
Coherency Verification & Deadlock Detection
Using Perspec/Portable Stimulus

1

Moonki Jang – Samsung Electronics Co.,Ltd.
Phu Huynh – Cadence Design Systems, Inc

Agenda
• Why coherency and deadlock detection verification
• Requirements & description of our verification environment
• Using Perspec and PSS to create reusable test suite

2

Trends

3

• Latest automotive & mobile SoCs need higher performance and
incorporation of additional functionality

High-End Octa core SoC (Samsung, 2013) Latest ADAS reference platform (ARM,2018)

Side effects

4

• The need for higher performance and additional functionality has
increased the complexity of coherency networks every year
– Increased complexity always causes unexpected problems like resource

conflicts between multiple coherent masters when working concurrently

Agenda
• Why coherency and deadlock detection verification

• Using Perspec and PSS to create reusable test suite

5

Requirements

6

• Reasons why it is important to detect deadlock-related coherency
issues at the pre-silicon level:
– Hard to reproducing deadlock on silicon environment
– Transaction flow tracking is impossible
– Root cause analysis will be extremely difficult on silicon

Considerations

7

• Reasons why coherency issue detection is difficult at the pre-silicon
level:
– Slow simulation speeds make it difficult to perform complex scenarios
– For reproducing the specific target conditions, pre-silicon scenarios should

narrow down the scenario scope.
– It requires much effort and time to create such a complex scenarios

• PSS(Portable Stimulus Standard) verification environment was
introduced to solve these issues

PCIe deadlock verification

8

• The following two blocking conditions cause a PCIe deadlock
– ACE (AXI Coherency Extensions) master blocking condition

• ACE master might have to complete a WriteBack transaction of a similar
operation before it can respond to a snoop request

– PCIe blocking condition
• A PCIe bridge can stall reads and PCIe configuration writes on its AXI slave

interface when write transactions from its AXI master interface is stalled

PCIe deadlock verification

9

• Reproducing scenario should make below conditions
1. Fill up the PCIe RC request queue using a non-posted read from CPU
2. After RC request queue is full, additional non-posted write should block

the write channel
3. CPU will generate WriteBack for address A
4. PCIe EP will generate WLU for address A

①

②

③

④

Overview of Our Verification Env

10

• Our test suite can detect deadlock and gather system information

- System Monitor
System status check using ‘heartbeat response’

- Transaction Latency Monitor
Records the latency of all transactions originating from

the CPU(s)

- System Tracker
Gathers the system information for root cause analysis and

generates log files

- Simulation Manager
Manages the whole process of creating and executing the

Perspec scenarios for simulation and analyzes the results

Overview of Our Verification Env

11

• System Monitor
– Each core generates a heartbeat to the system monitor
– If system monitor does not detect the heartbeat in the expected period, it

assumes that the system has fallen into a deadlock state.
heartbeat didn’t generate

Overview of Our Verification Env

12

• System Tracker & Transaction Latency Monitor
– When deadlock is detected, system tracker will collect the system information

from the latency monitor and system monitor.

Deadlock detection time

List of the incomplete transactions

Snapshot of system register

Overview of Our Verification Env

13

• Simulation Manager
– If deadlock is reported in the log, simulation will be re-launched to get a dump

file through regression manager’s post processing
– At this time, the system information result that is generated in the system tracker

can be used to specify the dump period

Agenda
• Why coherency and deadlock detection verification
• Requirements & description of our verification environment

14

Coherency Verification

15

• Perspec and PSS simplifed and shortened our verification tasks
– Basic (PSS) actions are provided by Perspec libraries
– Coherency test suite is also provided
– Coverage models are part of the Perspec libraries

• Overall verification process:
– Create model of the compute (processor-memory) subsystem
– Run sanity memory R/W tests
– Run coherency test suite provided by Perspec library
– Develop additional corner cases & stress test scenarios

Create Processor-Memory model

16

• Processor Info table

Create Processor-Memory model

17

• Memory Info table

• Page Table

Memory R/W Test - PSS

18

• Sanity test to ensure that
basic processor-memory
paths are working.

• Atomic actions provided
by Perspec library:
– write_data

– copy_data

– read_check_data

• Built-in data type:
– sml_processor_tag_e

action pss_wr_cp_rc {
rand sml_processor_tag_e proc_tag_l;

activity {
sequence {

do sml_sw_ops_c::write_data with {
proc_tag == proc_tag_l;

};
do sml_sw_ops_c::copy_data with {

proc_tag == proc_tag_l;
};
do sml_sw_ops_c::read_check_data with {

proc_tag == proc_tag_l;
};

};
};

};

Memory R/W Test - Solutions

19

• Tests generated from
previous PSS code
– Solution 1: uses core A2
– Solution 2: use core M2

• Memory blocks are also
selected randomly by
Perspec

Solution 1 Solution 2

Multi-core Memory R/W - PSS

20

• Three processor cores doing
memory R/W test in parallel
– Verify inter-processor(mailbox)

communication

• Show how previous compound
action (pss_wr_cp_rc) is used
to build more complex PSS
scenario

action pss_wr_cp_rc_3cores {
pss_wr_cp_rc chain1, chain2, chain3;
activity {
parallel {
chain1;
chain2 with {
proc_tag_l != chain1.proc_tag_l;

};
chain3 with {
proc_tag_l != chain1.proc_tag_l;
proc_tag_l != chain2.proc_tag_l;

};
};

};
};

Multi-core Memory R/W - Solution

21

• In this solution, cores
M2, B0, A2 were
selected

• Different memory
blocks (DDR0, DDR1,
DDR2) were also
selected randomly

Coherency Test Suite

22

• Perspec library includes a verification plan and a suite of tests
– Focus on memory access, coherency, and low-power

• Verification Plan Outline:
– Basic Memory Access
– Exclusive Accesses
– Coherency: basic coherency actions, false-sharing, true-sharing, cache states
– Coherency with IO
– DVM
– others

Coherency Test Suite

23

• Scenarios coverage of memory access
from different processor at different data
sizes, alignments

• False sharing and True sharing
coverage across cores/clusters

• DVM coverage for ASID, VMID and VA-
PA mapping

• Coverage on lock type like Spin Lock,
ticket lock etc, accessed in parallel from
all processors

PCIe Library – RC & EP Actions

24

Deadlock Verif Scenario – Pseudo Code

25

//Setup step: setup PCIe RC and PCIe EP ...

//...

parallel { //randomly pick a core to do the following actions

do pcie_rc_mem_read multiple times in sequence; //core A3 in Fig 7

do pcie_rc_mem_read multiple times in sequence; //core A0

do pcie_rc_mem_read and invalidate_cache; //core A2

do pcie_rc_mem_read and pcie_config_write; //core A1

//PCIe EP

sequence {

do pcie_ep_vip_reg_write;

do pcie_ep_mem_read multiple times;

};

};

Deadlock Verif Scenario – Solution

26

Core A3:
pcie_rc_mem_read

Core A0:
pcie_rc_mem_read

Core A1:
pcie_rc_mem_read &
pcie_rc_config write

Core A2:
pcie_rc_mem_read &

invalidate_cache

EP VIP:
pcie_vip_reg_write &
pcie_ep_mem_read

Conclusions & Lessons Learned

27

• Writing PSS scenarios were much simpler than writing C tests manually
– Library actions allow us to work at a higher-level of abstraction
– Inter-processor communication is handled automatically by Perspec
– Resource allocation is also handled automatically

• Project-to-project reuse requires more than PSS; need:
– Libraries
– Reuse methodology

Conclusions & Lessons Learned

28

• PSS and Perspec helped shorten our design verification
– Below chart shows our coherency coverage closure status of recent project.

Through the scenarios generated in the PSS environment, the
time taken to increase the coverage from 90% to 100% can be
shortened by 50% compared to the previous project.

BACK-UP Slides

29

DVCon Slide Guidelines

30

• Use Arial or Helvetica font for slide text
• Use Courier-new or Courier font for code
• First-order bullets should be 24 to 28 point

– Second-order bullets should be 24 to 26 point
• Third-order bullets should be 22 to 24 point
• Code should be at least 18 point

• Your presentation will be shown in a very large room
– These font guidelines will help ensure everyone can read you slides!

No Company Logo
except on title slide!

Code and Notes

31

Code should be
enclosed in text boxes
(using a background

color is optional)

Code should be
18pt Courier-bold, or

larger

module example
(input logic foo,
output logic bar
);

initial begin
$display (“Hello World!”);

endmodule

Informational boxes should be 18pt Arial-bold, or larger
(using a background color is optional)

	Coherency Verification & Deadlock Detection�Using Perspec/Portable Stimulus
	Agenda
	Trends
	Side effects
	Agenda
	Requirements
	Considerations
	PCIe deadlock verification
	PCIe deadlock verification
	Overview of Our Verification Env
	Overview of Our Verification Env
	Overview of Our Verification Env
	Overview of Our Verification Env
	Agenda
	Coherency Verification
	Create Processor-Memory model
	Create Processor-Memory model
	Memory R/W Test - PSS
	Memory R/W Test - Solutions
	Multi-core Memory R/W - PSS
	Multi-core Memory R/W - Solution
	Coherency Test Suite
	Coherency Test Suite
	PCIe Library – RC & EP Actions
	Deadlock Verif Scenario – Pseudo Code
	Deadlock Verif Scenario – Solution
	Conclusions & Lessons Learned
	Conclusions & Lessons Learned
	BACK-UP Slides
	DVCon Slide Guidelines
	Code and Notes

