

1

Common Challenges and Solutions to Integrating a

UVM Testbench in Place of a Legacy

Monolithic Testing Environment

Frank Verhoorn

Northwest Logic, Inc

1100 NW Compton Drive #100, Beaverton Oregon 97006

fverhoorn@nwlogic.com 503-533-5800

Michael Baird

Willamette HDL, Inc.

6107 SW Murray Blvd, #407, Beaverton OR 97008

mike@whdl.com 503-590-8499

ABSTRACT

Developing a new verification testbench based on Unified Verification Methodology (UVM) to work

within an existing company testing environment presents challenges beyond just creating the UVM testbench

alone. Often companies will have existing scripting, reporting, logging etc. methodologies that the UVM

testbench must conform to. This can require custom work above and beyond standard UVM testbench meth-

odologies. Many of these challenges are likely to be common to companies who are upgrading older, simple

Verilog-based verification environments to UVM. This paper discusses some specific challenges and solutions

discovered while converting the Northwest Logic Memory testbench to UVM and integrating into existing test

environment infrastructure.

I. INTRODUCTION

Northwest Logic is a vendor of logic block Intellectual Property (IP). The Northwest Logic Memory Con-

troller IP internal code database is highly parameterized, to allow Northwest Logic to easily create and deliver unique

configurations (for example deliveries with different internal datapath widths). Verification of such deliveries requires

a testbench with the ability to vary parameter values at simulation time. However, heavy use of parameterization

presents some unique challenges for a UVM framework containing scalable Bus Functional Model (BFM) instances.

 Recommendation 1: This paper discusses some solutions to UVM testbench issues due to parameterization.

Besides supporting parameterized simulation runs, the Northwest Logic verification infrastructure contains significant

legacy support for multiple Physical Interface (PHY) models and merging Coverage data from multiple simulations.

 Recommendation 2: This paper provides some solutions and guidance for the UVM testbench toplevel hierarchy

that can be beneficial for re-using existing infrastructures.

Many historical testbenches contain global register or wire declarations which communicate control/status to/from the

Device Under Test (DUT). Older Verilog-based testbenches frequently assert stimulus registers/wires from many

different statements in the testbench. Testbenches often contain hierarchal path references to set or query the regis-

ters/wires, or contain BFM-like task declarations to sequence assertions/deassertions of stimulus wires.

 Recommendation 3: This paper provides some guidance for implementing these operations into BFM-based ac-

cess methods, in order to ease the effort of porting existing test suites to a new UVM testbench.

Finally, most Verilog testbenches make frequent use of the Verilog $display statement for outputting messages about

test execution progress, fatal and nonfatal errors, and debug or diagnostic information. UVM libraries define standard

macros to be used for outputting error/debug/info messaging. However, before simply converting all $display state-

ments to UVM error/info macros, it is beneficial to define some methodology and conventions.

 Recommendation 4: This paper provides some suggested guidance and examples for converting older testbench

$display statements to UVM error/fatal/info macro use.

mailto:fverhoorn@nwlogic.com
mailto:mike@whdl.com

2

II. PARAMETER-AGNOSTIC INTERFACE PROXIES

Parameter-based object instantiation is extremely common in Hardware Description Language (HDL) - based

logic designs for low-level logic block content. For example, a design might contain multiple instantiations of a

primitive queue or FIFO element, where one instance might be parameterized to a different size or depth than another

instance. However, parameterization used on DUT external interfaces (such as DUT external port-width parameteri-

zation), can be problematic for UVM BFM instantiations.

The traditional HDL-based portion of the testbench (HDL_TOP in Figure 1) presents no issues compiling

one module of a BFM interface module but linking two uniquely-parameterized instances of that BFM interface mod-

ule. However, in an object-oriented UVM testbench, these two interface instances once parameterized differently

become two distinct object classes. When connecting a UVM driver to each BFM interface module, the UVM drivers

themselves must be uniquely parameterized. This then necessitates a parameter-based instantiation hierarchy through-

out the entire construction and link of the UVM Framework (HVL_TOP in Figure 1).

In the figure below, if two instances of interface ‘A’ exist, one parameterized with a transaction address width

32=X and another with transaction address width 48=Y, then the UVM framework must contain one instance of a

driver using width X=32 and a separate driver using width Y=48.

Figure 1: Parameterized Interface Instances and Parameter-Agnostic Proxy Interface

Instead, a recommended solution is to define “Proxy” interfaces within each BFM interface module (see

references [1][2]). The BFM interface module is defined with interface proxy methods that utilize a fixed, common

width to its method arguments (e.g. proxy’s address width Z=64). All driver instances may then be identical, and

make calls to BFM proxy-interface methods using Z=64 wide address arguments. Within each (uniquely-parameter-

ized) BFM interface module instance, however, the proxy interface method can then call a (uniquely-parameterized)

BFM interface method. A base class is defined for objects containing the (fixed-width) proxy interface methods, with

empty/placeholder method content, then BFM interface models are defined which override the proxy interface meth-

ods to call a (uniquely-parameterized) method of the BFM interface. Similar methods are employed for other param-

eter-based uniqueness, such as data widths.

HDL_TOP UVM Framework / HVL_TOP

Driver type

“A”, instance #1

RTL

under test

I/F type “A”,

param width=X

I/F type “A”,

param width=Y

Instance

#1

Instance

#2

Param value “Y”

Driver type

“A”, instance #2

Common

proxy in-

terface

width= Z

Param value “X”

3

Example 1: BFM Interface Module with Proxy Interface

Example 1 above shows representative code from a single BFM interface module for a bus “localbus” in-

cluding both the native (uniquely parameterized) tasks/methods, as well as the proxy class object containing fixed-

width interface methods.

On the following page, Example 2 shows the base-class proxy object defining these fixed-width interface

templates before they are overridden by each uniquely parameterized BFM. Example 3 demonstrates the uniquely

parameterized BFM instantiated in the HDL_TOP and registration of its proxy interface object into the UVM con-

figDB. Finally, Example 4 demonstrates the actual UVM driver fetching the handle of the specific BFM’s proxy

interface and using a $cast to a non-parameterized base proxy interface.

interface localbus_txn_if #(
 parameter ADDR_WIDTH=39,
 parameter SDRAM_DSIZE=64)
…

 // BFM native (uniquely parameterized to this BFM instance) tasks
 task automatic bfm_write_burst(input logic [ADDR_WIDTH-1:0] addr);
 …
 endtask
 task automatic bfm_set_write_data(input logic [SDRAM_DSIZE-1:0] datain_value);
 …
 endtask

 // BFM has a proxy interface object that will be registered into the UVM configDB
 class lb_proxy_if extends lb_pkg::lb_if_proxy_base;

 function new(string name = "lb_proxy_if");
 super.new(name);
 endfunction

 // Here are all the proxy-function to BFM native function mappings/calls.
 virtual task automatic write_burst(
 input logic [63:0] addr // fixed non-parameterized width
);
 // calls the uniquely parameterized task defined within this interface
 bfm_write_burst(addr[ADDR_WIDTH-1:0]);
 endtask

 virtual task automatic set_write_data(
 input logic [1023:0] datain_value // fixed non-parameterized width
);
 // calls the uniquely parameterized task defined within this interface
 bfm_set_write_data(array_ptr, datain_value[SDRAM_DSIZE-1:0]);
 endtask
 endclass

 // above defined the proxy class, now create the instance of the proxy.
 lb_proxy_if proxy_if = new();

endinterface

4

Example 2: Interface Proxy Base Class Declaration

Example 3: Interface Proxy Registration with ConfigDB

Example 4: Interface Driver type $cast of Proxy Interface handle

class lb_if_proxy_base extends if_proxy_base;

 // Here are all the (empty) proxy-function to BFM native function mappings/calls.
 virtual task write_burst(
 input logic [63:0] addr,
);
 endtask
 virtual task set_write_data(input logic [1023:0] datain_value
);
 endtask
endclass

localbus_txn_if
 #(
 .ADDR_WIDTH(ADDR_WIDTH),
 .SDRAM_DSIZE(SDRAM_DSIZE)
)
 lbbfm_inst (
);

initial
begin
 // Register this Virtual Interface Wrapper in the UVM ConfigDB, with the appropriate lookup/reference
string
 uvm_config_db #(if_proxy_base)::set(null,"uvm_test_top", “localbus_txn_bfm_instance”,
lbbfm_inst.proxy_if);
end

class lb_driver extends uvm_driver #(uvm_sequence_item);

 lb_configuration m_config; // configuration object
 lb_if_proxy_base p_if; // proxy interface handle

…
 // fetch driver configuration object
 $cast(p_if, m_config.get_p_if()); // set base proxy handle to point to derived proxy object

endclass

5

III. HDL PARAMETERS CONVERSION TO UVM SEQUENCE VARIABLES

With a highly parameterized Verilog testbench, test sequence code embedded within the testbench will fre-

quently declare parameterized test sequence variables or assign parameterized width values. For example:

Example 5: Parameterized Variable Declarations and Assignments

The Northwest Logic scripting infrastructure as-is did not support generating long lists of parameter overrides to two

separate toplevel modules, and would have required extensive modification to do so. Furthermore, for uniquely pa-

rameterized interface instances, such as discussed in Section II above, instance parameterization in the UVM Frame-

work requires additional complexity to pass parameter values through levels of UVM environment objects hierarchy.

Unfortunately, without the complete UVM Framework also being parameterized, these width parameter values cannot

be used to declare variables within UVM sequence code. Instead, variables in UVM sequence code need to be

declared according to the fixed-widths established for interface base proxy classes, for example:

Example 6: Conversion to Non-Parameterized Declarations

Parameter values are often also used as variables within test sequence code. For example,

Example 7: Parameter Use within Test Sequence Code

When parameters are used as actual test variables, in order to easily port tests from a historical testbench, it is desirable

to continue these references as test variables. Fortunately, this use of parameter value as a true variable can be pro-

vided with ease. To do this, the Northwest Logic UVM testbench declares a set of variables using identical string/var-

iable names as the historical parameters. Since parameter values are known at simulation link/elaborate (simulation

time=0), the Northwest Logic UVM testbench explicitly copies the parameter value to a like-named variable. In this

way, UVM-ported test sequences may still continue to make reference to a variable within test sequence code, as if it

had been the historical parameter. This greatly simplifies the conversion/porting effort of existing Verilog test se-

quences into UVM test sequences.

Example 8: Test Sequence Conversion from Parameter use to Parameter-Valued Variable use

reg [ADDR_WIDTH-1:0] test_address; //declaration of parameterized-width variable, OK in older Verilog
 // but cannot be made in a non-parameterized UVM sequence

for (int i=0; i<256; i++)|
 test_address[ADDR_WIDTH-1:0] = {{ADDR_WIDTH-8{1’b0}}, i[7:0] };
 // Number of 0 bits in assignment is parameterized

In “top_params_pkg.sv”:
 integer ADDR_WIDTH: // will hold the value of the ADDR_WIDTH param determined at runtime from
 // either the parameter default value or a runtime parameter override

In the HDL_TOP testbench.sv:
 initial
 begin
 top_params_pkg::ADDR_WIDTH = ADDR_WIDTH; // at t=0, assign variable ADDR_WIDTH to
 end // value of ADDR_WIDTH parameter

In the UVM test sequence code:

 for (int i=0; i<ADDR_WIDTH; i++) // continue to use the ADDR_WIDTH as a variable
 test_address= 1’b << i; // loop thru all valid address bit positions

reg [63:0] test_address; // in UVM test sequences, declare as non-parameterized-width test variable

for (int i=0; i<ADDR_WIDTH; i++)

 test_address= 1’b << i; // loop thru all valid address bit positions

6

IV. DUAL HDL/HVL TOP MODULES AND PRESERVING EXISTING VERIFICATION SCRIPT INFRASTRUCTURE

 The UVM testbench user community is not fully consistent in practice of whether UVM testbenches are constructed as

a dual-top simulation, versus creating a new toplevel wrapper module containing both the HDL_TOP and HVL_TOP (or UVM

test top) as sub-modules. Leading practices and recommendations are to construct and simulate with a dual-top structure. None-

theless, when converting from an older testbench to a UVM testbench, existing scripts and verification infrastructure should be

considered as factors in making the decision between a dual-top versus single-toplevel testbench architecture.

Figure 2: Dual HVL/HDL TOP

If the DUT and HDL_TOP are parameterized, one should assess the existing verification script infrastructure for set-

ting/overriding simulation-time parameter values. For most simulators, parameters may be overridden on the simulator command-

line interface. While the command-line argument to do so may vary between simulators, the parameter override may specify a

hierarchical path into the simulation model. Constructing a UVM testbench using a new single top-level wrapper may require

modifying simulation scripts and wrappers to insert additional path information into parameter overrides.

By comparison, utilizing a dual-top UVM simulation architecture may allow existing simulation script infrastructures to

be used without change. For example,

Example 9: Parameter-Override simulator arguments

One consideration favoring implementation of a single top-level testbench wrapper might be variables’ scope and possi-

ble need for global parameterization. In the Northwest Logic testbench, testbench ‘global’ variables are implemented and reside

with a “top_pkg.sv” package which is compiled and lives alongside the dual-top simulation models. By virtue of the top_pkg

existing as a (third) toplevel entity, both the HVL_TOP and HDL_TOP may import this package reference and/or specific variables

from this package.

Global parameters, on the other hand, cannot be successfully declared or used from within this package. While a global

parameter may be declare-able within the “top_pkg”, a parameter cannot be overridden at simulation time without a path to the

specific object parameterization being overridden. For a global parameter to be override-able, it must exist within the scope of a

module. For example, if a new global parameter GLOBAL_PARAM in “top_pkg” is imported into a new “new_top_wrapper”,

then it is possible supply a runtime parameter override, as shown below in Example 10:

(NCSIM simulator invocation argument):
-DEFPARAM /hdl_top/ADDR_WIDTH=<override value> arguments may require change to
-DEFPARAM /new_top_wrapper/hdl_top/ADDR_WIDTH=<override_value>

(Questasim simulator invocation argument):
 -g/hdl_top/ADDR_WIDTH=<override value> arguments may require change to

 -g/new_top_wrapper/hdl_top/ADDR_WIDTH=<override_value>

(optional) new_top_wrapper

HDL_TOP UVM Framework / HVL_TOP

RTL

under

test

BFM

BFM

Top /

global vari-

ables/
parameters

7

Example 10: Runtime Override of a Global Parameter

Another consideration impacting the dual-top architecture is scripting infrastructure surrounding functional coverage

declarations and metrics collection. Northwest Logic implements much of its functional-coverage objects within the testbench

HDL_TOP, using “bind” statements to bind coverage to instantiations of RTL sub-modules. While companies may elect to aggre-

gate functional coverage using alternative tools or methods, underlying aggregation of coverage from Unified Coverage DataBase

(UCDB) files requires hierarchical path references to coverage data objects. For example, Northwest Logic utilizes the Questa

Verification Manager (QVM) toolset for testplans, aggregating coverage, and producing coverage reports. An example of such

testplans containing hierarchical path references is shown below; one can immediately see how an extra hierarchy in the path to

coverage groups would have introduced significant change ripple-impact to multiple testplan documents.

Example 11: Testplan Collateral / Infrastructure with Testbench Hierarchical Path

After consideration of the factors, to preserve existing simulation script and functional coverage / testplan infrastructure,

Northwest Logic opted to follow the UVM-recommended dual-top simulation approach. However, it is important to note that this

did come at a cost in complexity and alternate solutions for porting the existing global parameterization from the older pre-UVM

testbench.

In “top_pkg.sv”
 parameter GLOBAL_PARAM = <default parameter value>;

In “new_top_wrapper.sv”:
 import top_pkg::*;

(NCSIM simulator invocation argument):
 -DEFPARAM /new_top_wrapper/GLOBAL_PARAM=<override_value>
(Questasim simulator invocation argument):
 -g/new_top_wrapper/GLOBAL_PARAM=<override_value>

8

V. INITIALIZATION VIA LEGACY HDL TASK INFRASTRUCTURE

Most any HDL testbench will execute some sort of initialization sequence starting from simulation time=0. In some

cases, this initialization could be as simple as a reset-signal de-assertion, may further include control-register initialization, or

might even include some other real functional operation (in the case of the Northwest Logic Memory Controller IP, link training

between PHY and memory models). Regardless of how simple or complex the initialization sequence, every conversion from a

simple testbench to a UVM testbench will likely face the question, “how much of the HDL initialization sequence should be

performed by a UVM sequence, versus executed within the scope of the HDL_TOP”? In theory, UVM sequences could provide

all stimulus to the DUT starting at t=0. It is often likely that at least some initial clocking and reset time may need to occur within

the HDL_TOP before any UVM sequences are created and executed.

The Northwest Logic Verilog testbench included a large number of initialization tasks located at the toplevel of the

original testbench hierarchy. This is likely to be the case for many other companies’ existing Verilog testbenches. As is common

with such testbenches, many of these tasks which lived “flattened” at the toplevel of the Northwest Logic testbench hierarchy

made calls/references to other such tasks by nature of all being located at the same module.

Northwest Logic Memory Controller IP testbenches include a variety of additional third-party PHY and DDR memory

models. Most of these third-party models include uniquely custom libraries of Verilog tasks which execute initialization steps for

the respect models. However, many of these third-party models pre-date UVM methods, and/or for whatever reason do not include

Verilog interface module(s) for UVM sequences to be able to invoke these initialization tasks. This is not a problem unique to

Northwest Logic -- it is highly likely that an existing pre-UVM testbench contains some in-house-developed or third-party models

which do not supply UVM interface methods. To complicate matters further, the Northwest Logic used file `include mechanisms

to include initialization task libraries for these third-party models, referencing different library versions via `include paths.

Figure 3: Initialization Tasks Hierarchy

For UVM initialization sequences, interface methods to at least assert/deassert reset signals are often needed. For these

global initialization signals and enabling of UVM test main phase, a system global reset interface was constructed, with access

methods to set resets and query reset-completion handshake signals.

Rather than restructure the entire testbench initialization, however, Northwest Logic made the decision to execute the

base initialization sequence directly from within the HDL_TOP before initiating any UVM stimulation sequences. While there

may have been some merit to re-locating many of these initialization tasks into interface modules, so that these tasks could poten-

tially be called again later from a UVM sequence, the effort the resolve all the cross-interface task references was deemed an

unnecessary effort compared to the priority focus on completing initialization and handing over control to new UVM-based test

sequences. Anyways, any UVM register-block operations to place new configuration-register content into the DUT could not have

Alternate `included 3rd Party
model ver.Y support tasks

Task A

Task C

Task D

Testbench global vars:

Testbench global tasks:

Task B

Task E

Read/Write
Methods

NEW:
Initialization Bus BFM

Frequently-Used Calculation functions
(Global in scope)

Calc. Function F

Legacy Verilog Testbench / HVL TOP
UVM HVL Framework

UVM Sequence
Support Library

Calc. Function F

UVM Register
Model

`included 3rd Party model ver.X
support tasks

Task A

Task B

DUT

Ported & New
UVM Test Sequence

NEW:
Reset Sequencing &
Globals Access BFM

9

been attempted prior to deassertion of the DUT reset (this would have been the case regardless of whether configuration-register

reprograming was executed using simulation-time-advancing transactions or register backdoor methods).

If initialization tasks are desired to be re-invoked later in the simulation, there may be some merit at a future time in

investing the time to develop interface module(s) so that UVM sequences can re-execute initialization steps. This might be a

complicated endeavor depending upon how complex the set of initialization tasks are, however, whether they architecturally should

belong in multiple different interface modules, and how complex their cross-interface task references may be.

In addition to initialization tasks, Northwest Logic opted to leave an existing set of historical support functions intact in

a library instantiated within the HDL_TOP. Most of these were simply calculation functions, but dependent on the HDL_TOP

parameterized values. Still, a small handful of these library functions are also used in UVM test sequences’ execution post-

initialization. Rather than code another interface module specifically for simple calculation functions, Northwest Logic opted to

create a duplicate library of these calculation functions to be called by UVM test sequences. While this is sub-optimal from code-

maintenance standpoint to have identical tasks/functions in two separate libraries, the number of duplications was considered small

and manageable compared to carrying and referencing an additional interface mechanism just for calculation functions.

10

VI. REPLICATING GLOBAL TESTBENCH ELEMENTS INTO SCALABLE BFMS FOR RAPID TEST PORTING

 This paper has already discussed in section (III) how defining global variables with identical names as parameters can be

utilized as a technique to simplify effort associated with porting a historical Verilog test/task sequence to a UVM sequence. In this

section (VI), a few additional suggestions are made to further ease the effort of porting Verilog test/task sequences to UVM se-

quences. These recommendations may seem obvious or apparent, but the authors are of the opinion that they are worth explicitly

mentioning.

 Firstly, many historical pre-UVM testbenches make use of individual wire/register variables which are declared at the

toplevel of the Verilog testbench (globals) and then assigned or queried by a large number of testbench tasks, test sequences, or

functions. While some testbenches may implement their Bus Functional Models (BFMs) as discrete, instantiated sub-modules

already, many historical testbenches implement BFM-like functions which simply set / sequence values assigned to global register

variables. When converting a large task-based testbench to a UVM-based testbench, it is natural that stimulus functions all reside

within some sort of interface BFM, so that instantiations may be easily scaled according to the number of interface instances in the

DUT.

The authors recommend assessing the existing historical testbench for global variables which need to be scaled / repli-

cated per BFM. For true global control bits, these may best be relocated to a single central interface module, such as a system

reset BFM. For variables which control operation of multiply-instantiated BFMs, however, it is recommended that each BFM

define its own internal version of the (previously-global) variable, and export a per-BFM method such as “bfm_in-

stance1_if.set_xxxx()” method. With these methods available, one may find the porting effort between a historical test sequence

task and a new UVM test sequence to be significantly easier.

For example, Example 12 below shows a comparison of an older (legacy) Verilog testbench sequence code, ported to

new UVM sequence:

Example 12: Legacy Testbench Variables’ Replication in UVM Testbench for Ease of Sequence Porting

For some projects, setting control bits by assigning interface variables directly could be somewhat more direct and less

verbose, however, due to Northwest Logic’s heavy use of parameterization & parameterized-widths on many of these variables,

the use of proxy interface methods to set/get values was necessary for most BFMs. For consistency to the UVM test writer, the

use of set/get methods was used for all such interface controls, rather than utilizing different access methods for parameterized

control-bits and non-parameterized control bits.

Historical Verilog test sequence:
 reg global_control_bit_A;
 task test_sequence1();
 global_control_bit_A = 1’b1;
 repeat (10) @ posedge (clk);
 transactional_bfm_controlbits_B[WIDTH:0] = ‘value;
 global_control_bit_A = 1’b0;
 endtask

Equivalent UVM testbench sequence:
 class test_sequence1 extends seq_base;
 task body();
 global_signals_bfm.set_global_control_bitA(1’b1);
 repeat(10) clkreset_bfm.wait_posedge_clk();
 // or, better-yet, clkreset_bfm.wait_posedge_clk(10)
 transactional_bfm_proxy_if.set_controlbitsB(value);
 global_signals_bfm.set_global_control_bitA(1’b0);
 endtask;

 endclass

11

 Similarly, time, effort, and errors can be significantly reduced by consciously re-implementing historical BFM-like tasks

as interface methods. Intentionally re-implementing task calls within a BFM as identically as possible can enable rapid porting of

historical test sequences to new UVM-based test sequences. For example, Example 13 below illustrates how choices in imple-

menting legacy-like task methods in UVM BFM can ease test porting efforts.

Example 13: Legacy Testbench BFM Tasks Replication into Scalable BFM interface methods

Historical Verilog test sequence:
 reg write_datavalues_array[]
 task test_sequence1();
 for (int i=0; i<N; i++) begin
 writetxn_datavalues_array[i] = <value>;
 read_expected_value_array[i] = <value2>;
 end
 perform_write_txn (arg1, arg2, arg3…)
 perform_read_txn (arg4, arg5, arg6 …)
 endtask

Equivalent UVM test sequence:
 class test_sequence1 extends seq_base;
 task body();
 for (int i=0; i<N; i++) begin
 transaction_bfm_instance1_proxy_if.set_writetxn_datavalues_array(i, value);
 transaction_bfm_instance1_proxy_if.set_readtxn_expected_value_array(i, value2);
 end
 transaction_bfm_instance1_proxy_if.perform_write_txn(arg1, arg2, arg3 …)
 transaction_bfm_instance1_proxy_if.perform_read_txn (arg4, arg5, arg6 …)
 endtask;
 endclass

12

VII. GUIDANCE ON CONVERTING LEGACY $DISPLAY USE TO UVM INFO/ERROR MESSAGING

When replacing historical Verilog testbenches with a new UVM testbench, it is expected that historical use of Verilog

$display() functions will be replaced with `uvm_info() macros. A mix of new ‘uvm_info() messaging combined with historical

$display() functions is highly discouraged by most UVM community members.

UVM libraries and macros for informational messaging define some standards for message verbosity levels, such as

UVM_LOW, UVM_MEDIUM, UVM_HIGH, and UVM_DEBUG. The UVM library is highly customizable to change the relative

verbosity level associated with these verbosity level strings or to insert new custom verbosity levels. Nonetheless, most UVM

practitioners begin utilizing these UVM info macros without pre-considering any specific methodology or guidance on when to

utilize each specific verbosity level.

Most engineers involved in porting an existing testbench to UVM can readily identify existing $display() statements that

should map to the UVM ‘uvm_error() or `uvm_fatal() macros. Most such existing $display statements already include some key-

word strings such as “Error:…” , “Warning:….”, or “Fatal error:..” with this existing $display statements. However, mapping

existing non-error/non-fatal $display() statements to ‘uvm_info() macros requires some up-front methodology planning. For ex-

ample, some testbenches may already implement some conditionally-enabled extra debug verbosity:

Example 14: Typical Debug-Conditional $display use

A novice UVM testbench designer might think that this statement would most naturally be converted to a ‘uvm_info() macro with

UVM_DEBUG level of verbosity. However, UVM_DEBUG verbosity is utilized within the UVM library itself, and (if selected),

in fact enables significant verbosity. A validation engineer enabling UVM_DEBUG verbosity will most assuredly be overwhelmed

with far more debug output than he/she prefers.

Northwest Logic has adopted a specific convention for use of various ‘uvm_info messaging. Each individual corpora-

tion or project may elect to adopt a suitable unique convention. It is recommended that a project define a convention up-front, in

order to avoid excessive revision of test sequences’ source later, especially once UVM messaging starts to appear in long multi-

sequence regression logs.

UVM message macro UVM message

verbosity

UVM test sequence use UVM testbench/

framework use

`uvm_fatal Situations where simulator crash, segfault, or

unexpected behavior is likely to ensue

`uvm_error Test errors (such as data miscompare) or

other results miscompare vs expected are de-

tected, but test execution can proceed to po-

tentially test other conditions

`uvm_info UVM_DEBUG Do not use Do not use. Used within UVM

macro libraries,

UVM_DEBUG verbosity for

debug into/including UVM

macros

 UVM_HIGH Do not use Use for debug statements

from UVM Framework ele-

ments, such as drivers, se-

quencers, testbench build

 UVM_MEDIUM Use for debug of test sequence execution

progress (maps to historical (if debug_en)

$display statements)

 UVM_LOW Use for standard test sequence progress exe-

cution messages, similar to what historical

$display statements would output to standard

regression-test stdout/logfiles

Table 1: Northwest Logic Conventions on UVM Message Verbosity

If (debug_msgs_en == ‘1)
 $display(“Info: reached execution checkpoint ‘M’ in test sequence”

13

VIII. CUSTOMIZING UVM REPORT SERVER

 Use of the UVM fatal/error/info macros for display of all messages is strongly urged. However, many users of the UVM

info macros may likely be disappointed/unhappy with the excess verbosity (wordiness) of individual messages. Altering the

UVM_VERBOSITY level of the message does not change the length of the message string itself, only the conditions under which

the UVM report server passes or filters the message from actually appearing.

 Users of the UVM info messaging will quickly find that an individual message string (when not filtered by the

UVM_VERBOSITY level) is output by the UVM report server as the concatenation of multiple sub-strings. These substrings

include the severity_type name (eg “UVM_INFO:”, “UVM_ERROR:”, “UVM_FATAL:”), a hierarchical code location string,

similar to the “%m” formatted path string, additional instance-specific information (again, similar to the %m formatted path string),

an “ID” string (user-provided as an argument to the ‘uvm_info macro), and finally the intended actual informational message.

Needless to say, a UVM testbench user will soon find the standard ‘uvm_info message output to be excessively wordy, and to

contain repetitive, redundant path identifier strings. If simulation standard-output is typically fed to simulation post-processing

script infrastructures, most of these extraneous characters will likely make their way through the post-processing filters and cause

many engineers to gag on long wrapped-lines of repetitive text.

 Instead, Northwest Logic elected to override/replace the standard UVM report server function with a customized report

server, which significantly reduced the output verbosity. While a callback ‘report catcher’ can be added to the standard report

server, such use is best tailored for filtering certain reports or modifying report parameters such as verbosity; Northwest Logic

desired to wholesale alter the entire standard report formattings, rather than intercepting and modifying only certain reports, there-

fore the compose_message() function of the report serve was deemed the best location for this. Companies/projects may elect to

tailor their replacement report-server to suit their specific desires. Northwest Logic’s customization is provided in this paper as an

example reference for others wishing to explore implementing their own customizations. To do so, Northwest Logic inserts the

following code into the test_base class definition:

 Example 15: UVM INFO Messaging Customization via Custom Report Server

Within “test_base.svh”:
class my_report_server extends uvm_report_server;
 virtual function string compose_message(uvm_severity severity,
 string name,
 string id,
 string message,
 string filename,
 int line);
 uvm_severity_type severity_type = uvm_severity_type'(severity);

 // omit additional of explicit timestamp for simple UVM_INFO messages, insert explicit timestamp for
 // WARNING/ERROR/FATAL messages since engineer is likely to want to investigate/debug
 if (severity <= UVM_WARNING)
 return $sformatf("%-11s [%-40s] %s", severity_type.name(), id, message);
 else
 return $sformatf("%-11s [%-40s][@%12t] %s", severity_type.name(), id, $time, message);
 endfunction: compose_message
endclass: my_report_server

class test_base extends uvm_test;
 function void end_of_elaboration_phase(uvm_phase phase);
 my_report_server my_server;

 // Now that all testbench components have been built, change default verbosity level to UVM_LOW unless
specified
 uvm_top.set_report_verbosity_level_hier(UVM_LOW);

 // Replace the UVM_INFO report server with our own that is less wordy
 my_server = new;
 uvm_report_server::set_server(my_server);
 endfunction

endclass

14

IX. COMMON REPORT TAG STRING VARIABLE IN SEQUENCE BASE CLASS

 When using the UVM built-in macros for info/error/display, testbench and test sequence developers frequently utilize a

simple fixed string as the message “id” string argument which is used by the UVM `info macro to formulate the resulting full info

message displayed. Examples of common “id” string use are as follows:

Example 16: Common use of UVM INFO report ID strings

However, especially when scaling a UVM testbench to include multiple instances of a specific BFM, or running multiple instances

of test sequence(s), it is common to see output containing multiple output messages that all cite the same message “id” string.

Northwest Logic elected to define a string variable as part of the sequence base class object, and have the sequence base class

object automatically populate that string with a (brief) but unique-instance-identifying string, customized and significantly shorter

than a %m hierarchical instance-path.

Example 17: Report Tag String defined In Sequence Base Class

By adopting a convention that all test sequences shall utilize this report ID string as the ID string argument to `uvm_info macros,

Northwest Logic is able to produce concise, uniquely-identified logfile output, even when multiple instances of a specific sequence

are spawned and executed in parallel. An example of resulting log output for multiple test sequences spawned in parallel on a

multi-channel memory controller IP is shown below in Example 18, below:

Example 18: Sample Output using customized report server and common sequence Report ID String

`uvm_error(“PROTOCOL CHECKER”, $sformatf(“detected protocol violation XYZ at time: %0t”))
`uvm_info(“SCOREBOARD”, $sformatf(“checking transaction %0d for possible miscompare”, j), UVM_MEDIUM)
`uvm_info(“JTAG BFM”, $sformatf(“executing transaction %0d at time %0t”, i, $time), UVM_LOW)

`uvm_info(“TEST SEQ 3”, $sformatf(“starting sequence on sequencer %0d at time %0t”, i, %time), UVM_LOW)

In file “seq_base.svh”:

class seq_base extends uvm_sequence;
…
 string rpt_idstr; // ID string to use for UVM_INFO reporter
 task pre_start(); // Configure base sequence
 …
 rpt_idstr = $sformatf("ch%0d ps%0d port%0d: %s", chan_number, ps_number, port_number,
this.get_type_name);
 …
 endtask
endclass

With a specific test sequence:
 `uvm_info(rpt_idstr, $sformatf("%0s, %t", testname, $time), UVM_LOW)

UVM_INFO [use_test_select] ++++ Spawning sequences of selected test(s) in parallel on multiple control-
ler channels
UVM_INFO [ch7 address_test5_seq] ADDRESS TEST (#5), 6642500
UVM_INFO [ch6 address_test5_seq] ADDRESS TEST (#5), 6642500
UVM_INFO [ch5 address_test5_seq] ADDRESS TEST (#5), 6642500
UVM_INFO [ch4 address_test5_seq] ADDRESS TEST (#5), 6642500
UVM_INFO [ch3 address_test5_seq] ADDRESS TEST (#5), 6642500
UVM_INFO [ch2 address_test5_seq] ADDRESS TEST (#5), 6642500
UVM_INFO [ch1 address_test5_seq] ADDRESS TEST (#5), 6642500
UVM_INFO [ch0 address_test5_seq] ADDRESS TEST (#5), 6642500
UVM_INFO [ch0 long_writeread_test11_seq] LONG_WRITE_READ_NO_AP (#11), 24287500
UVM_INFO [ch1 long_writeread_test11_seq] LONG_WRITE_READ_NO_AP (#11), 24287500
UVM_INFO [ch2 long_writeread_test11_seq] LONG_WRITE_READ_NO_AP (#11), 24287500
UVM_INFO [ch3 long_writeread_test11_seq] LONG_WRITE_READ_NO_AP (#11), 24287500
UVM_INFO [ch4 long_writeread_test11_seq] LONG_WRITE_READ_NO_AP (#11), 24287500
UVM_INFO [ch5 long_writeread_test11_seq] LONG_WRITE_READ_NO_AP (#11), 24287500
….

15

X. CONCLUSIONS

 When converting an existing older Verilog-based testbench to UVM, a number of decisions may be made which can

significantly impact the ease of carrying the entire surrounding testbench infrastructure, scripts, and tests forward. This paper

presents a number of topics which presented some difficulties and solutions during the Northwest Logic testbench conversion to

UVM. The paper highlights some key decisions which were extremely valuable in reducing effort and schedule at Northwest

Logic, and provides some recommendations and guidance for others who may be setting out to evolve existing Verilog-based

testbenches to the UVM methodology & structure.

References:

[1] D. Rich, J. Bromley. Abstract BFMs outshine Virtual Interfaces for Advanced SystemVerilog Testbenches. DVCon February 2008

[2] Michael Baird, Coverage Driven Verification of an Unmodified DUT within an OVM Testbench. DVCon February 2010

