
Combining Simulation with Formal Techniques to Reduce the
Overall Verification Cycle

Aneet Agarwal
Texas Instruments
Bangalore, India
+91-9900210780
aneet@ti.com

Gaurav Gupta
Synopsys (India)
Bangalore, India
+91-9972033995
gauravg@synopsys.com

ABSTRACT

With design complexity growing by the day, the need for verification
technologies that can complement simulation based verification is
also gaining momentum. Formal verification has clearly emerged as
one of the strong candidates. In a typical simulation based
verification cycle, the number of bugs reported grows exponentially
in the beginning, but this number shrinks rapidly thereafter in the
cycle and what remains is a few difficult to find corner case issues.

Obviously, there is a need to start verification early in the design
cycle. The additional requirement is to uncover the corner case bugs
earlier to reduce the overall verification cycle. Overall, a simulation
environment also takes a considerable amount of time to setup. Early
adoption of formal verification in the design cycle enables quick
RTL bring-up before the simulation environment is ready. It also
exposes hard-to-find corner-case bugs that may not be uncovered in
simulation. On the downside, it suffers from capacity issues as
formal analysis is exhaustive. However, hybrid formal verification
provides a way to counter capacity issues by combining simulation
with static formal verification to explore deeper design states. It
greatly enhances the capability to find bugs hidden deep in the
design space. Hybrid formal verification has also evolved and it now
allows combining non-synthesizable simulation environment
elements while verifying a design formally.

Texas Instruments (TI) image processing sub-chips, for the imaging
sub-system are used in application processors for mobile handsets.
These are algorithmic IPs, and also contain lot of control logic (e.g.
complex arbitration logic) that makes them good candidates to be
exhaustively verified through formal verification. Availability of pre-
verified assertion IP packages for industry standard-interfaces like
OCP1 enables a formal verification environment to be setup quickly.

This paper covers the TI experience of employing formal verification
(Model Checking) on OCP2.2 compliant designs and the
methodology adopted. Furthermore, it covers the exploration of
hybrid technologies to re-use non-synthesizable simulation
environment elements and attempts closing verification loopholes by
using different aspects like code coverage. This paper would also
cover the methodology adopted to find dead code in RTL blocks
generated by high-level synthesis tools (e.g. C-to-RTL generation
tools). Finding dead code was important to achieve targeted code
coverage. Formal technology allows finding out the unreachable
lines of code with ‘guarantees’ that it cannot be hit in simulation. It
also enables us to feed back the results obtained through formal

1 OCP stands for Open Core Protocol

verification and exclude unreachable lines of code in simulation to
compute the required code coverage number.

Keywords
Magellan, AEP, AIP, DW, VIP, RAL, OCP, VCS, HLS, VMM, TI

1. INTRODUCTION

Coverage closure is an area where verification engineers usually
spend lot of their time writing additional tests to target uncovered
coverage points despite a feeling that no combination of vectors
would ever exercise it. Usually a conclusion is met through visual
code inspection, but it proves to be a lengthy and expensive process.
We made use of Formal Analysis to reduce our time to conclude that
a particular coverage target (structural coverage: line, condition etc.)
could not be covered. Formal Analysis can prove a target as
reachable or unreachable. This approach helped us to quickly find
dead code in our design block (an algorithmic IP), RTL of which has
been derived from a C-RTL conversion (HLS2) tool.

Writing a constraints model for performing formal verification is
perhaps the most critical phase of the whole formal verification
cycle. Validity of our results highly depends on the way constraints
have been written at input of our design block. An under constrained
environment may trigger false failures and could allow illegal
stimulus to be driven at input of our design block during simulation
phase (as we are using a hybrid tool Magellan3). On the other hand,
an over constrained environment may lead to false proofs which may
prove to be fatal as it could hide bugs in the design block. We
explored ways to detect over constraining and found out that one
way to detect over constraining is to use “AEP code coverage”
feature of Magellan. Magellan can automatically extract structural
coverage metrics (line, statement, etc) from the design’s source code.
Magellan then can prove whether a corresponding line is reachable
or not using its formal engines. For reachable lines, it would generate
a counterexample by running simulation using inbuilt VCS4
simulator. If it finds unintended unreachable lines, it indicates that
constraints model is over constrained.

Reuse of passive testbench components such as monitors and
scoreboard with Formal Verification Environment made an
interesting combination of both the worlds (Simulation & Formal) by

2 HLS stands for High Level Synthesis
3 Magellan is Synopsys Hybrid Formal Model Checking Tool
4 VCS is Synopsys Mixed Language Simulator

validating Formal constraint model against passive testbench
components5. This method allows exhaustive constraint random
simulation, generated during random simulation phase (of Hybrid
Formal Tool) and during replay of Formal traces into the Simulator
to be passed to Monitors and Scoreboard. It should be noted that
Active testbench components6 have to be shut down. Non-
synthesizable “Constraint Model” used in simulation that typically
had been coded using HVLs like “System Verilog testbench” also
could not be used.

Following sections outline our experience using Formal techniques
in our verification flow and explore ways to bring together Formal
techniques and Simulation during Verification process.

2. DEPLOYING FORMAL TECHNIQUES TO
IDENTIFY DEAD CODE

This section discusses about the challenges faced during the
verification closure of an algorithmic IP design, the RTL of which is
extracted through C-RTL conversion (HLS) tool. The Structural
(code) coverage closure was very difficult and painful job as the
design contained a lot of dead RTL code/logic introduced by the
HLS tool. Therefore we decided to use Formal Analysis to quickly
identify dead code as there was no reason to measure coverage on
unreachable lines.

Setting up Formal Verification environment was very easy as it
didn’t require any constraint or testbench. RTL is directly fed to a
Formal Tool, Magellan, without giving any constraints and
Magellan’s line coverage AEP7 was enabled. Figure-1 shows a
snapshot of the simple setup file required to setup the Formal
Verification environment in Magellan.

Design

add_design_info –vlogan {-work WORK +v2k <*.v> ...}
add_design_info –vhdlan { <*.vhd> ... }
set_design_info -topModule SIMCOP

Environment

add_env_port -name pi_clk -clock 40
add_env_port -name pi_clk_en -clock 80 -waveform {20
60}
add_env_port -name pi_rst_n -reset 0
add_env_port -name pi_rst_n -constant 1

add_env_port -name PI_SIMCOP_DFT_LCG_CTRL_EN_N -
constant 7'b0
add_env_port -name PI_SIMCOP_DFT_LCG_TE -
constant 7'b0

AEP Module(s)
set_aep_info -line -maxGoals 25000

Figure 1. Magellan Project File

5 Components that doesn’t drive the DUT like Scoreboard
6 Components that drives the DUT like Generator
7 AEP stands for Automatic Extracted Properties

Magellan automatically extracted line coverage points based on the
structural analysis of the design. Magellan’s Formal engines then
discovered certain lines that were unreachable. The unreachable
coverage points represented the dead or redundant code of the
design, which could not be covered with any combination of
stimulus at all (no constraint was applied on the inputs). The
unreachable coverage report is further used to prepare an exclusion
file, which is a key input to guide simulator to exclude these
coverage targets from simulation coverage evaluation. Table-1 shows
the comparison of coverage statistics before and after removing dead
code logic.

Table 1. Coverage Statistics

Using Formal Techniques, we were quickly able to identify the
unreachable lines of code and it helped us to achieve targeted
coverage number for our design.

3. DETECTING OVER-CONSTRAINED
FORMAL CONSTRAINT MODEL USING
AEP COVERAGE

It is important to detect over constraint environment as it could hide
bugs. Detecting over-constraining is not easy as in normal property
checking flow virtually no signs are given to the user to identify over
constraining. Moreover over constraint environment may lead to
proofs for those properties, which otherwise might be falsified in the
correct environment. We realized that it is important for us to make
sure that our constraint model is correct and we decided to make use
of “AEP Code Coverage” analysis with Magellan to validate the
same. Magellan’s Formal engines can prove whether a line or
condition is reachable or not. If it finds unintended unreachable lines,
it indicates that constraints model might be over constrained. We
were able to deploy this strategy successfully across our designs to
successfully validate our constraint models. Figure-2 shows an
example how we were able to detect over constrained Formal
Environment using this approach.

832 case (gnt)
……………….

878 3'h7: begin
879 dma_caddress <= #1 {resize0_wbl_addr, 5'h0};
880 end // 3’h7
881 endcase // case(gnt)

Figure 2. Magellan GUI, Showing Unreachable Line Information

Module

Module Version

Line Coverage

(%)

Comments

SIMCOP SIMCOP--0.8 53

Initial

Coverage

SIMCOP SIMCOP--0.9 73

After Dead
Code

Removal

As shown in Figure-2, Magellan reported line no. 879 as
unreachable. We back traced the cause and found that the signal
“gnt” never reached the value 7 because the request corresponding to
that grant was never generated due to the following constraint
(Figure-3).

Figure 3. Input Constraint

Further analysis showed that this constraint was added to mask an
earlier bug which no longer existed, but the constraint was not
removed as it should have been.

4. VALIDATING FORMAL CONSTRAINTS
MODEL AGAINST PASSIVE TESTBENCH’S
COMPONENTS

As discussed earlier, a correct formal constraint model is essential
for effective verification. Availability of Simulation based
verification environment provides a novel way to reuse some of the
passive testbench components to validate the formal constraint
model. It would also facilitate to identify discrepancies between
reference model and DUT. For data intensive designs, this approach
would provide a way to monitor data transfer behavior which
otherwise is difficult to do in traditional a Formal Environment.

In one of our recent design, we reused monitors and scoreboard
developed for simulation testbench in our formal verification
environment. Simulation testbench is being developed using VMM8
methodology and has an integrated Synopsys DW9 OCP Slave VIP
and RAL10 package. Reference Model integrated into scoreboard is a
non cycle accurate model mimicking complex DUT behavior. We
explored this approach with a set of objectives in our mind:

• Validate monitors and scoreboard against Formal verification

environment.
• Validate and reuse non-formal compliant checks.
• A more regressed testing for data intensive path with less turn -

around time.
• Portable Valid Coverage data across Simulation and Formal

Verification environment.

4.1 Design under Verification

Design under verification is a multi-channel DMA. One of its ports is
an OCP Master with a tag management unit. On the other side there
are five DMA channels. Four of the channels can read Data from the
DMA buffers and one channel can write into it. DMA requests data
from the OCP slave port for read intensive channels and sends data

8 VMM stands for Verification Methodology Manual
9 DW stands for Designware
10 RAL stands for Register Abstraction Layer

to OCP slave for write intensive channels. This design is complex
and hugely data intensive (approximately half a million gates).

4.2 Steps to Integrate Testbench Components
with Formal Verification Environments

1. We setup a Formal Verification environment for DUT
using Synopsys OCP AIP11 and some custom assertions.

2. Created a Verilog file (tb_inst_inline.v) that contains non
synthesizable testbench code. Following is a snippet for the
same (Figure-4).

`include "vmm.sv"
`include "dma_top.sv"
`include "ral_env.svh"

//vip interface instantiation
 `add_ocp_vip_if(dma)

 module_env env;

initial begin
 env = new(channel_intf);
 env.run();
end

assign dma_if.MReset_n = channel_if.RST_N;
assign dma_if.SReset_n = 1;
assign dma_if.Clk = top.CLK;
 .
 .
 .

Figure 4. Snippet From tb_inst_inline.v

3. Added testbench components in Magellan Project File.

Also added “tb_inst_inline.v” file with add_env_inline
command. add_env_inline command prevents the
Magellan formal engines from seeing the testbench code
that was encapsulated within Verilog file tb_inst_inline.v.
Figure-5 shows a snippet of a project file.

set_design_info –vcs { … apps/synopsys/designware/vip
 /ocp_vrt/dw/vip/ocp_vrt/1.50a
 /ocp_slave_svt/vera/src
 … }
add_env_inline –testbench –file tb_inst_inline.v

 Figure 5. Project File with Testbench Components

4. Disconnected active testbench components (like RAL

model, OCP slave VIP12 generator) that drive the DUT and
disabled Driver BFMs, since input constraints are already
taken care by Formal environment. We decided not to
completely remove these components from our
environment as it would have required a lot of effort to

11 AIP stands for Assertion IPs
12 VIP stands for Verification IPs

Property mtc_cons0b ;
 disable iff (!vpss_rst_n)
 @(posedge vpss_clk) (!(|resize0_sdrc_req));
endproperty

extract only the monitors and scoreboard from the
testbench. Instead, we decided to disable them in our
testbench environment which was quick and effective as
these components were lying dormant now. Figure-6
shows a snippet of disabling these components within our
testbench.

// Commenting RAL backdoor call as DUT has been configured from
// Formal Verification Environment
 //update_ral_model (status,this.ral.default_path);

// Commenting OCP Slave VIP model as OCP AIP Slave
// assertions are configured as constraints in Formal Verification
// Environment
 // svt_ocp_slave slave;
 .
 .
 // slave.start_xactor();

 // DW OCP Monitor
 svt_ocp_monitor mon;
 .
 .
 mon.start_xactor();

Figure 6. Disabling Active Testbench Components

5. The next step was to send data collected from DUT

interfaces to testbench monitors. In the testbench
environment, these interfaces were directly connected to
DUT ports. As DUT is instantiated in Formal Verification
Environment now, we needed a way to pass data from
DUT ports to monitors. For doing so, we made a
continuous assignment between DUT ports to Monitor’s
ports. Figure-7 shows an example.

assign dma_if.MCmd = top.MCmd;
assign dma_if.MAddr = top.MAddr;

Figure 7. Connection to Monitor’s Ports

6. We then enabled Coverage AEPs (line, condition, FSM,

and toggle) because stimulus would be applied to DUT
interface only when Simulator is active and testbench
components would be able to see those stimuli. Enabling
coverage AEPs would make sure that a good set of stimuli
was applied by simulator as it would exercise
counterexamples corresponding to each reachable coverage
target. This would generate high-coverage stimuli for the
design.

7. Configured the DUT.

8. Started testbench environment (env.run).

9. Ran formal verification environment using Magellan.

Figure 8. Environment Setup

Figure-8 illustrates our complete Verification environment. At this
stage, our setup was ready and we started running our Formal
Verification environment

4.3 Results

We seamlessly integrated simulation environment components
(monitors and scoreboard) into Formal Verification Environment
with all the comparison and checks being performed as in a
simulation environment. Figure-9 displays a snapshot of a non-
formal compliant check executing in an OCP VIP Monitor along
with FSM coverage AEPs being exercised.

Figure 9. Magellan Messages Log File

It took us approximately a week to setup our initial environment,
though further refinements to the environment are going on as per
the DUT requirement. Our initial runs have already shown us good
promise as we were already able to identify a mismatch with
reference model for the OCP Master Commands.

5. CONCLUSIONS

Formal verification provides huge value addition in discovering bugs
earlier at block level before integrating it to the subsystem.
Additionally, corner-case bugs can be found by means of Guided
Coverage Convergence. A chosen coverage metric, such as "cover"
coverage or formal "state reachability" intelligently drives the built-
in simulator to exercise all the reachable coverage targets, while the
reporting of unreachable coverage targets guarantees the
conclusiveness of the verification results for a given block-level
verification task.

Formal Verification also can easily be deployed for “RTL bring up”
and AEPs could be of great help for doing that as the designer can
perform sanity test of his/her design without worrying about
testbench or checks.

Dead Code analysis provides a good way to quickly discover dead
code especially for the RTL generated by using HLS tool since they
are prone to generating a lot of Dead code.

Finally, reusing passive testbench components with Formal
Verification Environment opens up a whole new dimension to
verification. It creates umpteen avenues to validate traces generated
during Formal verification through Monitors and Scoreboard of
simulation environment, to identify discrepancies in the two
environments that might be hiding errors. Comparing stimulus
generated during Formal verification in testbench’s scoreboard
helped to validate that there is no difference in the constraint model
that we used in testbench (Written in SVTB13) and the constraint
model that we used in Formal verification environment. (Written as a
set of Assertions).

13 SVTB means System Verilog Testbench

6. ACKNOWLEDGMENTS

Our sincere thanks go to Ashish Chandra of Texas Instruments for
providing details about his Simulation Verification Environment and
helping us to derive strategy for integrating passive simulation
components into Formal Verification Environment.

7. REFERENCES

[1] Jayanta Bhadra, Magdy S. Abadir, Li-C. Wang, Sandip Ray, "A
Survey of Hybrid Techniques for Functional Verification," IEEE
Design and Test of Computers, vol. 24, no. 2, pp. 112-122, June
2007.

[2] http://www.synopsys.com/cgi-bin/fv/webinar/reg1.cgi

[3] https://event.on24.com/eventRegistration/EventLobbyServlet?target=
registration.jsp&eventid=174132&sessionid=1&key=99DAA6FD4F58B8
097AEF90654999A77B&sourcepage=register

