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Abstract - Modern SoC, designed for automotive and mobile applications, typically has multiple processor 
cores, multi-level cache hierarchy, and other subsystems that shared memory and system resources. Cache 
coherency and deadlock avoidance are two critical areas that need to be verified for this type of design. This 
paper describes how the Portable Stimulus Standard (PSS) and EDA tools, such as Perspec, were used to shorten 
the design verification of these two areas: memory coherency and deadlock avoidance.  

 
I.   INTRODUCTION 

Many System-on-Chip (SoC) designs for automotive and mobile applications consist of multiple processor cores 
and IP subsystems that share SoC resources such as memory, system interconnect (IC), and IO subsystems. The effort 
required to manually create sufficient test suites to verify such a design is significant due to the number of processor 
cores, number of coherent IO masters, multiple level of caches, and the various combination of how these processor 
cores and IO masters can access memory and shared resources. EDA tools and reuse methodology can help reduce 
the time and effort required to implement these test suites. With the release of the Accellera “Portable Test and 
Stimulus Standard (PSS), Version 1.0” [1] in June 2018, the SoC-level verification automation tools and test scenarios 
reuse will be significantly improved similar to what UVM has done for the IP-level verification.  
 
There are many papers and articles that discuss the cache coherency issue and how to tackle this issue at the 
protocol-level [2], block-level [3][4], and SoC-level [5]. The main contribution of our paper is to discuss our experience 
with using PSS and how PSS and  EDA tools, such as Cadence® Perspec™ System Verifier, helped shorten the 
design verification cycle of this type of SoC in two specific areas: memory coherency and deadlock/livelock [6] 
detection. This was achieved by taking advantage of the test generation automation and coverage collection 
capabilities provided by Perspec and the reuse of the PSS scenarios from project to project. For coherency testing, 
we also reduced our verification time further by building our coherency test suite using the actions provided by the 
Perspec coherency library. Deadlock detection is another area that we focused on in this project; deadlocks caused 
by the coherency protocol violations, such as PCIe deadlocks, occur only when specific sequence of transactions and 
timing occurs; it is very difficult to do root cause analysis when the deadlocks occur at the post-silicon level; it is 
also very costly to uncover these issues at this late stage of the project. To ensure that our design is free of deadlocks 
and to uncover any such issues before tape out, we have created a “deadlock detection” verification environment to 
reproduce and verify the root cause of the deadlocks at the simulation level.  

 
Deadlock detection testing presents a unique set of challenge and requires special features to be added to the 

verification environment to detect deadlocks and to handle these deadlock events automatically when they occur. To 
check for deadlock condition and to handle it automatically, we setup an auto regression test suite and implemented 
the following monitors in our verification environment: 

• System Monitor receives periodic heartbeat response from the CPU which indicates normal CPU operation. 
Missing hearbeat responses from the CPU after a predetermined period of time will indicate to the System 
Monitor that a possible deadlock has occurred; when a deadlock occurs, the System Monitor will send a 
deadlock alert to the System Tracker. 



 
• Transaction Latency Monitor which records the transactions latency and this recorded data can be used later 

on to determine the transaction that caused the deadlock. 
• System Tracker which captures the system state and the relevant signals for post-run root cause analysis of 

the deadlock condition.  
 
We will discuss the following topics in more details in the paper: 
• Overview of typical automotive SoC architecture 
• Using Perspec library and PSS scenarios for coherency verification 
• Deadlock detection verification environment and auto regression test suite 
• PSS scenarios to detect PCIe deadlock conditions 
• Results & lessons learned from an actual project 

 
II.   OVERVIEW OF TYPICAL AUTOMOTIVE SOC ARCHITECTURE 

Due to the computational demand of the Advanced driver-assistance systems (ADAS), coupled with the needs to do 
real-time image processing, pattern recognition processing, and other “cognitive computing” related tasks, the SoC 
designed for automotive applications required a large number of processor cores, one or more Graphics Processing 
Unit (GPU) and Neural Processing Unit (NPU). These processor cores, GPU, and NPU all share memory resources, 
interconnect bus, and IO subsystems (e.g., PCIe, Ethernet, USB, etc.). 
 
Figure 1 shows the block diagram of a typical SoC for Automotive application. There are multiple processor cores 
organized into multiple clusters. To reduce the effect of the shared memory bottleneck, there are multiple level of 
caches. Each processor core has its own private L1 cache (not shown in the diagram); each processor cluster has an 
L2 cache shared between the cores in that cluster; some design even has an LLC (Last Level Cache, which resides in 
the Coherent Interconnect) and is shared between all the processor clusters and other coherent masters, such as the 
GPU.  

 

 
 

Figure 1: Typical SoC architecture for automotive applications 



 
 
All these processor cores, GPU, NPU, and IO peripherals will generate their request transactions and receiving 
requested data through the Coherent Interconnect using the ACE (AXI Coherent Extension) and ACE-Lite protocol. 
Due to the shared resources and multi-level of caches in this type of design, it is critical to verify that the SoC is free 
of coherency issues and livelock/deadlock issues. 
 
In section III, we will discuss our approach for coherency verification. Section IV and V will cover our approach for 
livelock/deadlock verification. Perspec and PSS were used to speed-up the test scenarios development and to 
facilitate the reuse of these test scenarios for future projects. 
 

 
III.   USING PERSPEC LIBRARY AND PSS SCENARIOS FOR COHERENCY VERIFICATION 

 
To ensure that there are no coherency issues in the design, we created a set of coherency tests that consist of false-

sharing tests, true-sharing tests, exclusive access tests, and DVM (Distributed Virtual Memory) tests. We used the 
Perspec libraries and its utilities to speedup the development of the above test scenarios. Perspec libraries provided 
the basic memory read/write actions, coherency actions, and a built-in test suite for memory and coherency verification 
of the processor-memory subsystem. For the remaining of this section, we will go through the process of creating our 
processor-memory model, the PSS scenarios using the atomic actions provided by the Perspec coherency library, and 
how to write reusable PSS scenarios; what we are hoping to convey here is to show how EDA tools (e.g., Perspec) 
and PSS helped speeding up the test development and also allowed the reuse of the PSS test scenarios from project to 
project. 

 
The test development process consists of the following steps: 

1. Model the compute (i.e., processor-memory) subsystem  
2. Develop memory coherency test scenarios for the compute subsystem 
3. Develop PSS model for other subsystems 
4. Develop subsystems test scenarios 

 
We will only go through steps 1 and 2 in this section; steps 3 and 4 will be described in Section V (PSS Scenarios 

to Detect PCIe Deadlock Conditions). 
 
Step 1: Model the compute subsystem 
Most compute subsystems for mobile and automotive SoC are based on a multi-core processor and interconnect 

architecture; the differences between them are mainly in the types of processor used, the number of cores, the number 
of clusters, the cache hierarchy structure, the memory types and sizes. For this reason, the compute subsystem PSS 
model and its supported actions are suitable candidates for encapsulating in a reusable and configurable library and 
this is what was provided by Perspec. Using the Perspec coherency library, the “modeling” process of the compute 
subsystem required no coding; we just needed to fill out the information related to the processor cores, the clusters, 
the memory types/sizes, the cache structure, etc., in the Perspec configuration tables; these tables were captured in an 
Excel/csv configuration file; this “modeling” process of our SoC compute subsystem was done in a couple of hours;  
most of this time was spent tracking down the information required to fill out the Perspec configuration tables. Table 
1 and 2 show an example of the processor and memory configuration tables. 

• Table 1 - “Processor Info” table: this table describes the processor subsystem of the design; the columns 
in this table represent the attributes of the design; some key attributes are: 

o #tag:   name of the processor cores; there are 12 of them: M0 to B3 
o #kind:  the kind/type of processor 
o #cluster:  name of the processor clusters; there are 3 of them: MO, AP, A72 

• Table 2 - “Memory Info” table: this table specifies the different memory blocks and their address ranges; 
in this example, we have: 

o Three different memory blocks: DDR0, DDR1, DDR2 
o All of them are enabled in the design (#enabled column) 



 
 
 
 
Note that, to simplify the discussion, we only show the key columns (i.e., attributes) in Table 1 and Table 2. Users 
can also add additional columns/attributes to these tables that are specific to their design. 

 
 

 
Table 1: Processor Info Table 

 
 

 
Table 2: Memory Info Table 

 
Once these configuration tables were filled out, we were able to bring-up Perspec and created memory and 

coherency tests using its GUI (Graphical User Interface) and writing the PSS code directly. 
 

  



 
 
Step 2: Develop memory coherency test scenarios 

In this step, we created simple memory read/write 
scenarios first to ensure that the processor-memory 
subsystem was working correctly. Once the basic 
memory read/write operations were functional, we 
created more complex false-sharing, true-sharing, and 
DVM test scenarios. We also used the built-in 
coherency test suite of the Perspec coherency library, 
reviewed the coverage results, and added additional 
tests to achieve the desired coverage. In the remaining 
of this section, we will show some simple PSS memory 
read/write scenarios to illustrate how to write reusable 
PSS scenarios using the actions and utilities provided 
by the Perspec libraries. 

 
Figure 2 shows a simple PSS memory read/write 

scenario using the atomic actions provided by the 
Perspec SML library; two solutions of this scenario are 
also shown in this figure to illustrate how the tests are 
generated from this scenario. 

 
This PSS scenario is simple but it does illustrate 

some important points: 
• sml_processor_tag_e: is an enumerated 

type created automatically, by Perspec, using 
the #tag column in the “Processor Info” table. It 
consists of the following values: M0, M1, M2, 
M3, A0, A1, A2, A3, B0, B1, B2, B3. 

• write_data, copy_data, read_check_data are 
atomic actions provided by the Perspec SML 
library. 

• The PSS action, pss_wr_cp_rc, can be 
reused by other projects (even though these 
projects might have different processor and 
memory configurations). 

• Notice that in the generated tests: proc_tag 
(processor core), mem_seg_addr (memory 
buffer address), and mem_seg_block_tag 
(memory block ID) are randomly picked by 
Perspec for each test solution. 

 

Figure 2: Simple PSS memory read/write scenario 

 
 
 
 
 

action pss_wr_cp_rc { 
 rand sml_processor_tag_e proc_tag_l; 
 
 activity { 
    chain { 
       do sml_sw_ops_c::write_data with { 
          proc_tag == proc_tag_l; 
       }; 
       do sml_sw_ops_c::copy_data with { 
          proc_tag == proc_tag_l; 
       }; 
       do sml_sw_ops_c::read_check_data with { 
          proc_tag == proc_tag_l; 
       }; 
    }; 
 } 

}; 
 

 



 
 
We can use this simple pss_wr_cp_rc action as a 

building block for more complex PSS scenarios. Figures 3 
shows the code of the pss_wr_cp_rc_3cores action; 
this action uses the pss_wr_cp_rc action to create a 
scenario that has three processor cores  doing write_data, 
copy_data, and read_check_data in parallel. 

 
The action pss_wr_cp_rc_3cores has three control 

knobs: proc_tag1, proc_tag2, proc_tag3; these 
control knobs allow the test writer to select the processor 
cores to be used for his tests. Notice also that there are three 
constraint statements in the code to ensure that the processor 
cores selected by the test writer (or by Perspec) will be 
unique since these cores are executing the pss_wr_cp_rc 
action in parallel. 

 
Figure 4 shows an example of a false-sharing scenario 

(false_sharing_rw_base action) executing in 
parallel to our pss_wr_cp_rc action. 
This scenario illustrates two other 
convenient features: 
• sml_proc_subset_select_s 

is a control knob structure, 
automatically created from the 
“Processor Info” table. This control 
knob structure consists of all the 
knobs that allow the test writer to 
select the processor cores, the 
cluster, etc., to be used in his tests. 

• “constraint foreach“ in the code 
ensures that the processor core 
selected for the pss_wr_cp_rc 
action will be different from the 
cores selected for the 
false_sharing_rw_base 
action. 

 

Figure 3: Example of a more complex PSS scenario using pss_wr_cp_rc action 
 

 

 

action pss_wr_cp_rc_3cores { 
    rand sml_processor_tag_e proc_tag1; 
    rand sml_processor_tag_e proc_tag2; 
    rand sml_processor_tag_e proc_tag3; 
    constraint proc_tag1 != proc_tag2; 
    constraint proc_tag1 != proc_tag3; 
    constraint proc_tag2 != proc_tag3; 
  
    activity { 
       parallel { 
          do pss_wr_cp_rc with { 
             proc_tag_l == proc_tag1; 
          }; 
          do pss_wr_cp_rc with { 
             proc_tag_l == proc_tag2; 
          }; 
          do pss_wr_cp_rc with { 
             proc_tag_l == proc_tag3; 
          }; 
       }; 
    } 
 }; 
 
 



 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: false-sharing scenario using the Perspec cnd_coherency_ops_c library action and our 
pss_wr_cp_rc action 

 

action pss_fs_rw_mem_rw { 
 rand sml_processor_tag_e proc_tag_mem_rw; 
 rand sml_proc_subset_select_s procs_subset_fs; 
 constraint soft procs_subset_fs.size == 2; 
 constraint soft procs_subset_fs.num_clusters == 2; 
 //Ensure that “false-sharing” cores != “pss_wr_cp_rc” core 
   constraint foreach (val: procs_subset_fs.selected[index]){  
      val -> proc_tag_mem_rw != (sml_processor_tag_e)index; 
   };     
 activity { 
    parallel { 
       do pss_wr_cp_rc with { 
          proc_tag_l == proc_tag_mem_rw; 
       }; 
       do cdn_coherency_ops_c::false_sharing_rw_base with { 
          foreach (procs_subset.selected[index]) { 
             procs_subset.selected[index] == procs_subset_fs.selected[index]; 
          }; 
       }; 
    }; 
 } 

}; 



 
IV.   DEADLOCK DETECTION VERIFICATION ENVIRONMENT AND AUTO REGRESSION TEST SUITE 

The purpose of the Deadlock Detection Verification Environment is to verify that known deadlock conditions are 
reproduced by our test suite. Depending on the SoC configuration/design, a deadlock may not occur even though the 
deadlock conditions are recreated. In this case, we can confirm that the deadlock conditions occurred through our 
coverage measurement results, and that the SoC design is free of deadlocks.  
 
Figure 5 shows the block diagram of the Deadlock Detection Verification Environment. If a deadlock actually 
occurs, we can use the deadlock diagnostic features described below to identify and debug the cause of the deadlock. 

1. System Monitor: a status-check timer is used to generate periodic interrupts to the CPU; when this interrupt 
occurs, the CPU checks the status of the system and sends a “heartbeat response” to the System Monitor. In 
case of SError (kernel panic), livelock, or other failures, the CPU will deliver a “failure response” instead 
of a “heartbeat response” to the System Monitor. If there is no “heartbeat response” from the CPU after a 
certain period of time, the System Monitor considers the CPU to be deadlocked and informs the System 
Tracker. 

2. Transaction Latency Monitor: During the execution of a scenario, the Transaction Latency Monitor records 
the latency of all transactions originating from the CPU(s). If the System Monitor has detected a deadlock, 
the Transaction Latency Monitor will pass the information about the oldest transaction that has not 
completed to the System Tracker. With this information, the System Tracker will be able to infer which 
transaction and which master caused the deadlock. 

3. System Tracker: if the System Monitor has detected a deadlock, the System Tracker will start gathering the 
following information for root cause analysis. 

• CPU status (PC, GPR, PSTATE, Fault status, Exception/Error syndrome register, etc.) 
• Current test scenario 
• Information about the suspected transaction 
• Estimated time when the deadlock occurred. 

After gathering this information, the System Tracker will create a log file and end the simulation. 
4. Simulation Manager: manages the whole process of creating and executing the Perspec scenarios for 

simulation and analyzes the results. After the simulation has finished, the Simulation manager will phase 
the log file from the System Tracker specifically for the deadlock case and will perform a waveform dump 
around the point where the deadlock occurred using the save & restore. 

 
Figure 5: Deadlock Detection Verification Environment 



 
V.   PSS SCENARIOS TO DETECT PCIE DEADLOCK CONDITIONS 

According to the PCIe ordering rules, non-posted requests (i.e. reads and configuration writes) to a PCIe slave interface 
might be stalled while a posted write from the corresponding PCIe master interface is stalled. This is because a read 
or write completion is unable to overtake a posted write that is unable to leave the master interface. This potentially 
can cause a deadlock condition when the right combination and timing of the PCIe transactions and cache snoop 
transactions occur [7][8]. There are design guidelines from the processor core vendor on how to prevent deadlocks; 
however, we do need to verify that our design is free of deadlock.  
 
The test scenarios to verify that a design is free of deadlock are difficult to write manually due to the multiple parallel 
activities from different masters and slaves and the variation of timing of the transactions. Figure 6 shows the block 
diagram of a design that we will use to illustrate a simple scenario that can create deadlock. 
 

 
 
Figure 6: Block diagram of a design used to illustrate potential PCIe deadlock condition 
 
A possible deadlock condition that can occur in figure 6 is as follows: 

1. CPU cluster performs a number of non-posted reads from a PCIe Endpoint(EP). These non-posted read 
requests will fill up the PCIe RC request buffer. 

2. CPU cluster performs a number of non-posted config writes to the PCIe Endpoint(EP). These can't be 
accepted because the non-posted request channel is now saturated due to the previous non-posted reads (in 
step 1). 

3. CPU cluster generates a Writeback of address A. Writeback can't proceed because the write channel has 
been blocked. 

4. PCIe Endpoint issues a read of address A. If PCIe EP issues a ReadOnce transaction for address A, the 
coherent interconnector will generate a ReadOnce snoop transaction to the CPU cluster. But this snoop 
can't proceed because of the outstanding WriteBack. 



 
5. PCIe Endpoint issues a number of coherent reads. These ReadOnce transactions will fill up the snoop 

queue. 
6. PCIe Endpoint issues a coherent write(WLU) of address A. WriteLineUnique(WLU) transaction will 

generate Clean&Invalidate snoop before memory update. but this snoop can't deliver to the CPU cluster 
because the snoop queue has been saturated. 

7. Deadlock is now achieved. 
 
As you can see, even for this simple deadlock test scenario, it’s not easy to create a test manually. However, using 

PSS and Perspec, the code is pretty simple since the PSS syntax makes it easy to describe the scheduling of different 
actions and Perspec handles all the resource scheduling and constrained randomization automatically. The pseudo 
code for this scenario is as follows: 

 
//Setup step: setup PCIe RC and PCIe EP 
do pcie_config; 
do pcie_rc_mem_write; 
do write_cache; 
parallel { //randomly pick a core to do the following actions 
     do pcie_rc_mem_read multiple times in sequence; //core A3 in Fig 7 
     do pcie_rc_mem_read multiple times in sequence; //core A0 
     do pcie_rc_mem_read and invalidate_cache;       //core A1 
     do pcie_rc_mem_read and pcie_config_write; //core A2 
     //PCIe EP 
    sequence { 
       do pcie_ep_mem_write; 
       do pcie_ep_mem_read multiple times; 
    }; 

}; 
 
Figure 7 shows one of the tests generated from the above scenario.  Note that the “Setup step” is not shown in figure 

7 since this step is straightforward; the UML diagram is smaller and is easier to understand without the “Setup step”.  

 
Figure 7: One of the generated test from the PCIe deadlock scenario 

 



 
VI.   RESULTS & LESSONS LEARNED FROM AN ACTUAL PROJECT 

We have completed the generation and running of the coherency test suites on our design; this task was completed 
quickly since we took advantages of the capabilities provided by the Perspec coherency library and we were also able 
to re-use the Perspec scenarios developed on previous project. Regarding the PCIe deadlock scenarios, we are in the 
process of running these scenarios to verify that our design is free of deadlocks. We are also developing more PCIe 
scenarios to verify our design further at the SoC-level. We should be able to discuss the final results at DVCon 2019 
in February. 

 
Preliminary results showed that Perspec and PSS helped us shorten the design verification cycle significantly; this 

was especially true in the case of coherency verification due to the availability of the Perspec coherency library and 
the reuse of the Perspec scenarios from previous project. We also “learned” that writing PSS scenarios were a lot 
simpler than writing C code manually; also, the Perspec library helped with the reuse of test scenarios from project-
to-project since it automatically creates the data types, structures, and model of the processor and memory subsystems. 
To create reuse scenarios, we did have to make a conscious effort not to refer to the actual name of the 
processor/memory resources in these scenarios since these will change from project-to-project. One of the lessons that 
we learned from this is that to create “portable stimulus” scenarios, we need more than the PSS language; we also 
need methodology and library; this is similar to UVM where a methodology for building reusable verification 
component is also part of the standard. 

 

 

VII.   SUMMARY 
This paper shows how PSS and EDA tools, such as Perspec, can be used to speed-up the design verification of a 

multi-core SoC in two specific areas: memory coherency and deadlock detection. The main technical contributions 
are: 

• Application of PSS to typical SoC-level verification tasks 
• Horizontal (project-to-project) reuse methodology with PSS 
• Deadlock detection verification environment 
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