The need for combining static and dynamic LP verification

Himanshu Bhatt, Prashanth M, Adiel Khan (Synopsys)

LP Verification Challenges Analog Digital **Components** Huge verification space ٠ Controllers Large number of power states SoC DUT HPN Large number of transitions PDX Software applications Sys Firmware Pwr AXI PCM2 **Digital Hardware** PDY System level verification Reuse in larger system **CPU** Often requires HW/SW simulation Software LP specification extensive New versions With Low Power Scenarios w/o Low Power PS4 PS2 PS3 **Power State Transitions** States DESIGN AND VERIE acceller

© Accellera Systems Initiative

SYSTEMS INITIATIVE

LP Verification Challenges (Contd.)

- Does that make sense to validate simultaneously the UPF and the design?
- How do you verify your PG netlist is electrically safe?
- How do you verify your PST coverage?
- Is there a way to find a bug in my PST?
- Will you really run all tests in all LP modes at RTL/netlist/PG netlist stage?
- Where are the critical paths (clock, reset, scan-enable ...) that requires specific attention?
- Soc PST is the key, did we say merging?
- Was my UPF properly understood and implemented?
- Is retention working? Is isolation working? How to validate this?
- Are my LP tests passing?

Dynamic Verification v/s Static Verification

Static Verification
Main focus is on design related low power checks
This is very useful in validating RTL netlist or PG netlist
This can be very useful in flow-flushing UPF related issues (does not require a test-bench)
Static verification can not perform such checks
Useful for PST merging

DESIGN AND VERI

CONFERENCE AND EXH

IBITION

Combined Dynamic and Static Low Power Flow

Static Verification flow across design flow

accellera

SYSTEMS INITIATIVE

What is a PST?

- Power State Table (PST) is a construct in UPF that captures the legal combinations of power states for a set of supply ports/nets.
- One or multiple PST can be defined in each scope of the UPF.
- <u>Create Port in the present scope</u> : **create_supply_port P1**
- <u>Add states to the Port</u>: add_port_state P1 -state {HV 1.0} \
 -state {LV 0.5} \
 -state {OFF off}
- <u>Create a PST specifying the port/nets which are involved</u>
 <u>create pst PST_1 -supplies { P1 P2 P3 }</u>
- <u>Different states of the PST</u>

```
add_pst_state s1 -pst PST_1 -state { HV HV LV }
add_pst_state s2 -pst PST_1 -state { HV HV LV }
add_pst_state s3 -pst PST_1 -state { HV LV off }
```


Example PST Merging

			מייי		
	TOP		BLK A		BLK B
TOPV 1_2	1.2	BLKAV 1_2	1.2	BLKBV 1_2	1.2
TOPV 1_0	1.0	BLKAV 0_8	0.8	BLKBV 1_0	1.0
TOPV 0_8	0.8	BLKAV 0_6	0.6	BLKBV 0_8	0.8

DESIGN AND VERIFICA

CONFERENCE AND EXHIBITION

Merged PST

	ТОР	BLK A	BLK B
merged_pst_st0	1.2	1.2	1.2
merged_pst_st1	0.8	0.8	0.8

PST merging 1

 At SOC level, PST merging will highlight IP/SOC PST inconsistency in identifying missing PST states at IP level

Top-leve	IPST:			
PN1	PN2	PN3		
1.0	2.0	2.0	(ps-top-1)
Scope-A	PST			
A/PN1	A/IPN1			
1.0	1.0	(ps-A-1)		
1.0	off	(ps-A-2)		
Scope-E	PST			
B/PN1	B/IPN1		and and again	
1.0	1.0	(ps-B-1)	vvarning	power states
1.0 1.0	1.0 off	(ps-B-1) (ps-B-2)	are not u): power states used for entation
1.0 1.0 2.0	1.0 off 2.0	(ps-B-1) (ps-B-2) (ps-B-3)	are not u	i: power states used for entation
1.0 1.0 2.0 2.0	1.0 off 2.0 off	(ps-B-1) (ps-B-2) (ps-B-3) (ps-B-4)	are not u impleme): power states used for entation
1.0 1.0 2.0 2.0 Derived	1.0 off 2.0 off PST (interse	(ps-B-1) (ps-B-2) (ps-B-3) (ps-B-4) ection of abo	warning are not u impleme): power states used for entation
1.0 1.0 2.0 2.0 Derived PN1	1.0 off 2.0 off PST (interse A/IPN1	(ps-B-1) (ps-B-2) (ps-B-3) (ps-B-3) (ps-B-4) ection of abo PN2	ove 3 PSTs) B/IPN1	power states used for entation PN3
1.0 1.0 2.0 2.0 Derived PN1 1.0	1.0 off 2.0 off PST (interse A/IPN1 1.0	(ps-B-1) (ps-B-2) (ps-B-3) (ps-B-3) (ps-B-4) ection of abo PN2 2.0	vve 3 PSTs) B/IPN1 2.0	PN3 2.0
1.0 1.0 2.0 2.0 Derived PN1 1.0 1.0	1.0 off 2.0 off PST (interse A/IPN1 1.0 1.0	(ps-B-1) (ps-B-2) (ps-B-3) (ps-B-3) (ps-B-4) ection of abo PN2 2.0 2.0	ove 3 PSTs) B/IPN1 2.0 off	PN3 2.0 2.0
1.0 1.0 2.0 2.0 Derived PN1 1.0 1.0 1.0	1.0 off 2.0 off PST (interse A/IPN1 1.0 1.0 off	(ps-B-1) (ps-B-2) (ps-B-3) (ps-B-3) (ps-B-4) ection of abo PN2 2.0 2.0 2.0 2.0	ve 3 PSTs) B/IPN1 2.0 off 2.0	PN3 2.0 2.0 2.0 2.0

PST merging 2

 At SOC level, PST merging will highlight IP/SOC PST inconsistency in identifying missing PST states at IP level

CONFERENCE AND EXHIBITION

LS_THRESH_WRONG

accellera Systems Initiative

ע ז ן	_IOP	PD_VI	PD_V2
S1 1.2	2V	1.0V	1.2V

12

© Accellera Systems Initiative

CONFERENCE AND EXHIBITION

LS_INST_WRONG

CONFERENCE AND EXHIBITION

Rail-order checks: Corruption

A node driven by an OFF rail is driving the a node that is ON and the corruption is able to reaches destination (i.e, no isolation beyond the OFF node)

	V1	V2
S1	OFF	ON

ISO rail order violation:

Issue: Isolation required but isolation rail is OFF when destination is ON Solution: Fix the incorrect rail connectivity or PST for isolation supply

© Accellera Systems Initiative

Rail order checks: Leakage

- Logic source node power or ground off but load power and ground on.
- A node driven by an OFF rail is driving a node that is ON but the corruption does NOT reach the eventual destination (i.e., there is isolation beyond OFF node)

ISO rail order violation:

Issue: The supply net associated to the node is ON for some multivoltage state of legal state table, causing leakage in the path.

Solution: Fix the incorrect rail connectivity or PST for isolation supply

DESIGN AND

Rail order checks: Over consumption

- Instance output power and ground on but logic sink power or ground off.
- A node driven by an ON rail is driving a node that is OFF unnecessarily

ISO rail order violation:

Issue: The supply net associated to the node is ON for some multi voltage state of legal state table, causing current over consumption in the path. <u>Solution: Fix the incorrect rail connectivity or PST for isolation supply</u>

© Accellera Systems Initiative

Identifying critical control signal that crosses multiple power domain

© Accellera Systems Initiative

Constant propagation on enable path

SYSTEMS INITIATIVE

Questions

