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Abstract- Most hardware design teams have a verification methodology that requires a deep understanding of the 

RTL to reach their verification goals, but this type of methodology is difficult to apply to the machine generated RTL 

from High-level Synthesis (HLS).   This paper describes innovative techniques to use with existing methodologies, for 

example the Universal Verification Methodology (UVM), to close functional and structural coverage on HLS generated 

code. 

Assuming tests that give 100% functional and structural coverage on synthesizable C++ or SystemC, most verification 

engineers expect the same tests to give similar coverage on RTL generated by HLS. These tests give 100% functional 

coverage on the generated RTL, but only give about 80% structural coverage.   As HLS runs, it adds states to the FSM, 

stall states, pipeline ramp-up and ramp-down states, uses one-hot encoded logic and may structure logic in a way that 

artificially lowers reported coverage. All of these gaps need to be addressed to get near to 100% coverage on the 

generated RTL. 

A set of C++ coding styles and verification technique is proposed for each of these coverage gaps, with a focus on tools 

and techniques that do not require a deep understanding of the generated RTL.  The source code also needs to be 

designed with well synchronized blocks to simplify stall testing and labels to help analyze FSM coverage.  

A Discrete Cosine Transform (DCT) used in the decoder for the High Efficiency Video Codec (HEVC) is used to 

illustrate the techniques.  The DCT is developed in C++ and synthesized into Verilog using Catapult.  The C++ source has 

tests that cover the behavior and give 100% coverage on line, branch and condition coverage as measured by gcov.  Initial 

structural coverage is measured on generated Verilog code using Questa.  Questa CoverCheck is used to exclude 

unreachable conditions and then each technique is applied to show how coverage improves.  The final result is near 100% 

line, branch and Focused Expression Check (FEC) coverage and analysis that shows the remaining coverage bins are 

unreachable. 

 

ACKNOWLEDGEMENTS 

The author wishes to acknowledge Bala Sethuraman for his work to structure RTL to simplify the verification 

flow, Vishal Sinhga for providing an interesting design and Jim Li for the long hours researching how to manually 

close coverage on machine generated RTL.   

I.   INTRODUCTION 

The most common goal for using High Level Synthesis (HLS) is to reduce the effort needed to verify 

hardware[1].  The verification effort is reduced by shifting design and verification from a primarily parallel register 

transfer model, written in VHDL or Verilog, to a more abstract procedural model.  This model is called a High-

Level Model (HLM) and is written using Transaction Level SystemC or a C++.  The new model contains less detail 

and often simulates hundreds of times faster than an equivalent model written in synthesizable VHDL or Verilog. 

UVM verification techniques, such as coverage points and constrained random simulation, are then applied to the 

HLM.  The faster simulation requires fewer computational resources during testcase development, and a set of test 

vectors that cover the HLM are recorded so they can be applied to the RTL generated by HLS.  An excellent 

overview of the HLS tools and process is described in [2].  In addition, HLS tools generate a SystemC wrapper and 

verification agents around the generated RTL that provides the same interface as the original source code, which 

allows the original test stimulus to be run on the RTL. 

The same simulation vectors are then applied to the generated RTL and the functional coverage should be the 

same 100%, but the structural coverage, defined by FSM, line, branch and Focused Expression Check (FEC)  

coverage[3], is often disappointing low, often 60-80%.  The design and verification teams are faced with the 

challenge of understanding why the same simulation vectors would generate such different coverage numbers and 

what to do to fix the problem. 



The design techniques in this paper focus on blocking interfaces, which are interfaces that cause the associated 

process to stall and wait for data to be read or written.  Blocking interfaces can be tested in a test environment where 

each process is randomly stalled.  Non-blocking interfaces allow the associated process to continue even if data 

cannot be read or written, which means those processes can produce different results depending on when data can be 

read and written.  Non-blocking interfaces therefore require a systematic approach to stall to avoid simulation 

differences between the mostly untimed C++ code and the generated RTL.  Detailed description of various 

communication implementations and their implication for testing can be found in [4]. 

This paper gives an overview of several classes of coverage gaps with specific examples of each and techniques to 

close these gaps: 

 Key differences in how C++ based coverage tools and RTL based coverage tools report coverage  

 Coverage gaps that are only exposed after HLS has optimized the design   

 Redundancies added by HLS that result in unreachable conditions in the RTL 

 

II.   DEFINING COVERAGE IN THE HLS CONTEXT 

Functional coverage is a set of criteria defined by the development team for a design.  These criteria may be 

dependent on the structure of the design.  For example, the criteria might include testing that all of the elements in a 

shift register are assigned a non-zero value.   These functional elements in a design should not be changed by HLS 

optimizations or transformations. 

Structural coverage is related to how the code is written.  Depending on the architecture, the code could be written 

with different control statements, function calls, loops and other structures.  More importantly, HLS optimizations 

and transformations will sometimes change the structure of the design.  So, to compare coverage between the HLM 

and RTL, this paper uses response to stimuli to compare coverage between the two models. 

The C++ language has several constructs with undefined behavior, such as uninitialized variables, out-of-bounds 

array accesses and shifting by a negative number, so the first step in coverage testing is to confirm the C++ and RTL 

models give the same response to the functional coverage stimuli.  HLS adds new coverage points related to stall, 

new states and new transitions.  To cover the new code generated by HLS, new tests are needed for every FSM state 

in the RTL to test that the design will both reset and stall properly from that state. 

This paper will discuss how to add the new stall and reset tests in section V and how to apply stimuli consistently 

between the models in section III. 

However, when running RTL coverage with this approach, this paper will show that the reported coverage from 

the RTL tools can be much lower than the reported coverage from the C++ tools.  The causes of this difference are 

then shown to be due to: 

1. Differences in the structural reporting between the tools 

2. Transformations during HLS that would cause either the C++ or RTL coverage tools to report missing 

coverage 

3. Unreachable combinations of conditions 

This paper walks through common sources of these differences between C++ and RTL coverage and approaches 

to solve them.  Further research is needed to determine how well achieving coverage on the C++ code catches bugs 

and which coverage differences can be safely ignored.  Due to the lack of this information the proposed 

methodology in this paper assumes resolving any coverage difference has the potential to catch a new bug.  

 

 
Figure 1.  Verification flow for testing RTL generated by HLS 



 

III.   TESTING METHODOLOGY 

A. Flow Overview 

The general flow used to complete functional and structural coverage in RTL is show in Figure 1.  This breaks the 

process into three stages.  The first stage is to run directed and constrained random tests until the C coverage tool 

reports 100% function, line, branch and condition/decision coverage.  After the HLM has been synthesized, Step 2 is 

to run functional verification and then, once functional verification is done, to add reset and stall tests.  This process 

is simplified because HLS will generate adaptors to allow the generated RTL to either run in parallel with or replace 

the original HLM in the verification environment, depending on how the original test environment was configured. 

Finally, once functional, reset and stall tests have been developed, the entire test suite is run on the generated RTL 

to measure structural coverage. 

B. Assumptions, Limitations and Designs Used 

This paper does not discuss how the original functional and structural tests are developed.  This could be using a 

UVM-like methodology with constrained random, a graph based methodology [5] or any other technique.  As long 

as the test environment has the correct stimulus the details of this step do not matter for the rest of the methodology 

to work.   

Blocking interfaces allow the test environment to be unaware of the internal design timing.  More complex agents 

that understand the overall timing of the system can be used if there are non-blocking interfaces that require specific 

timing.  The use of blocking interfaces also allows the verification team to separate the testing of functionality from 

performance testing.  This paper does not describe how to do performance testing. 

The CatWare blocks[6], which include several different filters and FFTs are used to gather data to compare 

functional coverage between the source and RTL.  An inverse DCT, which is part of the H.265 decoder and has 

more complex control, is used to compare structural coverage. 

 

IV.   FUNCTIONAL COVERAGE 

Functional coverage is defined by the test environment and would be the same for any equivalent design run in 

that test environment.  This simplifies functional coverage testing because the design team can assume that their 

stimuli will achieve 100% functional coverage when applied to the RTL.  The key testing in this step is to confirm 

that the RTL behaves exactly the same as the HLM.  Experimentally, fifteen different FFT and filter architectures in 

the CatWare blocks have been run through the flow in Figure 1, and no configuration showed a difference in the 

functional coverage between the C++, SystemC and RTL. 

Common issues that occur during this testing are related to undefined behavior in the source code. For example, 

For example, the C++ standard does not define the behavior of uninitialized variables, negative shifts and out-of-

bounds array access.  The designer should code defensively, using class libraries that avoid common problems, such 

as AC Datatypes[7] and initializing all variables in the HLM.  The developer must also understand and resolve any 

differences between the HLM and the RTL model before moving on to the next step. 

 

V.   STALL AND RESET STRUCTURAL COVERAGE  

A) Stall Coverage 

The approach for stall coverage is to identify all of the additional states that have been added by the HLS tool and 

then target tests at these states.  This process is dependent on what kind of stall architecture is added by the tool, so 

the details in this section are specific to Catapult and HLMs that use transaction level interfaces, which do not 

describe the exact hardware for implementing stall. 

First, the verification engineer needs to understand the stall architecture in the generated RTL.  For Catapult, a 

small state machine is built for each IO, and this state is then combined in a “staller” block, which disables flops and 

the FSM in its associated thread.  The stall architecture built by Catapult has the advantage that a test can target each 

IO separately and still reach 100% structural coverage. 

Interfaces can be arbitrarily complex, which affects the stimulus needed, but the concept is the same for all 

interfaces, so a simple example is used.  Assume an input “DIN” to a thread has two control signals, ready and valid, 

plus a data signal.  For DIN, the stall combinations that need to be tested are shown in Table 1.  When both ready 

and valid are high, data is read by the design.  If only ready or valid is high, then either the reader or the writer is 



stalled.  Finally, DIN itself may need to be stalled if it is trying to read and the thread that owns DIN is stalled, 

usually because an output is blocked, and the thread cannot write its own data. 

These stall states can be difficult to reach so Catapult allows an optional stall pin to be added to each thread.  This 

pin is used to achieve coverage and can also be used to stress test a sub-system by randomly stalling blocks. 

 

Table 1.  Control pin combinations required to achieve stall coverage. 

  
 

B) Reset Coverage 

Reset coverage simply requires putting the FSM into every state and then asserting reset.  The functional coverage 

tests should cause the FSM to traverse every state, but some additional test might need to be used from the structural 

coverage suite.   

V.   OTHER STRUCTURAL COVERAGE  

A. Unreachable Code 

The most common reason for missing structural coverage is that the missing coverage bin is not reachable for any 

set of inputs.  The designer should first assume the code is unreachable.  The first step is to run an unreachability 

check using a formal tool.  For the experiments for this paper, about one line in 1000 is not covered in the RTL and 

Questa CoverCheck is used and it generally proves about 50% of the unreachable lines are not reachable.   

The remaining lines need to be analyzed by hand.  This might seem a difficult task on machine generated code, 

but remember the goal is only to trace the logic back to prove it has unreachable conditions.  In practice, only about 

30 minutes were needed to trace back a redundant line of code. 

The analysis of several designs uncovered a set of redundancies that are present in the source code.  The three 

most common cases are discussed below. 

1) When writing loops, the all paths in, out and over the loop should be reachable.  Consider the following loop 

where the input dynamic_bound controls the number of loop iterations. 

for ( int iter = 0; iter < dynamic_bound ; iter++ ) { 

  /* loop body */ 

} 

The for loop should only be written in the above style if all values of dynamic_bound are exercisable 

during simulation.  Assume the minimum value for dynamic_bound is four.  The path that skips the loop 

is only exercised if dynamic_bound is zero.  The missing path is not caught by C++ coverage tools, but 

the RTL code will have coverage gaps in the loop control logic.  The code can be re-written to move the 

break condition to the end and guarantee that the loop body is always executed.  
for ( ac_int<N,false> iter = 0; /*intentionally left blank*/ ; iter++ ) { 

  /* loop body */ 

  if (iter >= ac_int<N,false>(dynamic_bound – 1) ) break; 

} 

The int datatype is replaced with a N bit AC integer datatype.  The second template parameter determines if 

the datatype is signed, so this datatype is unsigned.  The coding style above guarantees that the loop iterates 

at least one time.  Casting the right-hand side of the break condition to ac_int<N,false> avoids a 

potential coverage gap related to logic generated in case the right-hand side becoming negative.  Using this 

coding style should eliminate any redundancies related to the loop having a dynamic bound. 

2) During HLS, the if/else structures in the source code are converted into mux trees.  Redundancies present in 

the relationship between different conditions in the source may not be caught by gcov, but will be present in 

the condition coverage in the RTL.  Catapult is able to optimize the mux tree in most cases to remove the 

redundancy, so there is no coding style to follow.  In some cases, such as the example below, there will not 

be an obvious coding style change and the coverage hole should be waived. 



data_to_sat = condition ? input.read() : 0; 

if ( data_to_sat > N ) 

  data_to_sat = N; 

if ( condition ) 

  out.write(data_to_sat); 

In this case, a single mux could be constructed to assign out to “N”, “0” or “input”.  However, the constant 

value “0” is never assigned to out.  In many cases, Catapult would optimize away this input to the mux, but 

the optimization may not work in all cases.  In practice, most cases where this occurs involve a constant 

conditionally assigned to a variable.   

3) A condition inside of a loop that depends on the loop iterator can lead to redundancies.  Catapult adds FSM 

states, visible as “fsm_output” in the RTL, and pipeline states, visible as “stage_var” in the RTL, to the 

design.  The code below will cause redundancies because the Internal:if statement is only true in the 

first iteration of the loop: 
for ( ac_int<N,false> iter = 0; /*intentionally left blank*/ ; iter++ ) { 

  Internal:if ( iter == 0 ) { 

    /*condition body*/ 

  } 

  /* loop body */ 

  if (iter >= ac_int<N,false>(dynamic_bound – 1) ) break; 

} 

The Internal:if statement is only true in the first iteration of the loop.  The FSM transition into the loop 

also captures the same information.  When the Internal:if statement is scheduled at the start of the loop, 

Catapult would generate logic to confirm both that the Internal:if statement is true and that the design 

is in the correct FSM state: 
mux_ctl = (iter==0) & (FSM_state == state_before_loop); 

Both of these expressions will always become true at the same time, leading to holes in the condition 

coverage.  This must be waived by hand based on finding a hole that involves and FSM state and loop 

iterator, crossprobing in Catapult back to the source to confirm the location of the Internal:if statement. 

When the design is pipelined, the state_var is used to control which stages of the pipeline are active.  

The Internal:if statement in a pipelined loop would also be ANDed with the appropriate pipeline stage.  

In this example, the Internal:if statement can be moved out of the loop body to remove the redundancy. 

Internal{ 

    /*condition body*/ 

} 

for ( ac_int<N,false> iter = 0; /*intentionally left blank*/ ; iter++ ) { 

  /* loop body */ 

  if (iter >= ac_int<N,false>(dynamic_bound – 1) ) break; 

} 

 

B. Missing Stimulus 

HLS performs two transformations that affect how the coverage tools view the design, loop unrolling and function 

inlining.  These transformations duplicate code, which changes how the coverage tools view the code.  Consider the 

following example: 

for ( int i =0; i < 3; i++ ) { 

  if ( A[i] ) { 

 

  } 

} 

In source simulation, the “if” statement is covered when A[0] or A[1] or A[2] is true and false.  However, after the 

loop is unrolled, there are three separate “if” statements, one for each iteration of the loop.  This means that A[0], 

A[1] and A[2] all must be both true and false while the loop is running to cover all the “if” branches for all loop 

iterations. 

When the same changes were performed on the C code by hand, gcov also flagged the same missing coverage.  

This implies that a C++ coverage tool could be enhanced to find these cases.  For now, these cases must be thought 

of by the verification engineer as part of a functional coverage methodology or by analyzing the coverage holes in 



the RTL.  In this case, the presence of an unrolled loop or function that is inlined multiple times can be identified by 

looking for messages from Catapult.   

 

VI.   RESULTS 

The methodology described in this paper is applied to the DCT used in an HEVC decoder.  The source code is 

written using 490 lines of C++, which follow the coding styles described in this paper.  A test environment is 

developed using directed tests and constrained random data to achieve 100% coverage as reported by gcov.   

Next the code is synthesized with Catapult to generate 15735 lines of Verilog.  Many of the mathematical 

expressions take multiple lines, which is why the line count is only 3801 in the data below.  After applying the C++ 

stimulus to the RTL, there are 279 holes, or about 94% coverage.  The coverage tests for the library components that 

ship with Catapult are applied to the code to “gray box” the components and exclude them from the coverage data.  

Next CoverCheck is run to identify unreachable coverage bins.  The result of these steps is to reduce the number of 

coverage holes to 107, or about 98% coverage.   

The next step is to add stall and reset testing and to manually evaluate the remaining coverage holes.  Stall testing 

is done in parallel with manual evaluation because some holes could be related to stall.  After all of the new tests are 

added, only 25 coverage holes remain, or about 99.5% coverage. 

Finally, the remaining 25 coverage holes are manually waived.  Eleven of these holes are simple sequential 

redundancies and would be good targets for future optimization and or formal unreachability tools.  The remaining 

holes are related to the relationship with C++ state and the pipeline state variables added by Catapult.  

 

Table 2. – Example progress on code coverage 

  

Coverage Holes 

Type Total Bins Initial Gray box libs CoverCheck Stall and Reset 

Line 3801 75 10 2 0 

Branch 473 48 8 2 0 

FEC Expression 693 148 131 99 25 

FEC Condition 21 8 4 4 0 

Total 4988 279 153 107 25 

 

 

VII.   CONCLUSION  

This paper shows a consistent and repeatable process for closing coverage on RTL generated by HLS.  The HLM 

is developed following a set of coding guidelines to avoid coverage problems in the generated RTL.  Functional 

coverage test stimulus is developed and then additional stimulus is added to achieve structural coverage in C++ or 

SystemC.    Stall and reset tests are added to the HLM stimulus, and used to measure the functional and structural 

coverage in the RTL.  The initial RTL coverage is refined by using unreachability tools like CoverCheck.  If 

required, the remaining coverage holes can be closed by hand.  By following this process, a verification engineer can 

consistently close coverage on RTL generated by HLS. 
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