
Common Challenges and Solutions

to Integrating a UVM Testbench

in place of a legacy monolithic Verilog

Testbench
Frank Verhoorn – Northwest Logic, Inc

Mike Baird – Willamette HDL

Upgrading a legacy Verilog

Testbench to UVM
• BACKGROUND: Many companies have existing Verilog-based testbench

structures which have evolved over years, often containing elements such as:

– Test sequences in initial() blocks or inline / included as library of task calls

– Libraries of support functions & task calls, assuming existence of global variables

– Reliance on either global scoping for variable/task references, or explicit hierarchical

path references – I/we call this “monolithic” (not easily separable)

• Northwest Logic reasons for upgrading to a modern Object-Oriented testbench

structure (such as UVM) included:

• Object-oriented scalability (multiple ports/drivers/BFMs)

• Ability to use Third-party Verification IP

• More complex randomization, scoreboarding

• It’s likely that other companies are looking to perform similar upgrades/migrations.

Common Challenges & Issues

• This presentation discusses some issues we encountered (likely to be

common challenges for others as well). We will present some

suggested solutions and recommendations based on our work.

1. Issues and Solutions arising from Parameterized DUTs and Testbenches

2. Some Guidance for re-using support infrastructures (simulation scripts, etc)

3. Recommendations for migrating legacy global tasks/functions into BFM methods

4. Solutions and Suggestions for migrating legacy $display to UVM

Heavily Parameterized DUTs
• Parameters are great for implementing configurable library elements

(such as a FIFO) with parameterized widths/depth/etc

• Northwest Logic’s existing IP design also heavily relies on parameters

(rather then ‘define) for DUT interfaces (such as widths)

• Parameterization of DUT

interfaces can present difficulties

for scalable instantiations

• Unique set of parameters for

interfaces makes each interface

a unique type that must be

matched in the UVM testbench

drivers and monitors

HDL_TOPUVM Framework / HVL_TOP

Driver type

“A”(X)
RTL

under

test

I/F type “A”,

param width=X

I/F type “A”,

param width=Y

Instance #1

Instance #2

Param value “Y”

Driver type

“A”(Y)

Param value “X”

Cannot use Common UVM Driver

for unique interface instances

• Interface drivers cannot be instances of the same type, since the

interfaces are parameterized with different values

HDL_TOPUVM Framework / HVL_TOP

Interface “A”

Driver
RTL

under

test

I/F type “A”,

param width=X

I/F type “A”,

param width=Y

Instance #1

Instance #2

Param value “Y”

Param value “X”

Interface “A”

Driver

Instance #1

Instance #2

Matching Parameterization in

UVM Framework

• With hundred of parameters used, we could have collected them all into

a single common parameters package

• However, distributing this

many parameter values

throughout the framework

hierarchy was too

cumbersome and

unmaintainable

HDL_TOPUVM Framework / HVL_TOP

Driver type

“A”(X)
RTL

under

test

I/F type “A”,

param width=X

I/F type “A”,

param width=Y

Instance #1

Instance #2

Param value “Y”

Driver type

“A”(Y)

Param value “X”
Param value “Y”

Param value “X”

Use of Single base interface class

with proxy interface

• Single base interface with a “universal” interface is presented as a

“proxy” for the underlying (parameterized-width) method

• While this requires an

additional step to establish

the base interface & proxy

methods, scalability and

support is easy

HDL_TOPUVM Framework / HVL_TOP

Interface “A”

Driver
RTL

under

test

Instance #1

Instance #2

Param value “Y”

Param value “X”

Interface “A”

Driver

Instance #1

Instance #2

Base I/F “A” w/
interface proxy

Proxy call methods

param width=X

Base I/F “A” w/
interface proxy
Proxy call methods

param width=Y

“universal”

interface

width

RECOMMENDATION: use base interface with “universal” interface and

proxy interface methods to handle multiply-parameterized interfaces

Another Issue w/ Parameters: use in

test var. declarations and assignments

• Testbenches built around significant parameter use often rely upon

parameter values in variable declarations and assignments

• To avoid parameterizing

the entire UVM testbench

hierarchy, these values are

made available as global

vars in a “params” pkg

parameter ADDR_WIDTH;

reg [ADDR_WIDTH-1:0]test_address;

for (int i=0; i<256; i++)|

test_address[ADDR_WIDTH-1:0] = {{ADDR_WIDTH-8{1’b0}}, i[7:0] };

In “top_params_pkg.sv”: integer ADDR_WIDTH:

In the HDL_TOP testbench.sv, assign:

initial

// at t=0, assign var to parameter’s value

top_params_pkg::ADDR_WIDTH = ADDR_WIDTH;

Thence, used in the UVM test sequence code:

for (int i=0; i<ADDR_WIDTH; i++) // use as var

test_address= 1’b << i;

• Practices differ in the UVM community re: use of a single toplevel

wrapper for the entire UVM simulation
– versus having “dual-top modules” (HVL_TOP and HDL_TOP)

For Northwest Logic, the advantages of a dual-top allowed for

preservation of infrastructure around:

– Simulation scripts’ setting/overriding parameter values

– Test plan linkage to coverage via hierarchical paths

(optional) test top as “wrapper”

Dual/Single HDL TOP and Preserving

Existing Verification Infrastr. / Scripts

UVM Framework /

HVL_TOP (test top)

(parameterized) HDL_TOP Top/

global

vars pkgDUT/

RTL

under

test

BFM(s)
UVM

Driver

Simulation Script Infrastructure for

setting Parameter Values

• Setting param values in a single top-level wrapper testbench:

• Versus script infrastructure used without changing existing parameter

hierarchy:

top_pkg.sv: parameter GLOBAL_PARAM = <default parameter value>;

new_top_wrapper.sv: import top_pkg::*;

(Incisive): -DEFPARAM /new_top_wrapper/GLOBAL_PARAM=<override_value>

-DEFPARAM /new_top_wrapper/hdl_top/GLOBAL_PARAM=<override_value>

(Questasim): -g/new_top_wrapper/GLOBAL_PARAM=<override_value>

-g/new_top_wrapper/hdl_top/GLOBAL_PARAM=<override_value>

// no change to existing script infrastructure

(Incisive): -DEFPARAM /hdl_top/ADDR_WIDTH=<override value>

(Questasim): -g/hdl_top/ADDR_WIDTH=<override value>

Testbench Hierarchy & Existing

Coverage-Based Testplan Links
• Northwest Logic uses the Mentor QVM toolset for testplans and

aggregating / analyzing coverage

• Path to coverage items is embedded in the testplans, linking a testplan

item to specific covergroup/coverpoints/directives/assertions/etc

• Maintained existing hierarchy paths to coverage and parameters by

adding the UVM Framework as a dual-top -- enabled us to preserve our

testplans and analysis script infrastructure
RECOMMENDATION: consider impact / changes to your existing infrastructure (for example, related

to Parameterization and Testplans) when determining your UVM testbench hierarchy choice

Un-Flattening a Legacy Testbench from

Global variables & Tasks/Functions

• Northwest Logic’s legacy testbench

had evolved into a large, fairly flat

testbench containing many global

variables, tasks and functions

• Some globals such as clks and

resets were simple to relocate to

BFMs with access and control methods

• Some tasks were clearly associated

with a specific BFM, such as an I2C or APB register access task

Alternate `included 3rd Party

model ver.Y support tasks

Task
A

Task
C

Task D

Global vars:

Testbench

global tasks:

Task
B

Task E

Read/Write
Methods

NEW:

Initialization Bus BFM

Frequently-Used Calculation functions

(Global in scope)
Calc. Function F

Legacy Testbench / HVL TOP

`included 3rd Party model ver.X

support tasks
Task

A

Task
B

DUT

NEW:

Reset Sequencing &

Globals Access BFM

Simplifying Test Sequence Porting to

UVM Testbench
• For other (formerly global) testbench variables relocated into BFM’s for

scalability:

– Choosing names of the BFM method(s) made porting of test sequence

code to distinct UVM test sequences a manageable effort

– For most, interface proxy methods were needed (vs simple interface BFM signal

references) due to existence of multiple parameterized BFM instances,

reg global_control_bit_A;

task test_sequence1();

global_control_bit_A = 1’b1;

repeat (10) @ posedge (clk);

controlbits_B[WIDTH:0] = ‘value;

global_control_bit_A = 1’b0;

endtask

class test_sequence1 extends seq_base;

task body();

global_sigs_bfm.set_global_control_bitA(1’b1);

clkreset_bfm.wait_posedge_clk(10)

bfm_proxy_if.set_controlbitsB(value);

global_sigs_bfm.set_global_control_bitA(1’b0);

endtask;

endclass

DUT Initialization via UVM sequence

versus testbench HDL_TOP

• Every conversion to a UVM testbench begs the question:

“how much of the HDL initialization sequence should be performed by

UVM sequence, versus executed within the scope of the RTL/HDL_TOP”

– UVM sequence could provide all stimulus starting from t=0

– Often at least *some* initial clocking/reset needs to occur before handoff

to UVM sequence

– Legacy Verilog testbench likely contains the initialization sequence and

support tasks already

RECOMMENDATION: early on, determine how much of initialization task(s) need to be available/

ported to UVM sequences, and where the stimulus handoff will be to UVM sequencing

Northwest Logic decided to focus on

new UVM test sequence capability
• Due to our initialization task complexity and support for multiple versions

of global init tasks, the decision was made to execute initialization direct

from HDL_TOP prior to beginning any UVM sequence

• Significant additional effort

would have been required to

– relocate tasks into

interface modules

– port/rewrite multiple versions

of 3rd party model init

sequences

Alternate `included 3rd Party

model ver.Y support tasks

Task
A

Task
C

Task
D

Global vars:

Testbench

global tasks:

Task
B

Task
E

Read/Write
Methods

NEW:

Initialization Bus BFM

Frequently-Used Calculation functions

(Global in scope)
Calc. Function F

Legacy Testbench / HVL TOP

`included 3rd Party model ver.X

support tasks
Task

A

Task
B

DU
T

NEW:

Reset Sequencing &

Globals Access BFM

Calc.
Function F

UVM
Register
Model

Ported & New

UVM Test

Sequences

UVM HVL

Framework

Converting legacy $display to UVM

Info/Error Messaging
• UVM info messaging is already highly configurable

– predefined verbosity levels UVM_LOW / MEDIUM / HIGH and UVM_DEBUG

– Macros UVM FATAL and ERROR messages

• However, there is no standard usage recommendation for what to use / when

– When to use FATAL (stop simulator) vs ERROR (continue execution)?

– What parts of test sequence, BFM, scoreboards do you wish to hear from & under what

conditions? Under normal test-run output vs debug runs?

• Unless you consider / plan your usage model early, expect to do frequent revisit &

revision of your code usage

– Used throughout your test sequences, BFMs, UVM framework objects

RECOMMENDATION: define some convention up-front, to avoid excessive re-visit and

revision to your BFM, Framework, and test sequence source code development

Example: Northwest Logic UVM_INFO

Display Verbosity Conventions
UVM Message
Macro

UVM Message
Verbosity

UVM test sequence use UVM testbench/
framework use

`uvm_fatal Situations where simulator crash, segfault, or unexpected behavior is likely to ensue

`uvm_error Test errors (such as data miscompare vs expected) or other results (unexpected event

observed), but test execution can proceed to potentially test other conditions

`uvm_info UVM_DEBUG Do not use in user test sequences Do not use here either. Used

within UVM macro libraries.

Reserve for debug of UVM library

code

UVM_HIGH Do not use in user test sequences Use for enabling debug

statements from UVM Framework

elements, such as drivers,

sequencers, BFMs, testbench

UVM_MEDIUM Use for debug of test sequence execution progress (maps

to historical (if debug_en) $display statements)

UVM_LOW Use for standard test sequence progress execution

messages, similar to what historical $display statements

would output to standard regression-test stdout/logfiles

Customized UVM Report Server

• The default UVM report server, while containing flexible Verbosity level filtering, is

nonetheless excessively verbose in its output text

– UVM Verbosity levels do not significantly reduce the format or content of the report

message, only which messages are output

– While a UVM report “catcher” can be used to intercept and filter messages, there would

be more overhead “catching” all the time to re format every message, vs modifying the

initial report server output

– Custom report server output:

`uvm_info(rpt_idstr, $sformatf("%0s, %t", testname, $time), UVM_LOW)

UVM_INFO

/home/user/projects/nwlogic/dram/verilog/testbench_uvm/seq/legacy_test_sequences/pow

erdown_test4_seq.svh(83) @ 8715625.0 ps: reporter@@powerdown_test4_seq

[powerdown_test4_seq] POWER_DOWN_TEST(#4), 8715625.0ps

UVM_INFO [powerdown_test4_seq] POWER_DOWN_TEST(#4), 8715625.0ps

• UVM_info messaging macro accepts an ID string that is used frequently to

sort/distinguish report output (examples):

• In a testbench where multiple instances of a test sequence may be spawned in

parallel, it can be useful to uniquely distinguish each one’s output
UVM_INFO [use_test_select] ++++ Spawning parallel instances of selected sequence(s)

UVM_INFO [ch2 address_test5_seq] ADDRESS TEST (#5), 6642500

UVM_INFO [ch1 address_test5_seq] ADDRESS TEST (#5), 6642500

UVM_INFO [ch0 address_test5_seq] ADDRESS TEST (#5), 6642500

UVM_INFO [ch0 long_writeread_test11_seq] LONG_WRITE_READ_NO_AP (#11), 24287500

UVM_INFO [ch1 long_writeread_test11_seq] LONG_WRITE_READ_NO_AP (#11), 24287500

UVM_INFO [ch2 long_writeread_test11_seq] LONG_WRITE_READ_NO_AP (#11), 24287500

Setting Report Tag String (ID) in

Test Sequence Base Class

`uvm_error(“PROTOCOL CHECKER”, $sformatf(“detected protocol violation XYZ at time: %0t”))

`uvm_info (“SCOREBOARD”, $sformatf(“checking transaction %0d for miscompare”, j), UVM_MEDIUM)

`uvm_info (“JTAG BFM”, $sformatf(“executing transaction %0d at time %0t”, i, $time), UVM_LOW)

`uvm_info (“TEST SEQ 3”, $sformatf(“starting seq on seqr %0d at time %0t”, i, %time), UVM_LOW)

RECOMMENDATION: consider defining a report tag / ID string variable in the

test sequence base, that you can assign to a per-sequence-instance value

Conclusion/Summary

This presentation discussed:

1. Issues and Solutions arising from Parameterized DUTs and Testbenches

2. Some Guidance for re-using support infrastructures (simulation scripts, etc)

3. Recommendations for migrating legacy global tasks/functions into BFM methods

4. Solutions and Suggestions for migrating legacy $display to UVM

While these reflect solutions chosen for implementation of a specific project, we hope

that our recommendations & guidance may help others embarking on similar projects

to upgrade or convert older Verilog testbenches to more modern UVM-style

methodologies.

Thank you!

