
Closing Functional and Structural

Coverage on RTL Generated by High-

Level Synthesis

B. Bowyer
Calypto Design Systems, Inc.

8005 S.W. Boeckman Rd.

Wilsonville, OR 97070

Abstract- Most hardware design teams have a verification methodology that requires a deep understanding of the

RTL to reach their verification goals, but this type of methodology is difficult to apply to the machine generated RTL

from High-level Synthesis (HLS). This paper describes innovative techniques to use with existing methodologies, for

example the Universal Verification Methodology (UVM), to close functional and structural coverage on HLS generated

code.

Assuming tests that give 100% functional and structural coverage on synthesizable C++ or SystemC, most verification

engineers expect the same tests to give similar coverage on RTL generated by HLS. These tests give 100% functional

coverage on the generated RTL, but only give about 80% structural coverage. As HLS runs, it adds states to the FSM,

stall states, pipeline ramp-up and ramp-down states, uses one-hot encoded logic and may structure logic in a way that

artificially lowers reported coverage. All of these gaps need to be addressed to get near to 100% coverage on the

generated RTL.

A set of C++ coding styles and verification technique is proposed for each of these coverage gaps, with a focus on tools

and techniques that do not require a deep understanding of the generated RTL. The source code also needs to be

designed with well synchronized blocks to simplify stall testing and labels to help analyze FSM coverage.

A Discrete Cosine Transform (DCT) used in the decoder for the High Efficiency Video Codec (HEVC) is used to

illustrate the techniques. The DCT is developed in C++ and synthesized into Verilog using Catapult. The C++ source has

tests that cover the behavior and give 100% coverage on line, branch and condition coverage as measured by gcov. Initial

structural coverage is measured on generated Verilog code using Questa. Questa CoverCheck is used to exclude

unreachable conditions and then each technique is applied to show how coverage improves. The final result is near 100%

line, branch and Focused Expression Check (FEC) coverage and analysis that shows the remaining coverage bins are

unreachable.

ACKNOWLEDGEMENTS

The author wishes to acknowledge Bala Sethuraman for his work to structure RTL to simplify the verification

flow, Vishal Sinhga for providing an interesting design and Jim Li for the long hours researching how to manually

close coverage on machine generated RTL.

I. INTRODUCTION

The most common goal for using High Level Synthesis (HLS) is to reduce the effort needed to verify

hardware[1]. The verification effort is reduced by shifting design and verification from a primarily parallel register

transfer model, written in VHDL or Verilog, to a more abstract procedural model. This model is called a High-

Level Model (HLM) and is written using Transaction Level SystemC or a C++. The new model contains less detail

and often simulates hundreds of times faster than an equivalent model written in synthesizable VHDL or Verilog.

UVM verification techniques, such as coverage points and constrained random simulation, are then applied to the

HLM. The faster simulation requires fewer computational resources during testcase development, and a set of test

vectors that cover the HLM are recorded so they can be applied to the RTL generated by HLS. An excellent

overview of the HLS tools and process is described in [2]. In addition, HLS tools generate a SystemC wrapper and

verification agents around the generated RTL that provides the same interface as the original source code, which

allows the original test stimulus to be run on the RTL.

The same simulation vectors are then applied to the generated RTL and the functional coverage should be the

same 100%, but the structural coverage, defined by FSM, line, branch and Focused Expression Check (FEC)

coverage[3], is often disappointing low, often 60-80%. The design and verification teams are faced with the

challenge of understanding why the same simulation vectors would generate such different coverage numbers and

what to do to fix the problem.

The design techniques in this paper focus on blocking interfaces, which are interfaces that cause the associated

process to stall and wait for data to be read or written. Blocking interfaces can be tested in a test environment where

each process is randomly stalled. Non-blocking interfaces allow the associated process to continue even if data

cannot be read or written, which means those processes can produce different results depending on when data can be

read and written. Non-blocking interfaces therefore require a systematic approach to stall to avoid simulation

differences between the mostly untimed C++ code and the generated RTL. Detailed description of various

communication implementations and their implication for testing can be found in [4].

This paper gives an overview of several classes of coverage gaps with specific examples of each and techniques to

close these gaps:

 Key differences in how C++ based coverage tools and RTL based coverage tools report coverage

 Coverage gaps that are only exposed after HLS has optimized the design

 Redundancies added by HLS that result in unreachable conditions in the RTL

II. DEFINING COVERAGE IN THE HLS CONTEXT

Functional coverage is a set of criteria defined by the development team for a design. These criteria may be

dependent on the structure of the design. For example, the criteria might include testing that all of the elements in a

shift register are assigned a non-zero value. These functional elements in a design should not be changed by HLS

optimizations or transformations.

Structural coverage is related to how the code is written. Depending on the architecture, the code could be written

with different control statements, function calls, loops and other structures. More importantly, HLS optimizations

and transformations will sometimes change the structure of the design. So, to compare coverage between the HLM

and RTL, this paper uses response to stimuli to compare coverage between the two models.

The C++ language has several constructs with undefined behavior, such as uninitialized variables, out-of-bounds

array accesses and shifting by a negative number, so the first step in coverage testing is to confirm the C++ and RTL

models give the same response to the functional coverage stimuli. HLS adds new coverage points related to stall,

new states and new transitions. To cover the new code generated by HLS, new tests are needed for every FSM state

in the RTL to test that the design will both reset and stall properly from that state.

This paper will discuss how to add the new stall and reset tests in section V and how to apply stimuli consistently

between the models in section III.

However, when running RTL coverage with this approach, this paper will show that the reported coverage from

the RTL tools can be much lower than the reported coverage from the C++ tools. The causes of this difference are

then shown to be due to:

1. Differences in the structural reporting between the tools

2. Transformations during HLS that would cause either the C++ or RTL coverage tools to report missing

coverage

3. Unreachable combinations of conditions

This paper walks through common sources of these differences between C++ and RTL coverage and approaches

to solve them. Further research is needed to determine how well achieving coverage on the C++ code catches bugs

and which coverage differences can be safely ignored. Due to the lack of this information the proposed

methodology in this paper assumes resolving any coverage difference has the potential to catch a new bug.

Figure 1. Verification flow for testing RTL generated by HLS

III. TESTING METHODOLOGY

A. Flow Overview

The general flow used to complete functional and structural coverage in RTL is show in Figure 1. This breaks the

process into three stages. The first stage is to run directed and constrained random tests until the C coverage tool

reports 100% function, line, branch and condition/decision coverage. After the HLM has been synthesized, Step 2 is

to run functional verification and then, once functional verification is done, to add reset and stall tests. This process

is simplified because HLS will generate adaptors to allow the generated RTL to either run in parallel with or replace

the original HLM in the verification environment, depending on how the original test environment was configured.

Finally, once functional, reset and stall tests have been developed, the entire test suite is run on the generated RTL

to measure structural coverage.

B. Assumptions, Limitations and Designs Used

This paper does not discuss how the original functional and structural tests are developed. This could be using a

UVM-like methodology with constrained random, a graph based methodology [5] or any other technique. As long

as the test environment has the correct stimulus the details of this step do not matter for the rest of the methodology

to work.

Blocking interfaces allow the test environment to be unaware of the internal design timing. More complex agents

that understand the overall timing of the system can be used if there are non-blocking interfaces that require specific

timing. The use of blocking interfaces also allows the verification team to separate the testing of functionality from

performance testing. This paper does not describe how to do performance testing.

The CatWare blocks[6], which include several different filters and FFTs are used to gather data to compare

functional coverage between the source and RTL. An inverse DCT, which is part of the H.265 decoder and has

more complex control, is used to compare structural coverage.

IV. FUNCTIONAL COVERAGE

Functional coverage is defined by the test environment and would be the same for any equivalent design run in

that test environment. This simplifies functional coverage testing because the design team can assume that their

stimuli will achieve 100% functional coverage when applied to the RTL. The key testing in this step is to confirm

that the RTL behaves exactly the same as the HLM. Experimentally, fifteen different FFT and filter architectures in

the CatWare blocks have been run through the flow in Figure 1, and no configuration showed a difference in the

functional coverage between the C++, SystemC and RTL.

Common issues that occur during this testing are related to undefined behavior in the source code. For example,

For example, the C++ standard does not define the behavior of uninitialized variables, negative shifts and out-of-

bounds array access. The designer should code defensively, using class libraries that avoid common problems, such

as AC Datatypes[7] and initializing all variables in the HLM. The developer must also understand and resolve any

differences between the HLM and the RTL model before moving on to the next step.

V. STALL AND RESET STRUCTURAL COVERAGE

A) Stall Coverage

The approach for stall coverage is to identify all of the additional states that have been added by the HLS tool and

then target tests at these states. This process is dependent on what kind of stall architecture is added by the tool, so

the details in this section are specific to Catapult and HLMs that use transaction level interfaces, which do not

describe the exact hardware for implementing stall.

First, the verification engineer needs to understand the stall architecture in the generated RTL. For Catapult, a

small state machine is built for each IO, and this state is then combined in a “staller” block, which disables flops and

the FSM in its associated thread. The stall architecture built by Catapult has the advantage that a test can target each

IO separately and still reach 100% structural coverage.

Interfaces can be arbitrarily complex, which affects the stimulus needed, but the concept is the same for all

interfaces, so a simple example is used. Assume an input “DIN” to a thread has two control signals, ready and valid,

plus a data signal. For DIN, the stall combinations that need to be tested are shown in Table 1. When both ready

and valid are high, data is read by the design. If only ready or valid is high, then either the reader or the writer is

stalled. Finally, DIN itself may need to be stalled if it is trying to read and the thread that owns DIN is stalled,

usually because an output is blocked, and the thread cannot write its own data.

These stall states can be difficult to reach so Catapult allows an optional stall pin to be added to each thread. This

pin is used to achieve coverage and can also be used to stress test a sub-system by randomly stalling blocks.

Table 1. Control pin combinations required to achieve stall coverage.

B) Reset Coverage

Reset coverage simply requires putting the FSM into every state and then asserting reset. The functional coverage

tests should cause the FSM to traverse every state, but some additional test might need to be used from the structural

coverage suite.

V. OTHER STRUCTURAL COVERAGE

A. Unreachable Code

The most common reason for missing structural coverage is that the missing coverage bin is not reachable for any

set of inputs. The designer should first assume the code is unreachable. The first step is to run an unreachability

check using a formal tool. For the experiments for this paper, about one line in 1000 is not covered in the RTL and

Questa CoverCheck is used and it generally proves about 50% of the unreachable lines are not reachable.

The remaining lines need to be analyzed by hand. This might seem a difficult task on machine generated code,

but remember the goal is only to trace the logic back to prove it has unreachable conditions. In practice, only about

30 minutes were needed to trace back a redundant line of code.

The analysis of several designs uncovered a set of redundancies that are present in the source code. The three

most common cases are discussed below.

1) When writing loops, the all paths in, out and over the loop should be reachable. Consider the following loop

where the input dynamic_bound controls the number of loop iterations.

for (int iter = 0; iter < dynamic_bound ; iter++) {

 /* loop body */

}

The for loop should only be written in the above style if all values of dynamic_bound are exercisable

during simulation. Assume the minimum value for dynamic_bound is four. The path that skips the loop

is only exercised if dynamic_bound is zero. The missing path is not caught by C++ coverage tools, but

the RTL code will have coverage gaps in the loop control logic. The code can be re-written to move the

break condition to the end and guarantee that the loop body is always executed.
for (ac_int<N,false> iter = 0; /*intentionally left blank*/ ; iter++) {

 /* loop body */

 if (iter >= ac_int<N,false>(dynamic_bound – 1)) break;

}

The int datatype is replaced with a N bit AC integer datatype. The second template parameter determines if

the datatype is signed, so this datatype is unsigned. The coding style above guarantees that the loop iterates

at least one time. Casting the right-hand side of the break condition to ac_int<N,false> avoids a

potential coverage gap related to logic generated in case the right-hand side becoming negative. Using this

coding style should eliminate any redundancies related to the loop having a dynamic bound.

2) During HLS, the if/else structures in the source code are converted into mux trees. Redundancies present in

the relationship between different conditions in the source may not be caught by gcov, but will be present in

the condition coverage in the RTL. Catapult is able to optimize the mux tree in most cases to remove the

redundancy, so there is no coding style to follow. In some cases, such as the example below, there will not

be an obvious coding style change and the coverage hole should be waived.

data_to_sat = condition ? input.read() : 0;

if (data_to_sat > N)

 data_to_sat = N;

if (condition)

 out.write(data_to_sat);

In this case, a single mux could be constructed to assign out to “N”, “0” or “input”. However, the constant

value “0” is never assigned to out. In many cases, Catapult would optimize away this input to the mux, but

the optimization may not work in all cases. In practice, most cases where this occurs involve a constant

conditionally assigned to a variable.

3) A condition inside of a loop that depends on the loop iterator can lead to redundancies. Catapult adds FSM

states, visible as “fsm_output” in the RTL, and pipeline states, visible as “stage_var” in the RTL, to the

design. The code below will cause redundancies because the Internal:if statement is only true in the

first iteration of the loop:
for (ac_int<N,false> iter = 0; /*intentionally left blank*/ ; iter++) {

 Internal:if (iter == 0) {

 /*condition body*/

 }

 /* loop body */

 if (iter >= ac_int<N,false>(dynamic_bound – 1)) break;

}

The Internal:if statement is only true in the first iteration of the loop. The FSM transition into the loop

also captures the same information. When the Internal:if statement is scheduled at the start of the loop,

Catapult would generate logic to confirm both that the Internal:if statement is true and that the design

is in the correct FSM state:
mux_ctl = (iter==0) & (FSM_state == state_before_loop);

Both of these expressions will always become true at the same time, leading to holes in the condition

coverage. This must be waived by hand based on finding a hole that involves and FSM state and loop

iterator, crossprobing in Catapult back to the source to confirm the location of the Internal:if statement.

When the design is pipelined, the state_var is used to control which stages of the pipeline are active.

The Internal:if statement in a pipelined loop would also be ANDed with the appropriate pipeline stage.

In this example, the Internal:if statement can be moved out of the loop body to remove the redundancy.

Internal{

 /*condition body*/

}

for (ac_int<N,false> iter = 0; /*intentionally left blank*/ ; iter++) {

 /* loop body */

 if (iter >= ac_int<N,false>(dynamic_bound – 1)) break;

}

B. Missing Stimulus

HLS performs two transformations that affect how the coverage tools view the design, loop unrolling and function

inlining. These transformations duplicate code, which changes how the coverage tools view the code. Consider the

following example:

for (int i =0; i < 3; i++) {

 if (A[i]) {

 }

}

In source simulation, the “if” statement is covered when A[0] or A[1] or A[2] is true and false. However, after the

loop is unrolled, there are three separate “if” statements, one for each iteration of the loop. This means that A[0],

A[1] and A[2] all must be both true and false while the loop is running to cover all the “if” branches for all loop

iterations.

When the same changes were performed on the C code by hand, gcov also flagged the same missing coverage.

This implies that a C++ coverage tool could be enhanced to find these cases. For now, these cases must be thought

of by the verification engineer as part of a functional coverage methodology or by analyzing the coverage holes in

the RTL. In this case, the presence of an unrolled loop or function that is inlined multiple times can be identified by

looking for messages from Catapult.

VI. RESULTS

The methodology described in this paper is applied to the DCT used in an HEVC decoder. The source code is

written using 490 lines of C++, which follow the coding styles described in this paper. A test environment is

developed using directed tests and constrained random data to achieve 100% coverage as reported by gcov.

Next the code is synthesized with Catapult to generate 15735 lines of Verilog. Many of the mathematical

expressions take multiple lines, which is why the line count is only 3801 in the data below. After applying the C++

stimulus to the RTL, there are 279 holes, or about 94% coverage. The coverage tests for the library components that

ship with Catapult are applied to the code to “gray box” the components and exclude them from the coverage data.

Next CoverCheck is run to identify unreachable coverage bins. The result of these steps is to reduce the number of

coverage holes to 107, or about 98% coverage.

The next step is to add stall and reset testing and to manually evaluate the remaining coverage holes. Stall testing

is done in parallel with manual evaluation because some holes could be related to stall. After all of the new tests are

added, only 25 coverage holes remain, or about 99.5% coverage.

Finally, the remaining 25 coverage holes are manually waived. Eleven of these holes are simple sequential

redundancies and would be good targets for future optimization and or formal unreachability tools. The remaining

holes are related to the relationship with C++ state and the pipeline state variables added by Catapult.

Table 2. – Example progress on code coverage

Coverage Holes

Type Total Bins Initial Gray box libs CoverCheck Stall and Reset

Line 3801 75 10 2 0

Branch 473 48 8 2 0

FEC Expression 693 148 131 99 25

FEC Condition 21 8 4 4 0

Total 4988 279 153 107 25

VII. CONCLUSION

This paper shows a consistent and repeatable process for closing coverage on RTL generated by HLS. The HLM

is developed following a set of coding guidelines to avoid coverage problems in the generated RTL. Functional

coverage test stimulus is developed and then additional stimulus is added to achieve structural coverage in C++ or

SystemC. Stall and reset tests are added to the HLM stimulus, and used to measure the functional and structural

coverage in the RTL. The initial RTL coverage is refined by using unreachability tools like CoverCheck. If

required, the remaining coverage holes can be closed by hand. By following this process, a verification engineer can

consistently close coverage on RTL generated by HLS.

REFERENCES
[1] S. McCloud, “High Level synthesis Report 2011,” pp. 3

[2] Coussy, P.; Gajski, D. D.; Meredith, M.; Takach, A. (2009). "An Introduction to High-Level Synthesis". IEEE Design & Test of Computers

26 (4): 8–17. doi:10.1109/MDT.2009.69
[3] R. Salemi, “What the Heck if FEC?,” eejournal.com, Sept, 2011

[4] B. Bailey, G. Martin, A. Piziali, ESL Design and Verification, pp. 248-254, 2007.

[5] M. Andrews, B. Hristov, “Portable Stimulus Models for C/SystemC, UVM and Emulation,” DVCon 2015
[6] Calypto, “Catware Library datasheet,” calypto.com

[7] M. Fingeroff, High-level Synthesis Blue Book, pp. 35-58, 2010

