
Co-Simulating Matlab/Simulink Models in a

UVM Environment

Neal Okumura Glenn Richards
Paul Yue Mentor Graphics Corporation

Raytheon Company 8005 SW Boeckman Rd

2000 E El Segundo Blvd Wilsonville, OR 97070

El Segundo, CA 90245
Copyright © 2015 Raytheon Company. All rights reserved.

I. INTRODUCTION

Linux based multi-core computing farms enable the execution of multiple test scenarios, and facilitate the

reduction in simulation time. However, the process to verify a design with a behavioral model is still a serial

process, and requires a separate comparison step between the two simulation results. The verification process

requires the generation of test patterns and the expected results with bit accurate behavioral models like C/C++ and

Matlab, then running the Register Transfer Level (RTL) simulation, and finally comparing the RTL results to the

behavioral model.

Figure 1. Verification process with behavioral and RTL simulations.

This becomes problematic when long run-time simulations are needed to fully test the functionality of the design

or when the design size starts to grow large. The amount of data results to be compared can be massive and prone to

human error. The verification process is segmented and serial, which may add unnecessary delays and inaccuracies.

To address the problem of RTL verification completeness and accuracy, the Universal Verification Methodology

(UVM) RTL simulation environment can be coupled with the behavioral simulation environment. In this paper

Mentor Graphics Questa and Matlab/Simulink are used as the simulation tools. By coupling the simulators the

overall simulation time may be reduced, and the accuracy and time spent comparing the behavioral model to the

RTL will be improved. UVM techniques can also then be used to reduce the number of test scenarios, the

simulation effectiveness may be improved and provide a more thorough excitation of our designs, and the simulation

will provide an automated method of collecting Verification Metrics.

Figure 2. Improved verification process with behavioral and RTL simulations running together in one simulation.

Behavioral Sim RTL Simulation Test Compare Done

Done

Behavioral Sim

RTL Simulation

Test Compare

II. FINDINGS

A. Co-Simulation

Matlab and Simulink models are run in the Matlab software independent from the design and the UVM

environment. Tools that run the UVM environment cannot directly run the Matlab software. With the use of the

Matlab engine and SystemVerilog DPI, the UVM environment can make a subroutine process call to bring up an

embedded Matlab environment within UVM.

B. Matlab Engine

Matlab has a library of C functions called the Matlab engine library that are used to start and end processes, send

data to and from, and send commands to be processed in Matlab. The functions in this API include opening and

closing the Matlab engine, putting and getting variables, and sending strings to the Matlab console. These functions

are contained in a file from Matlab called engine.h. The engine.h file should be included in the source file that calls

out the Matlab engine functions [1]. An example of a Matlab engine function call in source code is shown below.

The example shown is included with Matlab in its install at: ~/extern/examples/eng_mat/engdemo.c.

#include “engine.h”

main () {

Engine *ep;

ep = engOpen(‘’)

}
Figure 3. Creating Matlab Engine functions in C source code.

The designer will create a C source file that contains the desired Matlab functions. These functions will then be

imported into UVM.

C. SystemVerilog DPI

SystemVerilog has a built in capability to interface to external languages by using an import function through the

Direct Programming Interface (DPI). A function can be written in another language like C, and then imported into

the SystemVerilog source through DPI. Once the function is imported, the SystemVerilog source can make a

function call to it as normal. An example of a SystemVerilog source importing C function through DPI is seen

below, in Fig 4:

import “DPI-C” function void engOpen();

Figure 4. Importing the Matlab Engine function to SystemVerilog through DPI, SystemVerilog code.

At compile time, the imported DPI functions must be compiled into a DPI header file. In Questasim this is done

by adding the –dpiheader flag to the file being compiled. All files for the supporting functions should be contained

within a SystemVerilog package. At compile time, the –dpiheader flag is added to the compile command [2]:

vlog example_engine_pkg.sv –dpiheader <filename> -sv

Figure 5. Example command in Questasim to create the DPI header file. Example package file containing all supporting function files is

example_engine_pkg.sv

An engine class can then be declared to create an engine object that contains all supporting functions imported

through DPI. This engine class file should be included in the package in Fig 5. An example of declaring an engine

class is shown below:

class engine_example;

 function void engOpen ();

endclass : engine_example

Figure 6. Creating a Matlab engine class within SystemVerilog code

The Matlab engine object can now be created in the module that will use the engine. The SystemVerilog source

that will use the Matlab Engine needs to import the engine package file that was compiled with the DPI header.

Usually the top level module of the environment should contain the Matlab commands and import the engine

package that was compiled:

import example_engine_pkg::*;

Figure 7. Importing the compiled Matlab Engine into a SystemVerilog module, SystemVerilog code.

With the imported Matlab Engine package declared, the Matlab engine functions can now be called within the

module. The module should open a Matlab engine, run the necessary Matlab functions, and then close the engine

when complete.

engine_example eng;

initial begin

 eng = new();

 eng.engOpen();

end

Figure 8. Calling Matlab engine functions within SystemVerilog code.

D. Simulink Model

Simulink is an application integrated in Matlab. Once a Matlab engine has been opened in UVM, a Simulink

model can be loaded. The Matlab engine cannot directly command Simulink, but by using commands in the Matlab

console a Simulink model can be loaded and started [3].

The function engEvalString() is a function included in the Matlab engine library that sends a command directly to

the Matlab console. When this command is imported using DPI, Matlab console commands can be made from

UVM. Using the Matlab console command to open a Simulink model, open_system(‘<Simulink model>’), in the

engEvalString() function can be used to open the model:

engEvalString(“open_system(‘<Simulink model>’);”);

Figure 9. Using the Matlab Engine string function, engEvalString(), to make a call to the Matlab console, SystemVerilog code.

This will open the Simulink model. To start the Simulink simulation, again use the engEvalString() function to

send a command to the Matlab console to start the Simulink model.

Through the imported Matlab Engine string function, we can now make direct commands to the Matlab console

from UVM and control our Simulink models.

Figure 10. Relation between SystemVerilog and Matlab.

Due to the fact that the Matlab engine does not directly interface with Simulink models data cannot be directly

transferred between the model and the UVM environment. To do this the Simulink model needs some modification.

In the Simulink model, monitors need to be added to the points that will be compared to the DUT. This will allow

bringing arrays of data to the Matlab workspace. Once the data is in the Matlab workspace this can now be

transferred to the UVM environment. The Matlab engine function engGetVariable() gets a variable from the Matlab

workspace. When this command is imported using DPI, the UVM environment can get the Simulink monitor data

from the Matlab workspace.

Likewise by using this same method the UVM environment can send data to the Simulink model. When UVM

generates the stimulus for the simulation constrained random variables can be used. The UVM environment

generates transaction packets with constrained random variables for stimulus. These same packets can be sent to the

Matlab engine, and then into the Simulink model. This will also provide further testing on the Simulink model that

Matlab alone could not do.

Component
1

Monitor

Component
2

Simulink

Matlab

Figure 11. Inserting monitors into the Simulink model.

E. UVM Environment

The Matlab engine object and commands are contained in the top level testbench module. The Matlab engine is

opened, closed, and commanded from the top module. From there the data is ported to the UVM environment for

comparison and scoreboarding.

F. Coverage Based Verification

This setup allows a single iteration of the Simulink model. The UVM environment starts the Matlab engine as a

subprocess and the Simulink simulation runs and transfers data to the Matlab workspace where it is transferred to

the UVM environment as a variable. From there the UVM verification can run and compare against the Matlab

results. Likewise, the UVM environment can run for a set amount of time, and then transfer the stimulus to the

Simulink model to run. This allows for a test case that runs for a set amount of time, and can be directed or random.

Coverage goals can be applied for coverage-based verification. With coverage goals applied, the test cases can be

ranked and applied to the verification plan as necessary.

G. Closing Goals on Coverage Based Verification

To run a test case until all coverage goals have been met the UVM environment runs indefinitely. When a Matlab

engine is embedded in the environment the model also needs to be able to run indefinitely so that it can continue to

run until the coverage goals have been met. Additional modification to the Simulink model is required to make this

happen. A timing correlation needs to be made between the Simulink model and the DUT in the UVM environment.

A timing counter in the Simulink model needs to match a time window in UVM. This time window will have a

given amount of data to exchange between the 2 environments and should be designed accordingly. When the

timing counter in Simulink reaches a given time it should trigger an assertion to pause the Simulink model. Using

the Matlab console command upon an assertion will pause the Simulink simulation.

Once the Simulink simulation is paused, the data needs to be ported from the Simulink monitors to the Matalab

workspace. This can be done in the Matlab console via a DPI function with a pause. The data can then be

transferred to the UVM environment and compared against the DUT after running for the same time period as the

Simulink model. Once this is done the Simulink model can then be resumed with a console command to continue

the Simulink simulation.

This iteration can be run over and over indefinitely which allows the UVM environment to run until the coverage

goals have been completed.

H. Assertion Based Verification

By embedding the Matlab/Simulink model in the UVM environment, the model data can be directly compared to

the DUT data and used as a golden model. Assertions can also be created within the UVM environment to further

verify the proper functionality of the design.

I. Benefits

There are many benefits to creating a co-simulation with Matlab and UVM. The co-simulation does a direct data

comparison between the Matlab model and the design. This saves time from analyzing data from both environments

and doing a manual comparison and assessment.

In algorithmic designs, sometimes stimulus can be created more easily in Matlab than in UVM. By co-simulating

them together, the same Matlab stimulus can be used for the DUT in UVM. This saves time creating stimulus for

UVM.

The stimulus created for Matlab is a known pattern. With constrained random variables UVM has the capability

of creating random stimulus with coverage goals. This creates a testcase of random and repeatable stimulus.

III. CONCLUSION

By importing the Matlab Engine into UVM using DPI, an embedded Matlab environment can be created within

UVM. This allows a co-simulation of a Matlab/Simulink model and the DUT within UVM. This co-simulation

gives the user many benefits and adds capabilities that are not available with the two environments by themselves.

Co-simulation also saves on the overall design and verification time, and improves the accuracy of comparing the

behavioral model to the RTL code.

REFERENCES

[1] The MathWorks, Inc., engdemo.c. (Version 1.8.4.4) [Computer program]. Available in Matlab software at
matlabroot\extern\examples\eng_mat (Accessed Matlab version 2012a)

[2] Mentor Graphics. Questasim. (Version 10.1b) [Computer software]. N.p., 26 Apr. 2012.
[3] The MathWorks, Inc., Matlab. (Version 2012a) [Computer software]. N.p., 9 Feb. 2012.

