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LP Verification Challenges
• Huge verification space

– Large  number of power states
– Large number of transitions

• Software applications
• Firmware
• Digital Hardware

• System level verification 
– Reuse in larger system
– Often requires HW/SW simulations

• LP specification extensive
– New versions  
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LP Verification Challenges (Contd.)
• Does that make sense to validate simultaneously the UPF and the design?

• How do you verify your PG netlist is electrically safe?

• How do you verify your PST coverage?

• Is there a way to find a bug in my PST?

• Will you really run all tests in all LP modes at RTL/netlist/PG netlist stage?

• Where are the critical paths (clock, reset, scan-enable …) that requires 
specific attention?

• Soc PST is the key, did we say merging?

• Was my UPF properly understood and implemented?

• Is retention working? Is isolation working? How to validate this?

• Are my LP tests passing?
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Dynamic Verification v/s Static 
Verification

Dynamic Verification Static Verification

Main focus is on functionally correct power related 
“sequences”

Main focus is on design related low power checks

The abstraction level is mostly RTL (GLS is both time 
consuming and has a huge performance impact)

This is very useful in validating RTL netlist or PG 
netlist

Requires creation of test stimulus (verification can 
not start unless a power aware test-bench is in place)

This can be very useful in flow-flushing UPF related 
issues (does not require a test-bench)

Dynamic verification is needed to validate that the 
output values match with the expected values (e.g. if 
isolation clamp value is specified as ‘1’, the isolation 
port should propagate ‘1’. Similarly the simulation 
output should show the correct value that needed to 
be retained on power up)

Static verification can not perform such checks

Thanks to both coverage and assertions techniques, 
one can verify that the device is operating properly in 
all defined low power modes. Furthermore, still with 
respect to the PST, corruption can be done when the 
power value is not in the range specified by the PST.

Useful for PST merging
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Static Verification flow across design 
flow
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What is a PST?

• Power State Table (PST) is a construct in UPF that 
captures the legal combinations of power states for a set 
of supply ports/nets.

• One or multiple PST can be defined in each scope of the UPF.
• Create Port in the present scope :  create_supply_port P1

• Add states to the Port :    add_port_state P1 –state {HV 1.0} \
-state {LV  0.5} \

-state {OFF off}

• Create a PST specifying the port/nets which are involved
create_pst PST_1 –supplies { P1 P2 P3 }

• Different states of the PST
add_pst_state s1 –pst PST_1 –state { HV   HV   LV }

add_pst_state s2 –pst PST_1 –state { HV   HV   LV }

add_pst_state s3 –pst PST_1 –state { HV   LV  off }
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Example PST Merging

•
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PST merging 1

• At SOC level, PST merging will highlight IP/SOC PST 
inconsistency in identifying missing PST states at IP 
level
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PST merging 2

• At SOC level, PST merging will highlight IP/SOC PST 
inconsistency in identifying missing PST states at IP 
level
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LS_INST_RANGEI/O
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cell(DMLSUBF12V) {
is_level_shifter : true;
level_shifter_type : LH;
input_voltage_range  (1.0, 

1.2);
output_voltage_range (1.0, 

1.2);

The low-to-high 
level shifter used 
has input voltage 
range of 1.0V ~ 
1.2V, yet in design 
the input is at 
0.9V.DMXXBF12V
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cell(DMLSUBF12V) {
is_level_shifter : true;
level_shifter_type : LH;
input_voltage_range  (1.0, 

1.2);
output_voltage_range (1.0, 

1.2);

The low-to-high 
level shifter used 
has output voltage 
range of 1.0V ~ 
1.2V, yet in design 
the output is at 
1.3V.
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set_level_shifter LS_V2_in \
-domain PD_V2 \
-rule low_to_high \
-applies_to inputs \
-location self \
-threshold 0.1

LS_THRESH_WRONG

Threshold value specified 
is less than the actual 
voltage difference in 
design.
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LS_INST_WRONG
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LS_INST_WRONG

cell(DMLSDBF12V) {
is_level_shifter : true;
level_shifter_type : HL;

input_voltage_range  (1.0, 1.2);
output_voltage_range (1.0, 1.2);

set_level_shifter 
command in UPF 
specifies a low-to-
high level shifter, 
but there is a high-
to-low type in design.
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set_level_shifter LS_V2_in \
-domain PD_V2 \
-rule low_to_high \
-applies_to inputs \
-location self
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Rail-order checks: Corruption
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ISO

V2

V1

V1 V2

S1 OFF ON

A node driven by an OFF rail is driving the a node that is ON and the 
corruption is able to reaches destination (i.e, no isolation beyond the OFF 
node)

ISO rail order violation: 
Issue: Isolation required but isolation rail is OFF when destination is ON
Solution: Fix the incorrect rail connectivity or PST for isolation supply
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Rail order checks: Leakage 

– Logic source node power or ground off but load power and 
ground on.

– A node driven by an OFF rail is driving a node that is ON 
but the corruption does NOT reach the eventual 
destination (i.e., there is isolation beyond OFF node)
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ISO rail order violation: 
Issue: The supply net associated to the node is ON for some multivoltage state of legal state table, 
causing leakage in the path.

Solution: Fix the incorrect rail connectivity or PST for isolation supply
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S1 OFF ON ON

S2 OFF ON OFF
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V3
V2
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Rail order checks: Over consumption

– Instance output power and ground on but logic sink power 
or ground off.

– A node driven by an ON rail is driving a node that is OFF 
unnecessarily
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ISO rail order violation: 
Issue: The supply net associated to the node is ON for some multi voltage state  of legal state 
table, causing current over consumption in the path.
Solution: Fix the incorrect rail connectivity or PST for isolation supply
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Identifying critical control signal that 
crosses multiple power domain
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Constant propagation on enable path
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Questions


