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ABSTRACT  
 
With design complexity growing by the day, the need for verification 
technologies that can complement simulation based verification is 
also gaining momentum. Formal verification has clearly emerged as 
one of the strong candidates. In a typical simulation based 
verification cycle, the number of bugs reported grows exponentially 
in the beginning, but this number shrinks rapidly thereafter in the 
cycle and what remains is a few difficult to find corner case issues.  
 
Obviously, there is a need to start verification early in the design 
cycle. The additional requirement is to uncover the corner case bugs 
earlier to reduce the overall verification cycle. Overall, a simulation 
environment also takes a considerable amount of time to setup. Early 
adoption of formal verification in the design cycle enables quick 
RTL bring-up before the simulation environment is ready. It also 
exposes hard-to-find corner-case bugs that may not be uncovered in 
simulation. On the downside, it suffers from capacity issues as 
formal analysis is exhaustive. However, hybrid formal verification 
provides a way to counter capacity issues by combining simulation 
with static formal verification to explore deeper design states. It 
greatly enhances the capability to find bugs hidden deep in the 
design space. Hybrid formal verification has also evolved and it now 
allows combining non-synthesizable simulation environment 
elements while verifying a design formally. 
      
Texas Instruments (TI) image processing sub-chips, for the imaging 
sub-system are used in application processors for mobile handsets. 
These are algorithmic IPs, and also contain lot of control logic (e.g.  
complex arbitration logic) that makes them good candidates to be 
exhaustively verified through formal verification. Availability of pre-
verified assertion IP packages for industry standard-interfaces like 
OCP1 enables a formal verification environment to be setup quickly. 
   
This paper covers the TI experience of employing formal verification 
(Model Checking) on OCP2.2 compliant designs and the 
methodology adopted. Furthermore, it covers the exploration of 
hybrid technologies to re-use non-synthesizable simulation 
environment elements and attempts closing verification loopholes by 
using different aspects like code coverage. This paper would also 
cover the methodology adopted to find dead code in RTL blocks 
generated by high-level synthesis tools (e.g. C-to-RTL generation 
tools). Finding dead code was important to achieve targeted code 
coverage. Formal technology allows finding out the unreachable 
lines of code with ‘guarantees’ that it cannot be hit in simulation. It 
also enables us to feed back the results obtained through formal 

                                                
1 OCP stands for Open Core Protocol 

verification and exclude unreachable lines of code in simulation to 
compute the required code coverage number. 
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1. INTRODUCTION 

 
Coverage closure is an area where verification engineers usually 
spend lot of their time writing additional tests to target uncovered 
coverage points despite a feeling that no combination of vectors 
would ever exercise it. Usually a conclusion is met through visual 
code inspection, but it proves to be a lengthy and expensive process. 
We made use of Formal Analysis to reduce our time to conclude that 
a particular coverage target (structural coverage: line, condition etc.) 
could not be covered. Formal Analysis can prove a target as 
reachable or unreachable. This approach helped us to quickly find 
dead code in our design block (an algorithmic IP), RTL of which has 
been derived from a C-RTL conversion (HLS2) tool. 
   
Writing a constraints model for performing formal verification is 
perhaps the most critical phase of the whole formal verification 
cycle. Validity of our results highly depends on the way constraints 
have been written at input of our design block. An under constrained 
environment may trigger false failures and could allow illegal 
stimulus to be driven at input of our design block during simulation 
phase (as we are using a hybrid tool Magellan3). On the other hand, 
an over constrained environment may lead to false proofs which may 
prove to be fatal as it could hide bugs in the design block. We 
explored ways to detect over constraining and found out that one 
way to detect over constraining is to use “AEP code coverage” 
feature of Magellan. Magellan can automatically extract structural 
coverage metrics (line, statement, etc) from the design’s source code. 
Magellan then can prove whether a corresponding line is reachable 
or not using its formal engines. For reachable lines, it would generate 
a counterexample by running simulation using inbuilt VCS4 
simulator. If it finds unintended unreachable lines, it indicates that 
constraints model is over constrained. 
 
Reuse of passive testbench components such as monitors and 
scoreboard with Formal Verification Environment made an 
interesting combination of both the worlds (Simulation & Formal) by 

                                                
2 HLS stands for High Level Synthesis 
3 Magellan is Synopsys Hybrid Formal Model Checking Tool 
4 VCS is Synopsys Mixed Language Simulator 



validating Formal constraint model against passive testbench 
components5. This method allows exhaustive constraint random 
simulation, generated during random simulation phase (of Hybrid 
Formal Tool) and during replay of Formal traces into the Simulator 
to be passed to Monitors and Scoreboard. It should be noted that 
Active testbench components6 have to be shut down. Non-
synthesizable “Constraint Model” used in simulation that typically 
had been coded using HVLs like “System Verilog testbench” also 
could not be used.  
 
Following sections outline our experience using Formal techniques 
in our verification flow and explore ways to bring together Formal 
techniques and Simulation during Verification process.   
 
2. DEPLOYING FORMAL TECHNIQUES TO 
IDENTIFY DEAD CODE  

 
This section discusses about the challenges faced during the 
verification closure of an algorithmic IP design, the RTL of which is 
extracted through C-RTL conversion (HLS) tool. The Structural 
(code) coverage closure was very difficult and painful job as the 
design contained a lot of dead RTL code/logic introduced by the 
HLS tool. Therefore we decided to use Formal Analysis to quickly 
identify dead code as there was no reason to measure coverage on 
unreachable lines. 
 
Setting up Formal Verification environment was very easy as it 
didn’t require any constraint or testbench. RTL is directly fed to a 
Formal Tool, Magellan, without giving any constraints and 
Magellan’s line coverage AEP7 was enabled. Figure-1 shows a 
snapshot of the simple setup file required to setup the Formal 
Verification environment in Magellan.  
 
 
## Design 
 
add_design_info –vlogan {-work WORK +v2k <*.v> ...} 
add_design_info –vhdlan { <*.vhd> ... } 
set_design_info -topModule SIMCOP 
 
## Environment  
 
add_env_port -name pi_clk    -clock 40 
add_env_port -name pi_clk_en -clock 80 -waveform {20 
60} 
add_env_port -name pi_rst_n  -reset 0 
add_env_port -name pi_rst_n  -constant 1 
 
add_env_port -name PI_SIMCOP_DFT_LCG_CTRL_EN_N    -
constant 7'b0 
add_env_port -name PI_SIMCOP_DFT_LCG_TE           -
constant 7'b0 
 
## AEP Module(s)  
set_aep_info -line -maxGoals 25000 
 

 
Figure 1. Magellan Project File 

 

                                                
5 Components that doesn’t drive the DUT like Scoreboard 
6 Components that drives the DUT like Generator 
7 AEP stands for Automatic Extracted Properties 

Magellan automatically extracted line coverage points based on the 
structural analysis of the design. Magellan’s Formal engines then 
discovered certain lines that were unreachable. The unreachable 
coverage points represented the dead or redundant code of the 
design, which could not be covered with any combination of 
stimulus at all (no constraint was applied on the inputs). The 
unreachable coverage report is further used to prepare an exclusion 
file, which is a key input to guide simulator to exclude these 
coverage targets from simulation coverage evaluation. Table-1 shows 
the comparison of coverage statistics before and after removing dead 
code logic. 
 

Table 1. Coverage Statistics 
 

 
Using Formal Techniques, we were quickly able to identify the 
unreachable lines of code and it helped us to achieve targeted 
coverage number for our design.  
 
3. DETECTING OVER-CONSTRAINED 
FORMAL CONSTRAINT MODEL USING 
AEP COVERAGE 

 
It is important to detect over constraint environment as it could hide 
bugs. Detecting over-constraining is not easy as in normal property 
checking flow virtually no signs are given to the user to identify over 
constraining. Moreover over constraint environment may lead to 
proofs for those properties, which otherwise might be falsified in the 
correct environment. We realized that it is important for us to make 
sure that our constraint model is correct and we decided to make use 
of “AEP Code Coverage” analysis with Magellan to validate the 
same. Magellan’s Formal engines can prove whether a line or 
condition is reachable or not. If it finds unintended unreachable lines, 
it indicates that constraints model might be over constrained. We 
were able to deploy this strategy successfully across our designs to 
successfully validate our constraint models. Figure-2 shows an 
example how we were able to detect over constrained Formal 
Environment using this approach. 
 

832    case (gnt) 
……………….                   

878 3'h7:     begin
879                                  dma_caddress <= #1 {resize0_wbl_addr, 5'h0};
880                               end // 3’h7   
881    endcase // case(gnt)

 
Figure 2. Magellan GUI, Showing Unreachable Line Information  
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As shown in Figure-2, Magellan reported line no. 879 as 
unreachable. We back traced the cause and found that the signal 
“gnt” never reached the value 7 because the request corresponding to 
that grant was never generated due to the following constraint 
(Figure-3). 
 
 

 
 
 
 

Figure 3. Input Constraint   
 
Further analysis showed that this constraint was added to mask an 
earlier bug which no longer existed, but the constraint was not 
removed as it should have been. 
 
4. VALIDATING FORMAL CONSTRAINTS 
MODEL AGAINST PASSIVE TESTBENCH’S 
COMPONENTS 
 
As discussed earlier, a correct formal constraint model is essential 
for effective verification. Availability of Simulation based 
verification environment provides a novel way to reuse some of the 
passive testbench components to validate the formal constraint 
model. It would also facilitate to identify discrepancies between 
reference model and DUT. For data intensive designs, this approach 
would provide a way to monitor data transfer behavior which 
otherwise is difficult to do in traditional a Formal Environment.        
 
In one of our recent design, we reused monitors and scoreboard 
developed for simulation testbench in our formal verification 
environment. Simulation testbench is being developed using VMM8 
methodology and has an integrated Synopsys DW9 OCP Slave VIP 
and RAL10 package. Reference Model integrated into scoreboard is a 
non cycle accurate model mimicking complex DUT behavior. We 
explored this approach with a set of objectives in our mind: 
 
• Validate monitors and scoreboard against Formal verification 

environment. 
• Validate and reuse non-formal compliant checks. 
• A more regressed testing for data intensive path with less turn -

around time. 
• Portable Valid Coverage data across Simulation and Formal 

Verification environment. 
 
4.1 Design under Verification 
 
Design under verification is a multi-channel DMA. One of its ports is 
an OCP Master with a tag management unit. On the other side there 
are five DMA channels. Four of the channels can read Data from the 
DMA buffers and one channel can write into it. DMA requests data 
from the OCP slave port for read intensive channels and sends data 

                                                
8 VMM stands for Verification Methodology Manual 
9 DW stands for Designware 
10 RAL stands for Register Abstraction Layer 

to OCP slave for write intensive channels. This design is complex 
and hugely data intensive (approximately half a million gates). 
    
4.2 Steps to Integrate Testbench Components 
with Formal Verification Environments 
 

1. We setup a Formal Verification environment for DUT 
using Synopsys OCP AIP11 and some custom assertions. 

2. Created a Verilog file (tb_inst_inline.v) that contains non 
synthesizable testbench code. Following is a snippet for the 
same (Figure-4). 
 

 
`include "vmm.sv" 
`include "dma_top.sv" 
`include "ral_env.svh" 
 
//vip interface instantiation 
  `add_ocp_vip_if(dma) 
 
 module_env env; 
 
initial begin 
  env = new(channel_intf); 
  env.run(); 
end 
 
assign    dma_if.MReset_n  = channel_if.RST_N; 
assign    dma_if.SReset_n  = 1; 
assign    dma_if.Clk       = top.CLK;  
 . 
 . 
 . 
 

  
Figure 4. Snippet From tb_inst_inline.v 

 
3. Added testbench components in Magellan Project File. 

Also added “tb_inst_inline.v” file with add_env_inline 
command. add_env_inline command prevents the 
Magellan formal engines from seeing the testbench code 
that was encapsulated within Verilog file tb_inst_inline.v. 
Figure-5 shows a snippet of a project file. 
 

set_design_info –vcs { … apps/synopsys/designware/vip 
                                          /ocp_vrt/dw/vip/ocp_vrt/1.50a 
                                          /ocp_slave_svt/vera/src 
                                     … } 
add_env_inline –testbench –file tb_inst_inline.v  

   
                Figure 5. Project File with Testbench Components 

 
4. Disconnected active testbench components (like RAL 

model, OCP slave VIP12 generator) that drive the DUT and 
disabled Driver BFMs, since input constraints are already 
taken care by Formal environment. We decided not to 
completely remove these components from our 
environment as it would have required a lot of effort to 

                                                
11 AIP stands for Assertion IPs 
12 VIP stands for Verification IPs 

Property mtc_cons0b ; 
     disable iff (!vpss_rst_n) 
     @(posedge vpss_clk) ( !(|resize0_sdrc_req)); 
endproperty   



extract only the monitors and scoreboard from the 
testbench. Instead, we decided to disable them in our 
testbench environment which was quick and effective as 
these components were lying dormant now. Figure-6 
shows a snippet of disabling these components within our 
testbench. 

 
 
// Commenting RAL backdoor call as DUT has been configured from 
// Formal Verification Environment 
   //update_ral_model (status,this.ral.default_path); 
 
// Commenting OCP Slave VIP model as OCP AIP Slave 
// assertions are configured as constraints in Formal Verification 
// Environment 
     // svt_ocp_slave                              slave; 
          . 
          . 
     // slave.start_xactor(); 
 
   // DW OCP Monitor 
        svt_ocp_monitor                            mon; 
          . 
          . 
        mon.start_xactor(); 
 
 

Figure 6. Disabling Active Testbench Components 
 
5. The next step was to send data collected from DUT 

interfaces to testbench monitors. In the testbench 
environment, these interfaces were directly connected to 
DUT ports. As DUT is instantiated in Formal Verification 
Environment now, we needed a way to pass data from 
DUT ports to monitors. For doing so, we made a 
continuous assignment between DUT ports to Monitor’s 
ports. Figure-7 shows an example. 

 
 
assign dma_if.MCmd   = top.MCmd; 
assign dma_if.MAddr   = top.MAddr; 
 

 
Figure 7. Connection to Monitor’s Ports 

  
6. We then enabled Coverage AEPs (line, condition, FSM, 

and toggle) because stimulus would be applied to DUT 
interface only when Simulator is active and testbench 
components would be able to see those stimuli. Enabling 
coverage AEPs would make sure that a good set of stimuli 
was applied by simulator as it would exercise 
counterexamples corresponding to each reachable coverage 
target. This would generate high-coverage stimuli for the 
design.  

 
7. Configured the DUT. 
 
8. Started testbench environment (env.run). 
 
9. Ran formal verification environment using Magellan.     

 
 

 
 

Figure 8. Environment Setup 
 

Figure-8 illustrates our complete Verification environment. At this 
stage, our setup was ready and we started running our Formal 
Verification environment  
 
4.3 Results 
 
We seamlessly integrated simulation environment components 
(monitors and scoreboard) into Formal Verification Environment 
with all the comparison and checks being performed as in a 
simulation environment. Figure-9 displays a snapshot of a non-
formal compliant check executing in an OCP VIP Monitor along 
with FSM coverage AEPs being exercised. 
 

 
 

Figure 9. Magellan Messages Log File 
 

It took us approximately a week to setup our initial environment, 
though further refinements to the environment are going on as per 
the DUT requirement. Our initial runs have already shown us good 
promise as we were already able to identify a mismatch with 
reference model for the OCP Master Commands.  
 
 



5. CONCLUSIONS 
 
Formal verification provides huge value addition in discovering bugs 
earlier at block level before integrating it to the subsystem. 
Additionally, corner-case bugs can be found by means of Guided 
Coverage Convergence. A chosen coverage metric, such as "cover" 
coverage or formal "state reachability" intelligently drives the built-
in simulator to exercise all the reachable coverage targets, while the  
reporting of unreachable coverage targets guarantees the 
conclusiveness of the verification results for a given block-level 
verification task. 
 
Formal Verification also can easily be deployed for “RTL bring up” 
and AEPs could be of great help for doing that as the designer can 
perform sanity test of his/her design without worrying about 
testbench or checks.  
 
Dead Code analysis provides a good way to quickly discover dead 
code especially for the RTL generated by using HLS tool since they 
are prone to generating a lot of Dead code. 
 
Finally, reusing passive testbench components with Formal 
Verification Environment opens up a whole new dimension to 
verification. It creates umpteen avenues to validate traces generated 
during Formal verification through Monitors and Scoreboard of 
simulation environment, to identify discrepancies in the two 
environments that might be hiding errors. Comparing stimulus 
generated during Formal verification in testbench’s scoreboard 
helped to validate that there is no difference in the constraint model 
that we used in testbench (Written in SVTB13) and the constraint 
model that we used in Formal verification environment. (Written as a 
set of Assertions). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                
13 SVTB means System Verilog Testbench 
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