
Complementing EDA with Meta-Modeling and Code

Generation

Wolfgang Ecker, Michael Velten, Leily Zafari

System-Level and Verification

Infineon Technologies

Munich, Germany

<first name>.<last name>@infineon.com

Ajay Goyal

System-Level and Verification

Infineon Technologies India

Bangalore, India

Ajay.Goyal@infineon.com

Abstract—Automation is a key to design technology. As

designs are getting more complex day by day, productivity,

quality, efficiency and consistency of data become more

important. Also as things get more sophisticated, human

errors and mistakes becomes intolerable. In order to achieve

this efficiently, automation of design steps becomes crucial.

EDA tried to solve this problem by creating tools to automate

the design flow. But EDA often has to cater large number of

customers so they cannot make focused tools for particular

domain problem. Also development cost of such focused

tools will be very high and will not be affordable to design

companies.

In this paper we describe a model driven software

technology approach which not only allows design

companies to design their own automation but create

sophisticated tools with very little effort. It also allows them

to experiment with their data and quickly change the

solution along with the specification. The idea with this

domain specific approach is not to replace EDA and start

creating all tools in design houses. But it is to complement

EDA by helping reduce tool entry barriers by generating

input tool views and commands from the specification.

The infra-structure can also be used to create more

complex tooling based on reusing existing building blocks.

The other reason which makes this infra-structure easy to

use is the code generation feature from a UML model – as

usual in model driven engineering - which reduces almost

80-90% effort for creating a new tooling. Further, features

like generating automated transfer of data transfer, helps

designers to reduce their effort and achieve better efficiency

in their design steps.

Keywords—metamodeling; code generation, design

automation

I. INTRODUCTION

About 25 years ago, EDA industry developed tools that

successfully replaced many in-house tools at

semiconductor companies and system houses. It was

simply better and cheaper, to develop tools once and

apply these tools in many development sites worldwide.

Since then, EDA evolved continuously providing new

solutions in areas as deep submicron or coverage driven

verification to name only some.

It’s obvious; EDA cannot do all specific things for

everybody but has to focus on common approaches.

Therefore it’s no wonder, that no widely usable

synthesis above RTL synthesis is available. The design

space beyond implementation level is very huge,

continuously grows with the “More-than-Moore”

diversification, and requires plenty of specific things.

Also the design process above RTL is very

heterogeneous concerning supported formats, intended

abstraction, target architectures, interfacing modules or

optimization targets. Therefore, today only point

synthesis tools beyond RTL exist covering only a small

design area.

To provide a generic automation solution above

implementation level, metagen a meta-modeling and

code generation technology and methodology was

developed at Infineon in the last 4 years. It has been

successfully used already from the first days on and it

has been continuously improved and highly beneficial

applied in many Infineon designs. One success factor of

the metagen methodology is following a domain –

sometimes even a design – specific automation approach

which is orthogonal to the EDA strategy. Also,

automation is done by the designer and covers exactly

the indented application including only the generality

needed.

In the next parts, terminology and history of meta-

modeling is introduced, since it is not a mainstream

technology in hardware design yet. Afterwards, the taken

approach is elaborated in more detail and application

examples are given.

II. TERMINOLOGY AND HISTORY OF META-

MODELING

The target of meta-modeling and code generation is
the replacement of manual entry by generation of the
implementation formats and tools driving scripts as e.g.
RTL for digital design, schematic for analog design, C
for firmware, or TCL for UPF or other tool specific
automation.

Automating by specific scripts (see e.g. [10] as one of
many examples) as such is not new, but meta-modeling
follows a specific, partially automated and structured
approach – namely a clear separation of model and view:

• Target of generation is a so called view, which
may be one of the formats mentioned in the introduction
– since we want automation above today’s
implementation - but also XML, documentation, or any
other documents occurring in the design phases.

• The view is generated by a so called “generator”,
which is often a template engine. A template engine
renders a so called template, a mix of target code,
substitutions, and generation pragmas.

 • In order to generate the view according to current
design needs – often the specification - the template
engine has to retrive data required appropriately. This
data is stored in a structured way in a so called model. An
API – which is generated in our approach – provides the
generators access to the models.

The terminology is derived from SW technology, since
also software (e.g. coded in C++), firmware (e.g. coded
in C), and documentation (e.g. represented in XML) can
be generated. Therefore, RTL-Models or other hardware
models are treated as views in this terminology.

• The data of the model is read from a
specification, parsed from any other document, imported
from a description formulated in a so called domain
specific language, or entered with a GUI

• The structure of the model is defined in a so
called meta-model. Here “meta” means above and meta-
model means a model above or more abstract than a
model. A meta-model is also called a model of a model.
The model and the model’s API (to set and retrieve data)
must be compliant to the meta-model, so the model’s API
offers to be automatically generated from the meta-
model. Since writer and reader access the model via the
generated API, also they comply with the meta-model.

• Since the meta-model requires formalisms for
it’s definition, model driven engineering also knows the
term meta-meta-model, which exactly describes this
formulism.

Figure 1 shows an overview on that terminology derived
from OMGs MOF [5]. The different level from view to
meta-metamodel are usually named M0 to M3.

 Figure 1: Overview of Abstraction Levels

In the example, the view describes a chart visualizing
some data. This chart is one possible view of the model
holding that data. The structure of the model – so to say
to meta model – is defined by the headline. Last but not
least, the headline is nothing else than a non empty
sequence of names (Name { Name }), as defined in the
meta-metamodel utilizing EBNF formula syntax.

Figure 2 gives an overview on the interaction of the
pieces. The design automation path (specification to
implementation) is from left to right and the meta-model
underlying automation (meta-model API) is from top-to-
down.

It is worth mentioning, that the idea of structuring
(hardware) design data or defining (hardware) design
data in a structured way has been evolved in several
technologies as entity relationship diagram, UML
modeling [6], XML technology [7], and finally
metamodeling.

M2: MetaModel

Defines
Structure of
Model

Conforms
to
MetaModel

M1: Model

Defines
Content
of View

Represents
Content of
Model

M0: view

number

0

200

400

600

800

1000

1200

Test Chip Card Wireless

number

Defines
Structure of
Model

Conforms
to
MetaModel

M3: Meta-MetaModelName {Name}

Figure 2: Flow diagram of a meta-modeling
environment

III. TAKEN APPROACH

Initial point was the search for automation in typing

implementations as VHDL models or C programs. A
solution was established by a cross functional approach
i.e. by applying a relatively modern SW technology –
meta-modeling – to the implementation automation of
embedded systems.

But there is no single aspect that alone enables our
meta-modeling framework metagen to act as a core
technology for domain specific design automation. From
the implementation standpoint the use of Python showed
to be beneficial, since it provides many features useful
for the own implementation of a meta-modeling
framework:

• Object orientation as such is mandatory for
structuring data and providing clear interfaces to each
chunk of data.

• The polymorphic underlying language allows
focusing on the design domain when doing modeling. No
inheritance needs to be introduced when polymorphism is
needed.

• The interpreted language allows for fast edit-
compile-execute important to fast rampup the new
environment. Interestingly, performance of the
interpreted language is mostly sufficient.

• An easy integration of the template engine with
the implementation language of the framework allows
mixing both approaches for code generation, e.g. using
templates for formatting statements and a programming

language for formatting tokens. We use the Mako
template engine [8] in our approach.

• Also important is the openness of the framework
supported by powerful introspection capabilities in order
to allow designers – i.e. meta-modeling users – to adapt
the solution for their needs.

Nevertheless, the metamodeling and code generation
take some benefits of our implementation strategy, the
overall approach is not bound to metagen as such.

• So, the eclipse modeling framework (EMF)[2]
provides similar capabilities as metagen. Due to its
eclipse nature, EMF is Java based, which impacts some
overhead in implementation due to Java’s strict object
oriented approach. Also the template engine is not that
intuitive than the Python based template engine Mako.

• A commercial solution is provided by MetaCase
[3]; the tool is called MetaEdit. Here, a graphical domain
specific language can be developed. From interest are the
reported use cases from SW development, e.g. software
for fish pound management, since they show the wide
applicability of the technology. Metacase claims a
productivity improvement using their technology in SW
domain by up to a factor of 20x.

But not only the underlying engine is important, also
the following three implementation strategies showed to
beneficial for the overall approach:

• Required improvements are mostly implemented
in the framework but in the model. So it is available for
all generators build with metagen. Nevertheless, we had
in the last four years only two major releases of the
framework.

So, the framework is very generic but the applications are
much focused.

• Also the metagen framework makes heavy use of
generation – e.g. the model’s API is generated – the
application of the meta-modeling and code generation
technology in the framework itself contributes to a low
development effort.

• By providing an own reader, model, and
generator, the smooth integration in owns design flow
can be easily achieved – in contrast to existing tools,
which require not neglectable effort to make them fit in
owns design flow (please see EDA tool issue in the
introduction).

Even more important, own readers allow to setup a
single source strategy for all implementation data and
thus improves consistency from the beginning.

reader

model

Spec
e.g.
XML

re
a

d
s

sp
e

c
if

ic
a

ti
o

n

APIF
il

ls
m

o
d

e
l

writer

A
c
c
e

ss
e

s
m

o
d

e
l

G
e

n
e

ra
te

v
ie

w

View
e.g. SV

RTL

Generate
API

Meta-Model Confirms-ToConfirms-To

Graphical specification

Component

Name: string

Port

Name: string

Size: int

Register

Name: string

Size: int

Function

Name: string

Make Semi-
automatically

Make Semi-
automatically

IV. APPLICATION STRATEGY

But not only the technology, also the application
strategy important for the success of the approach:

• First to mention is the radical domain specific
approach as already mentioned in the introduction. The
meta-model, the reader, and the generators implement
only things that are absolutely needed for the application.
This keeps implementation time low and allows a very
focused and efficient verification. First applications are
ready, in use, and provide benefits for the designer often
in some days. When useful, automation scope is
incrementally increased. So, the usage of the technology
pays off from the first day.

• The next thing is that the taken approach does
not target full automation. Supported by the template
based code generation approach, often an 80%
automation leaving 20% manual work is appropriate.
Let’s say gaining 80% productivity improvement using
automation, an overall improvement of 64% is still
achievable.

• Last to mention that in our approach, the domain
experts (i.e. designer, verification engineer etc) build
model, reader and writer – or are at least heavily involved
in building it. This makes sure, that the right things and
the things bringing the best benefit are automated.
Further on, it reduces needed domain specific knowhow
at the metagen framework side for the price of
convincing designers to get in touch and use the meta-
modeling approach.

V. INHOUSE DESIGN APPLICATIONS USING METAGEN

- AIDING EDA TOOLS

Many design applications have been executed inside the

organization which helps to get a good start point before

start using EDA tools. Many applications are in classical

HW, SW and HW/SW areas as generation of structure,

control flows or declarations. (see e.g. [9])
But also many other applications with the generation

of more hardware related items are automated with
metagen. One such application is IO PAD area estimator
shown in Figure 3.

The IO pad designers create these run set files which
they run with inhouse spice simulator and dump netlist.
Using this netlist, they plan the layout without any idea
about the ideal area that must be taken by the netlist. So,
the final outcome might be error prone and efficiency on
the size of the IO pad depends on the experience of the
designer since the final result is not known at that point
of time. So using Metagen an application had been

created and flow has been designed to estimate the area
before they have done the final layout in the EDA tool.

Figure 3: IO Pad Area Estimator

a) In this application, a meta-model, Figure 4, is

created using the data in the netlist for defining the

relationships. This meta-model generates the code for

the model.

b) In next step, a reader was written which reads

the netlist and user specified parameter file which

contains DRC (Design Rule Check) rules.

c) Also, a writer is written on the model which

does the calculation of the total IO pad by adding each

transistor and sub-circuit area.

So from a new user stand point, he has to pass the
netlist and user parameters to the tool and he gets
estimation on the final area of the IO pad. This not only
gives user a realistic while doing the circuit layout but
also confidence in their work once the target is achieved.

Figure 4: Meta-Model for IO Area Estimator

Another, utility created inhouse which is worth
mentioning here is IO Library Information Collector
shown in Figure 5. This inhouse tooling is used for IO
generation, It needs information from the created
schematic, layout and connectivity, logical equation etc
in form of user written text files. These text file format is
error prone and results into several cycles of effort to get
them right. Wrong information would cause a garbage in
/ garbage out behavior of the IO generator. Hence a flow
was created using Metagen which ease out user pain in
creating the text file.

Figure 5: IO Lib Information Collector

a) The IO generator needs schematic, layout and
connectivity information, logical equations etc in
another text file format to generate the complete
IO PAD.

b) The schematic and layout are created in other

EDA tool. For the text file information a meta-

model was created using Metagen. The

generated GUI from the meta-model, Figure 6a,

6b, allows user to provide IO Cell

characterization and other information. A

generator was written to generate these text files.

c) These text files along with the layout and

schematic are read by the inhouse IO generator

tool to generate complete IO library.

Figure 6a: Meta-Model for IOCell Information

Major benefit of this approach is the support of a more

formal approach allowing early consistency checks.

In both these applications, as we see, we are not re-

creating EDA tools and re-invent the wheel. But the

mechanisms provide an easy way to create and maintain

extensions which might be useful to make the EDA tool

usage more effective and efficient, especially by

reducing the possibility of error prone entry to it.

Figure 6b: Meta-Model for characterization of IO Cells

VI. DESIGN APPLICATION EXPERIENCE

Interestingly, designers accept learning meta-

modeling, since it is also a modeling task (designer’s
daily work) and since meta-modeling is supported by the
graphical capture of the meta-model. Only in the
beginning, meta-modeling experts and domain experts
(i.e. designers) sit together, plan, and discuss the
modeling approach.

The other important thing to mention is the high
efficiency we get by applying all software-,
methodology-, and design application strategy measures
summarized above. We estimate that the taken approach
is at least 20x faster than the approaches used today
building EDA software.

The circle closes, since this efficiency enables
developing own and specific automation in digital
hardware, analog hardware and firmware area covering
also the interfaces between the areas. Also verification
and documentation views have been generated.
Altogether, the technology has been used in over 50
design projects automating over 500 single design steps
at Infineon so far. Savings of up to 95% in single design
steps and up to 70% in the overall implementation of a

chip has been measured. Continuously, meta modeling is
applied in new applications and application areas.

VII. COMPARISON WITH EXISTING TOOLS

First of all, applying meta-modeling in hardware
design does not require our metagen toolbox. As said,
there are other tools out as the open source Eclipse
modeling framework [2] and the Meta-Case tools. We
only think that our environment is a bit better tuned for
hardware design. Also full featured UML tools supports
meta-modeling and can therefore be used for the
described techniques.

But there aren’t many tools out that directly utilize
meta-modeling features. First of all to mention are UML
tools supporting profiles for embedded systems as
SysML [11] and Marte [12]. Of course, these tools shall
be applied, but often, they lack features as described
below for IP-XACT tools [4]. Let’s consider the
utilization of register descriptions in real live designs:

• The tools offer a GUI to enter the data, but the
specification already covers the features and exists in
Framemaker, Word, Excel, etc. and of course following a
specific document structure. Either, the data has to be re-
typed using the EDA tool’s GUI or a translator to IP-
XACT has be be built.

• Specific features as register access control or
retention for power down are needed. Then, the
intermediate has to be somehow patched to capture the
data or a parallel model has to be developed.

• Code shall be generated from the extended
features, following a specific coding style or in a specific
format. Then the generator – if possible has to be
extended – or if no full access is given, it has to be
completely recoded.

To avoid a wrong impression, IP-XACT is heavily used
at Infineon for what it was built for: External IP
integration.

As the example shows, the meta-modeling approach
might be even more efficient when already an EDA tool
exists but specific requirements have to be fulfilled. And
there are many generation issues (metagen supports at the
moment over 80) that are not supported by EDA tools at
all since they are very design and/or domain specific. In
these cases, meta-modeling complements EDA and gives
value to the designer overall.

SUMMARY AND OUTLINE

We presented a promising, novel, and industry proven
approach for automation primarily above
implementation. The approach utilizes the meta-modeling
and code generation technique known from SW domain.
It uses orthogonal concepts to today’s EDA world –
domain specific vs. generic solutions -and thus
complements EDA tools in today’s design automation.

Even if meta-modeling is known for over a decade
now – and underlying concepts even longer – there are
still many challenges in applying meta-modeling and
code generation in the automation of embedded system
design. To name only some, the challenges include
modeling of physical aspects, modeling of functionality,
or versioning of meta-models, models, and view.

The intend of the paper is to make the technology
knowledgeable to the design community and act as a
starting point of further discussions and developments of
a technology, which we might call “meta-modeling and
code generation of embedded systems”.

REFERENCES

[1] J.-M.. Bergé, O. Levia, and J.. Rouillard, “Performance

and Information Modeling,” Kluwer Academic
Publishers, 1996

[2] D. Steinberg, F. Budinski, M. Paternostorno, E. Merks,
“EMF: Eclipse Modeling Framework” 2009

[3] MetaCase: “Domain Specific Modeling with MetaEdit+,”
http://www.metacase.com/de/

[4] IEEE: “1685-2009 – IEEE Standard for IP-XACT,
Standard Structure for Packaging, Integrating, and
Reusing IP within Tools Flows,” 2010

[5] M. Brambilla, J. Cabot, M.Wimmer, “Model-Driven
Software Engineering in Practice”, Morgan&Claypool
Publishers, 2012

[6] D. Pilone, N. Pitman, “UML 2.0 in a Nutshell,” O’Reilly,
2005

[7] E. T. Ray, “Learning XML,” O’Reilly, 2009

[8] Mako Templates for Python:
http://www.makotemplates.org/

[9] R. Findenig, T. Steininger, T. Leitner, “Combining
several Metamodels for the Generation of Control
strucutres in Hardware”, MeCoEs2012, Tampere, 2012

[10] Schneider, C.; Ecker, W.: "A parallel/serial trade-off
methodology for look-up based decoders". In Proceedings
of the Design Automation Conference (DAC '97),
Anaheim, USA, (6 1997).

[11] Holt, J.; Perry, S.: “SysML for Systems Engineering
(Professional Applications of Computing)”, The
Institution of Engineering and Technology (May 2008)

[12] Selic, B.; Gerard, S.: “Modeling and Analysis of Real-
Time and Embedded Systems with UML and MARTE:
Developing Cyber-Physical Systems”, The MK/OMG
Press

