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Abstract—When verifying complex hardware designs, verification engineers are often faced with the problem of 

analyzing failures in large test suites. We describe how machine learning techniques can be applied to automate the 

clustering and classification of test failures according to root cause. Log files from simulations of UVM test benches 

were used as input and pre-processed to produce features suitable for machine learning algorithms. The performance 

of three clustering and eight classification algorithms was evaluated. In addition, the impact of dimensionality reduction 

on performance and computation time was investigated. Finally, the use of visualization algorithms for clustering was 

also examined. The results indicate that the most suitable clustering algorithm was DBSCAN, with AMI and ARI scores 

of 0.593 and 0.545 respectively. The best performing classification algorithm was random forest, with an accuracy of 

0.907 and an F1-score of 0.913. 
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I.  INTRODUCTION 

When applying coverage-driven constrained random verification, test suites often consist of a large number of 

test invocations. The same base test is run many times, with different adjustments to random ranges and 

distributions, and with different random seeds. It is not uncommon that a test suite for a complex IP consists of 

several thousand test invocations. Thus, a single bug in the design or verification environment frequently results in 

many test failures. Whenever several tests fail in a run verification engineers typically start by attempting to answer 

questions such as: 

• Do the test failures all have the same root cause or are there multiple issues that need debugging? If 

there are multiple root causes, which test failures have a common root cause? 

• For each root cause, what is the type of the problem? For example, a design bug, a bug in a verification 

component, or a misconfiguration of the DUT caused by a missing constraint, etc. 

Answering these questions helps to judge the urgency of the issues and plan the debugging effort. Today, our 

verification engineers manually inspect the test failures and draw conclusions based on experience and knowledge 

of the verification environment. This can be time consuming and tedious work. Automating this process can save 

time and allow verification engineers to quickly focus debugging efforts. 

Automation of test failure analysis can be achieved using different approaches. Rule-based approaches involve 

creating a set of rules that correlate symptoms with root causes. Model-based approaches rely on constructing an 

approximate model of the system being diagnosed. While these approaches can be effective, they require extensive 

application-specific knowledge that is often hard to obtain and maintain. An alternative approach is to use machine 

learning [1]. This approach does not require in-depth knowledge of the system. Instead, machine learning relies on 

large amounts of data to automatically model relationships between test failure and root cause. 

The goal of the work described in this paper is to investigate how machine learning techniques can be applied 

to automate the task of clustering and classifying test failures. A prototype tool has been developed that applies 

different machine learning algorithms to tackle these problems, and the produced results have been evaluated. To 

limit the scope, it was decided to focus on UVM [2] test benches and to use log files from simulations as input data. 

In principle, the same techniques can be applied to other types of test benches and to other types of data, such as 

waveforms. 
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II. RELATED WORK 

Machine learning has been applied to different classification and clustering problems in related areas. 

Chen et al. investigated how decision trees can be applied to diagnosis of failures in large Internet sites [3]. 

Their results indicated that the decision tree algorithm was successful to their specific task of failure diagnosis.  

Lal and Pahwa investigated the classification of root causes of software failures using different machine learning 

algorithms  [4]. Due to limited access to labeled data, their choice of classification algorithms was restricted to 

those capable of working with unlabeled data. 

In two studies, Chakrabarty et al. investigated the effectiveness of decision trees [5] and support vector machines 

[6] for board-level functional fault diagnosis. The results indicated that both algorithms can be effective for failure 

diagnosis. 

The application of clustering methods for root cause analysis of software failures was investigated by Podgurski 

et al. [7]. They concluded that clustering is best used in conjunction with a visualization algorithm since the pure 

clustering results can be unreliable. 

While results from previous investigations were generally positive an extensive comparison of different 

classification and clustering algorithms, with a larger labeled dataset, is lacking. Furthermore, previous work also 

relied on pure qualitative analysis, particularly for clustering. Addressing these gaps, could provide us with better 

results and insights. Finally, the format of the input data and the way it is pre-processed can have a significant 

impact on the performance of the machine learning algorithm [8]. To the best of our knowledge, the application of 

machine learning techniques to clustering and classification of test failures in hardware verification has not been 

investigated.   

III. CLUSTERING 

The first problem to solve is the division of test failures into groups, or clusters, with a common root cause. 

Algorithms for performing clustering can be either prototype-based, density-based or graph-based. Prototype-based 

algorithms form clusters around prototypes which can be centroids (centers of clusters) or a probability distribution 

function. Density-based algorithms represent a cluster as a dense region of samples that are surrounded by regions 

with lower density. This is useful when the clusters are uneven in size or when there is noise in the data. Graph-

based algorithms represent the data as a graph and the clusters as connected subgraphs [6].  

An alternative way of performing cluster analysis is to apply algorithms that visualizes similarities between 

samples in two or three dimensions. This can be useful if the results of ordinary clustering algorithms are 

unsatisfactory. Finding the right parameters, such as the number of clusters, is difficult. This often leads to less 

convincing clusters, and since the obtained results only specify which cluster a sample belongs to it can be difficult 

to draw conclusions about the quality of the results. Therefore, a visualization algorithm can be used in conjunction 

with a clustering algorithm to provide a better understanding of how samples relate to each other [6]. 

A. Algorithms 

The following clustering algorithms were evaluated: k-mean clustering [10], density-based spatial clustering of 

applications with noise (DBSCAN) [11], and agglomerative clustering [12]. In addition, visualization of the level 

of similarity between test failures was investigated, based on t-distributed stochastic neighbor embedding (t-SNE) 

[13] and multidimensional scaling (MDS) [14]. 

IV. CLASSIFICATION 

The second problem to solve is the classification of test failure root causes. This is typically a supervised 

learning problem. For training, a dataset where each simulation log file has a corresponding root cause is used. The 

machine learning algorithms then creates a model that can predict the output for new inputs. In this case an input is 

a log file from simulation and the corresponding output is a failure root cause. 
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A. Failure Causes 

For the work described in this paper a taxonomy of test failure root causes was defined, shown in Figure 1. This 

taxonomy does not claim to be complete or universally applicable, but rather focuses on the types of failures our 

verification team found most relevant. Some of the root causes are general, while others are closely related to how 

our reference models are implemented. 

 

Figure 1. Taxonomy of test failure root causes 

B. Algorithms 

Since there are multiple possible output values a multiclass classifier is required. Some classification algorithms 

are directly capable of handling multiclass classification. Others are basically binary classifiers but can be 

generalized to handle problems with multiple classes by using the one-vs-all scheme. This scheme is based on 

training multiple classifiers of the same type, one for each class, that can determine if a sample belongs to the class 

or not. The result is then the class that yields the best score [15]. 

The following classification algorithms were evaluated: logistic regression [16], support vector machines [17] 

with linear, polynomial and radial kernel functions, naïve Bayes [18], decision tree [19], and the k-nearest neighbors 

algorithm [20], as well as random forests which combines a large number of decision trees [21]. These algorithms 

were selected because they utilize different strategies that may perform differently on different types of data. 

V. FEATURE EXTRACTION AND SELECTION 

The simulation log files used as input consist of semi-structured text. For machine learning algorithms to be 

able to operate on this kind of data it is necessary to first transform the log file content into numerical feature 

vectors. What information to use from each type of log message was decided based on domain knowledge. 

Examples of information gathered from the log files include: 

• UVM test name and UVM configuration settings from the command line. In the test benches used for 

this evaluation, command line arguments are often used to control ranges for random variables, such 

as image sizes. 

• UVM report messages. From these, both general information, e.g. the severity, as well as more specific 

information, e.g. the category of UVC, is extracted. 

• Simulator warning and error messages. This includes errors such as coverage illegal hits and constraint 

solver failures. 

Some of the extracted information is abstracted further. For instance, the simulation time of a message is 

transformed into a binary value indicating if the event occurred at time zero or later. For most of the information 

the frequency of occurrence was used as a feature. Counting the frequency of words or phrases is often used in 

document classification in natural language processing [22].  
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Our initial feature set consisted of 616 different features. By trimming the amount of information extracted from 

low severity report messages the number of features was then reduced to 287. 

The dimensionality of the feature set a machine learning algorithm is supposed to find solutions in can become 

very large. One problem with high dimensionality is that the computation time increases. Another problem is that 

the more dimensions the feature set has, the less likely two samples are to be close to each other. The dimensionality 

of the feature space can be reduced by performing feature selection or feature extraction. Feature selection methods 

reduce the dimensionality by removing irrelevant features, whereas feature extraction methods merge existing 

features [22]. In the evaluation the impact of two feature selection algorithms and one feature extraction algorithm 

was investigated. 

VI. ALGORITHM EVALUATION 

The evaluation of the different algorithms was performed using a dataset consisting of log files from 12500 test 

invocations labeled with their failure root cause. The dataset originated from twenty-nine UVM test benches for 

different IPs, most of them related to image processing. To create failing test invocations with known root causes, 

previously encountered typical bugs were manually injected one at a time. 

The implementations of algorithms used for the evaluation originated from scikit-learn [23]. Pre-processing of 

log files was implemented using Python regular expressions. 

A. Classification 

Before the evaluation process, the dataset was divided into a training set containing 10000 samples and a test 

set containing 2500 samples. The test set was not used until the final evaluation. This reveals how well the model 

performs on data it has not seen before. 

The different classification algorithms were first compared using k-fold cross validation [24]. Metrics including 

accuracy, precision, recall, and F1-score were used to measure the performance of the classifiers [25]. These metrics 

were originally defined to handle binary classifications where the predicted result for a sample can be interpreted 

as either positive or negative. However, they can also be generalized to problems with more than two classes. The 

most basic metric is accuracy, which is the percentage of correct predictions. Precision is a measurement of how 

good the classifier is at not wrongly classifying a negative sample as positive. Recall is the complementary metric 

of precision. It measures how good the classifier is at finding all the sought-after results. The F1-score, which is the 

harmonic mean of precision and recall, is often used as a convenient way to compare classifiers [26].  

The purpose of the initial comparison was to get an overview of how well the different algorithms performed 

for the presented problem. Along with the classification algorithms, three different dimensionality reduction 

algorithms were evaluated to determine their impact on classification performance and computation time. The 

algorithms provide hyperparameters for tuning their behavior. For the initial comparison default hyperparameters 

as provided by scikit-learn were used. 

The results of the initial algorithm comparison are presented in Table 1. For each algorithm, the accuracy, 

precision, recall, F1-score, training time and prediction time were calculated using 5-fold cross-validation. Each 

algorithm was first evaluated using the baseline feature set, and then once using each of the dimensionality reduction 

methods. The classification algorithms that yielded the highest F1-score in the initial evaluation were random forest, 

decision tree and k-nearest neighbors. Dimensionality reduction had a negative impact on the classification metrics 

of most algorithms. However, dimensionality reduction reduced training and prediction times for all algorithms 

except the random forest and decision tree algorithms. 

Based on the results, the three algorithms that appeared to be best suited were selected and optimized by tuning 

hyperparameters. Random forest, decision tree and k-nearest neighbors were chosen since there was a significant 

difference between these top three and the remaining algorithms. The k-nearest neighbors classifier yielded slightly 

lower scores when dimensionality reduction using principal component analysis (PCA) was applied, but the 

computation time was significantly shorter. Therefore, it was decided to use k-nearest neighbors with PCA for the 

optimization. 
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Table 1: Results of initial evaluation of classification algorithms 

Classifier Accuracy Precision Recall F1-score Train (s) Predict (s) 

Baseline feature set 

Random forest 0.899 0.907 0.904 0.905 0.277 0.132 

SVC poly 0.556 0.864 0.560 0.609 52.655 56.315 

SVC rbf 0.806 0.845 0.800 0.813 17.311 36.422 

LinearSVC 0.851 0.856 0.852 0.852 72.463 0.184 

Decision tree 0.892 0.901 0.899 0.899 0.342 0.067 

Logistic regression 0.841 0.851 0.840 0.842 62.498 0.191 

K-neighbors 0.883 0.890 0.887 0.888 0.522 56.618 

Naïve Bayes 0.643 0.763 0.652 0.607 0.180 0.933 

Dimensionality reduction using PCA 

Random forest 0.891 0.899 0.896 0.897 0.513 0.100 

SVC poly 0.760 0.851 0.756 0.779 9.809 15.468 

SVC rbf 0.808 0.844 0.803 0.814 5.971 12.239 

LinearSVC 0.779 0.801 0.768 0.778 37.075 0.189 

Decision tree 0.885 0.893 0.891 0.892 0.806 0.058 

Logistic regression 0.794 0.817 0.785 0.793 31.105 0.127 

K-neighbors 0.882 0.890 0.885 0.887 0.111 1.683 

Naïve Bayes 0.518 0.725 0.510 0.514 0.082 0.338 

Dimensionality reduction using SFM SVC 

Random forest 0.893 0.901 0.899 0.900 0.133 0.096 

SVC poly 0.650 0.810 0.643 0.675 7.732 12.853 

SVC rbf 0.747 0.791 0.752 0.757 4.520 10.773 

LinearSVC 0.786 0.790 0.791 0.786 26.048 0.156 

Decision tree 0.887 0.897 0.895 0.896 0.121 0.057 

Logistic regression 0.752 0.775 0.757 0.757 21.339 0.195 

K-neighbors 0.877 0.882 0.883 0.882 0.270 16.335 

Naïve Bayes 0.536 0.608 0.579 0.509 0.059 0.234 

Dimensionality reduction using SFM RF 

Random forest 0.896 0.904 0.902 0.902 0.126 0.101 

SVC poly 0.704 0.820 0.688 0.719 3.813 6.410 

SVC rbf 0.781 0.820 0.776 0.788 2.912 6.284 

LinearSVC 0.786 0.798 0.784 0.786 19.937 0.136 

Decision tree 0.891 0.899 0.897 0.898 0.099 0.058 

Logistic regression 0.772 0.786 0.766 0.769 15.400 0.181 

K-neighbors 0.878 0.884 0.883 0.883 0.112 4.668 

Naïve Bayes 0.575 0.677 0.610 0.534 0.044 0.192 

 

The decision tree and k-nearest neighbors algorithms have small hyperparameter spaces and an exhaustive 

search of all hyperparameter combinations was feasible. For the random forest algorithm, which had a larger 

hyperparameter space, a random search was used. The results after optimization of the classification algorithms are 

presented in Table 2. Optimizing the algorithms slightly increased their scores for the classification metrics. 

Optimization increased the computation time for the random forest and the decision tree classifier whereas it 

decreased for the k-neighbors classifier. The random forest classifier responded best to optimization with regard to 

the classification metrics. 

Table 2: Results and relative change after optimization of classification algorithms 

Classifier Accuracy Precision Recall F1-score Train (s) Predict (s) 

Random forest 0.907 

+0.9% 

0.915 

+0.9% 

0.913 

+1.0% 

0.913 

+0.9% 

8.410 

+2936.1% 

2.074 

+1471.2% 

Decision tree 0.896 

+0.4% 

0.904 

+0.3% 

0.902 

+0.3% 

0.902 

+0.3% 

0.385 

+12.6% 

0.113 

+68.7% 

K-neighbors 0.885 
+0.3% 

0.891 
+0.1% 

0.891 
+0.7% 

0.891 
+0.5% 

0.101 
-9.0% 

0.994 
-41.0% 

 

The final evaluation was performed by training the algorithms on the entire training set and then predicting 

failure root causes for the test set. Table 3 shows the results for the test set. These indicate that the random forest 

algorithm is best suited for the problem at hand. Compared to the results obtained by using cross validation the 
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results of the final evaluation were only marginally changed, which indicates that all three classifiers generalize 

well to new data. 

Table 3: Results of final evaluation of classification algorithms 

Classifier Accuracy Precision Recall F1-score Train (s) Predict (s) 

Random forest 0.907 0.916 0.912 0.913 5.344 0.182 

Decision tree 0.895 0.902 0.900 0.900 0.111 0.002 

K-neighbors 0.880 0.888 0.886 0.886 0.059 0.113 

 

Analysis of the confusion matrix for the random forest classifier shows that the root causes that were most often 

confused were different types of reference model bugs and RTL bugs. This is expected since an algorithmic bug in 

a reference model in some cases is indistinguishable from an RTL bug, without referring to some other specification 

source. Since there were other types of reference model bugs included in the dataset, the overall performance was 

still quite good.  

Figure 2 shows how the performance of the random forest algorithm depends on the number of samples used 

for training. When the dataset reached 3000 samples the performance gain from adding more data diminished. The 

F1-score fluctuates when the number of samples is between 3000 and 6000 but stabilizes after that. 

 

Figure 2. Significance of data 

B. Clustering 

The evaluation of clustering algorithms is not as straightforward as for classification algorithms. Metrics that 

compare the quality of the clusters, rather than the labeling of samples, are required. One method of measuring the 

performance of clustering is to use the adjusted Rand index (ARI) which measures the similarity between two data 

clusters while ignoring permutations  [27].  Another way of measuring the similarity between two data clusters is 

to use the information theoretic concept of adjusted mutual information (AMI) [28]. 

Since there is no training and predicting involved in clustering there is no risk of overfitting on the data. This 

means that a separate test set and cross-validation is not required. 

After optimization of hyperparameters, the clustering computed by all algorithms were compared to the correct 

clustering, the ground truth, using the AMI and ARI metrics. Note that since the goal of clustering is to cluster tests 

that failed due to the same root cause, as opposed to the classification goal of determining the type of the root cause, 

the labels used for classification are not sufficient to define the correct clustering. Since the dataset was generated 

by injecting one bug at a time, a cluster was considered correct when it contained all failing tests created together.  
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Each of the clustering algorithms was evaluated with and without dimensionality reduction (PCA). The results 

are presented in Table 4. All algorithms performed better when dimensionality reduction was applied. DBSCAN 

in conjunction with PCA yielded the highest AMI and ARI scores. 

Table 4: Results for clustering algorithms 

Algorithm AMI ARI Computation time (s) 

Baseline feature set 

K-means 0.505 0.480 0.079 

DBSCAN 0.568 0.530 0.086 

Agglomerative Clustering 0.540 0.515 0.036 

Dimensionality reduction using PCA 

K-means 0.543 0.513 0.041 

DBSCAN 0.593 0.545 0.007 

Agglomerative Clustering 0.543 0.519 0.006 

 

VII. TOOL IMPLEMENTATION 

The most suitable clustering algorithm, DBSCAN, and the most suitable classification algorithm, random forest, 

were used to implement a tool for automatic clustering and classification of UVM test failures. The implementation 

is based on Python and scikit-learn. Pre-processing of the log files is implemented using Python regular expressions. 

A. Visualization of Clustering 

Clustering of test failures is combined with the visualization algorithms MDS and t-SNE. Figure 3 shows an 

example where the clustering computed by the DBSCAN algorithm is compared to the ground truth. In this example 

there is one set of passing tests as well as two sets of tests that fail due to two separate UVC bugs. The clustering 

produced by DBSCAN is almost perfect and yielded an AMI score of 0.940 and an ARI score of 0.980. As can be 

observed DBSCAN identifies a fourth cluster, the single dots, appear to differ from the clusters they belong to. This 

observation would not have been possible without the visualization algorithms, indicating their usefulness. 

 

Figure 3. Visualization of clustering of test failures 
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The example in Figure 3 does, however, show an unusually good clustering. The average AMI and ARI scores 

obtained by the evaluation were 0.593 and 0.545 respectively. 

B. Classification Prediction Confidence 

The random forest classifier calculates its confidence about each prediction. Figure 4 shows the relationship 

between confidence and misclassification rate. The misclassification rates were obtained by using the random forest 

algorithm trained on the training set to predict outputs for the test set. The rates for each confidence level were then 

calculated by dividing the number of misclassifications made at that confidence level by the total number of 

classifications at that level. The results suggest that the confidence can be used to indicate how well a prediction 

can be trusted. Thus, the tool uses the confidence level to order the predications. 

 

Figure 4. Dependency between predication confidence and misclassification rate 

VIII. FUTURE WORK 

The results from the final evaluation show that the investigated classifiers generalize well to new data. The used 

dataset originated from twenty-nine different UVM test benches. However, all these test benches follow the same 

general structure and style, derived from Axis’ UVM and coding guidelines. How well models trained on data from 

such test benches would generalize to other UVM test benches remains to be investigated. Note that while re-

training may be required to improve performance on UVM test benches from some other code base, the pre-

processing of the log files is, to a large extent, applicable to any UVM test bench. This is because the pre-processing 

mostly relies on the structure of UVM report messages. 

This investigation used log files from simulation as the input data to clustering and classification. To what extent 

the verbosity of the UVM test benches affects the results remains to be investigated. Another potential extension 

would be to investigate the use of other data produced by the simulation, e.g. waveforms or transaction recordings. 

While the results of classification were quite good the clustering algorithms did not perform as well as desired. 

It is possible that the clustering is more sensitive to which features are extracted from the data and that the results 

can be improved by more careful feature engineering. Also, while basic optimization of the hyperparameters of the 

algorithms has been performed it is possible that the results can be improved by further tuning. 

IX. CONCLUSIONS 

Coverage driven constrained random verification typically implies test suites consisting of many invocations of 

the same or similar test cases. A small number of bugs in the design or verification environment often results in 

many test failures that need to be clustered and classified. The performance of applying machine learning to these 

problems has been evaluated. 
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The result of the evaluation show that machine learning can be effectively applied to classify the root cause of 

test failures in UVM test benches. The best performing classification algorithm evaluated was random forest with 

an accuracy of 0.907 and an F1-score of 0.913. 

Applying machine learning to the problem of clustering test failures was less effective. The best performing 

clustering algorithm evaluated was DBSCAN with the dimensionality reduction method PCA, which yielded an 

AMI score of 0.593 and an ARI score of 0.545. These results suggest that clustering algorithms, while better than 

a random process, may not be accurate enough to be completely relied upon. However, when used in combination 

with visualization the clustering algorithms can provide a good overview of which test failures are caused by a 

common root cause. 

Machine learning classification algorithms and visualized machine learning clustering algorithms therefore 

show promise as tools for verification engineers to reduce the time invested in analyzing failures in large test suites. 
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