application is IO PAD area estimator 
shown in Figure 3.  

The IO pad designers create these run set files which 
they run with inhouse spice simulator and dump netlist. 
Using this netlist, they plan the layout without any idea 
about the ideal area that must be taken by the netlist. So, 
the final outcome might be error prone and efficiency on 
the size of the IO pad depends on the experience of the 
designer since the final result is not known at that point 
of time. So using Metagen an application had been 

created and flow has been designed to estimate the area 
before they have done the final layout in the EDA tool. 

 

Figure 3: IO Pad Area Estimator 

 

a) In this application, a meta-model, Figure 4, is 

created using the data in the netlist for defining the 

relationships. This meta-model generates the code for 

the model. 

b) In next step, a reader was written which reads 

the netlist and user specified parameter file which 

contains DRC (Design Rule Check) rules. 

c) Also, a writer is written on the model which 

does the calculation of the total IO pad by adding each 

transistor and sub-circuit area. 

 

So from a new user stand point, he has to pass the 
netlist and user parameters to the tool and he gets 
estimation on the final area of the IO pad. This not only 
gives user a realistic while doing the circuit layout but 
also confidence in their work once the target is achieved. 

 

 
Figure 4: Meta-Model for IO Area Estimator 



Another, utility created inhouse which is worth 
mentioning here is IO Library Information Collector 
shown in Figure 5. This inhouse tooling is used for IO 
generation, It needs information from the created 
schematic, layout and connectivity, logical equation etc 
in form of user written text files. These text file format is 
error prone and results into several cycles of effort to get 
them right. Wrong information would cause a garbage in 
/ garbage out behavior of the IO generator. Hence a flow 
was created using Metagen which ease out user pain in 
creating the text file.  

 

Figure 5: IO Lib Information Collector 

a) The IO generator needs schematic, layout and 
connectivity information, logical equations etc in 
another text file format to generate the complete 
IO PAD. 

b) The schematic and layout are created in other 

EDA tool. For the text file information a meta-

model was created using Metagen. The 

generated GUI from the meta-model, Figure 6a, 

6b, allows user to provide IO Cell 

characterization and other information. A 

generator was written to generate these text files. 

c) These text files along with the layout and 

schematic are read by the inhouse IO generator 

tool to generate complete IO library. 

 

 
Figure 6a: Meta-Model for IOCell Information 

Major benefit of this approach is the support of a more 

formal approach allowing early consistency checks. 

In both these applications, as we see, we are not re-

creating EDA tools and re-invent the wheel. But the 

mechanisms provide an easy way to create and maintain 

extensions which might be useful to make the EDA tool 

usage more effective and efficient, especially by 

reducing the possibility of error prone entry to it. 

 

 
Figure 6b: Meta-Model for characterization of IO Cells 

                

VI. DESIGN APPLICATION EXPERIENCE 

 
Interestingly, designers accept learning meta-

modeling, since it is also a modeling task (designer’s 
daily work) and since meta-modeling is supported by the 
graphical capture of the meta-model. Only in the 
beginning, meta-modeling experts and domain experts 
(i.e. designers) sit together, plan, and discuss the 
modeling approach.  

 

The other important thing to mention is the high 
efficiency we get by applying all software-, 
methodology-, and design application strategy measures 
summarized above. We estimate that the taken approach 
is at least 20x faster than the approaches used today 
building EDA software. 

 

The circle closes, since this efficiency enables 
developing own and specific automation in digital 
hardware, analog hardware and firmware area covering 
also the interfaces between the areas. Also verification 
and documentation views have been generated. 
Altogether, the technology has been used in over 50 
design projects automating over 500 single design steps 
at Infineon so far. Savings of up to 95% in single design 
steps and up to 70% in the overall implementation of a 



chip has been measured. Continuously, meta modeling is 
applied in new applications and application areas. 

 

VII. COMPARISON WITH EXISTING TOOLS 

 

First of all, applying meta-modeling in hardware 
design does not require our metagen toolbox. As said, 
there are other tools out as the open source Eclipse 
modeling framework [2] and the Meta-Case tools. We 
only think that our environment is a bit better tuned for 
hardware design. Also full featured UML tools supports 
meta-modeling and can therefore be used for the 
described techniques. 

 

But there aren’t many tools out that directly utilize 
meta-modeling features. First of all to mention are UML 
tools supporting profiles for embedded systems as 
SysML [11] and Marte [12]. Of course, these tools shall 
be applied, but often, they lack features as described 
below for IP-XACT tools [4]. Let’s consider the 
utilization of register descriptions in real live designs: 

 

• The tools offer a GUI to enter the data, but the 
specification already covers the features and exists in 
Framemaker, Word, Excel, etc. and of course following a 
specific document structure. Either, the data has to be re-
typed using the EDA tool’s GUI or a translator to IP-
XACT has be be built. 

• Specific features as register access control or 
retention for power down are needed. Then, the 
intermediate has to be somehow patched to capture the 
data or a parallel model has to be developed. 

• Code shall be generated from the extended 
features, following a specific coding style or in a specific 
format. Then the generator – if possible has to be 
extended – or if no full access is given, it has to be 
completely recoded. 

 

To avoid a wrong impression, IP-XACT is heavily used 
at Infineon for what it was built for: External IP 
integration. 

 

As the example shows, the meta-modeling approach 
might be even more efficient when already an EDA tool 
exists but specific requirements have to be fulfilled. And 
there are many generation issues (metagen supports at the 
moment over 80) that are not supported by EDA tools at 
all since they are very design and/or domain specific. In 
these cases, meta-modeling complements EDA and gives 
value to the designer overall. 

SUMMARY AND OUTLINE 

 

We presented a promising, novel, and industry proven 
approach for automation primarily above 
implementation. The approach utilizes the meta-modeling 
and code generation technique known from SW domain. 
It uses orthogonal concepts to today’s EDA world – 
domain specific vs. generic solutions -and thus 
complements EDA tools in today’s design automation. 

Even if meta-modeling is known for over a decade 
now – and underlying concepts even longer – there are 
still many challenges in applying meta-modeling and 
code generation in the automation of embedded system 
design. To name only some, the challenges include 
modeling of physical aspects, modeling of functionality, 
or versioning of meta-models, models, and view. 

The intend of the paper is to make the technology 
knowledgeable to the design community and act as a 
starting point of further discussions and developments of 
a technology, which we might call “meta-modeling and 
code generation of embedded systems”. 
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