
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Closing Functional and Structural Coverage on RTL
Generated by High-Level Synthesis

Bryan Bowyer
Calypto Design Systems, 8005 SW Boeckman Rd., Bldg. E, Wilsonville, OR 97070

Introduction

The most common goal for using HLS is to reduce
hardware verification effort. Verification effort is
reduced by applying UVM techniques to test a High-
Level Model (HLM) written in synthesizable C++ or
SystemC, which allows verification development
and debug to be done using faster simulation. The
code is synthesized with HLS to generate RTL. The
generated RTL is tested by replaying the original
tests and then applying techniques to close
coverage.

This paper describes a methodology to close the RTL
coverage gaps found when replaying the coverage
tests. Common causes of RTL coverage gaps are:
•Differences between C++ and RTL coverage tools
•C++ coding style
•Stall and reset behavior only testable in the RTL
•Coverage gaps exposed by HLS optimizations
•Redundancies added to the RTL by HLS
optimizations

Coverage gaps can be closed by using coding
style, formal unreachability tools, additional tests or
manual inspection of the RTL code.

Defining Coverage in the HLS Context

Testing Methodology
The overview of the testing flow is shown in Figure 1.
In step 1) C/SystemC Verification, coverage is
achieved on the HLM. During step 2) RTL Functional
Verification, the original functional tests are
replayed and additional functional tests are added.
Next reset and stall tests are added.

In step 3) RTL Structural Verification, the structural
tests are replayed and two checks are used to
confirm if new tests are needed. First an RTL
structural coverage tool is used to find coverage
holes. The coverage holes are checked for
reachability either using a formal unreachability tool
or by hand. Testing is finished once all remaining
coverage holes are known to be unreachable.

Functional Coverage
Designs with interfaces which stop and wait to read
or write data, also called blocking interfaces, should
not have their functionality changed by HLS.
Additional or modified functional tests should only
be needed when the design does not stop to wait
for data.

Undefined behavior in the HLS can lead to errors
when running the functional tests. These errors are
due to the C compiler and HLS making different
optimization decisions and can be fixed using C++
coding styles that do not use undefined behavior.

Stall and Reset Structural Coverage

HLS adds states to the design during synthesis. The
HLM tests do not test stalling in or resetting from
these states. HLS adds a stall pin to each process to
simplify stall testing. Table 1. shows how to use the
stall pin to achieve coverage for an interface with
a ready/valid handshake.

Unreachable Code
The most common reason for structural coverage
gaps is code combinations that are unreachable.
Unreachability tools can find some of these gaps,
but others need to be analyzed and, if possible,
fixed by hand.

Source code examples that lead to unreachable RTL:
1) Path that skips loop is never exercised. Assumes
dynamic_bound >= 0.
for (int iter = 0; iter < dynamic_bound; iter++;)
{

/* loop body */

}

To fix, use code that can never skip the loop.
for (ac_int<N,false> iter = 0; /* */ ; iter++)
{

/* loop body */

if (iter >= ac_int<N,false>(dynamic_bound – 1)
)

break;

}
2) If/else structures converted to muxes. Combinations
of conditions not tested in C++, but tested in RTL.
data_to_sat = cond ? input.read() : 0;

SAT: if (data_to_sat > N)

data_to_sat = N;

OUTPUT: if (cond)

out.write(data_to_sat);

Mux tree feeding “out” cannot write constant zero,
from cond = false to out.
3)A condition in a loop is only true in the first or last
iteration:
for (ac_int<N,false> iter = 0; /* */ ; iter++)
{

INTERNAL:if (iter == 0) {

/*condition body*/

}

/* loop body */

if (iter >= ac_int<N,false>(dynamic_bound – 1)
) break;

}
This can be fixed by moving the INTERNAL:if out of the
loop.
INTERNAL{

/*condition body*/

}

for (ac_int<N,false> iter = 0; /*intentionally
left blank*/ ; iter++) {

/* loop body */

if (iter >= ac_int<N,false>(dynamic_bound – 1)
) break;

}

Results

Conclusion

The techniques in this paper are applied to
hardware for the Discrete Cosine Transform (DCT)
used in the HEVC decoder. The code is 490 lines of
code in written C++ using the coding styles
described in this paper. The test stimuli are
developed and 100% structural coverage is
achieved as reported by gcov. Next, the code is
synthesized with Catapult and C++ tests are
replayed on the RTL using Questa to check
coverage.

This paper shows a consistent and repeatable
process for closing coverage on RTL generated by
HLS. The HLM is developed following a set of coding
guidelines to avoid coverage problems in the
generated RTL. Functional coverage test stimulus is
developed and then additional stimulus is added to
achieve structural coverage in C++ or SystemC.
Stall and reset tests are added to the HLM stimulus,
and used to measure the functional and structural
coverage in the RTL. The initial RTL coverage is
refined by using unreachability tools like
CoverCheck. If required, the remaining coverage
holes can be closed by hand. By following this
process, a verification engineer can consistently
close coverage on RTL generated by HLS.

Two types of coverage, functional and structural,
are used to confirm that the source code is well
tested. Functional coverage is defined by the
development team and includes all of the design
elements they decide are important to tests.
Structural coverage is related to how the code is
written and is determined by running tools.

The structural coverage is more difficult to manage
because the structure of the generated RTL is
different than the structure of the HLM. Designers
must consider if their source code contains
constructs that have undefined behavior, like
uninitialized variables or other constructs that will be
reported differently by C++ vs. RTL coverage tools.

Missing Stimulus

Yes

NoNo

Yes

Yes No
Yes

No

Functional &
Constrained

Random

1) C/SystemC Verification

Replay
Functional Tests

100% Functional
Coverage?

2) RTL Functional
Verification

Yes

Replay
Structural Tests

100% Structural
Coverage? Done

Remaining holes
unreachable?

Add Stall +
Reset tests

3) RTL Structural
Verification

Add
tests

Add
tests

Add
tests

100% Functional/
Structural Coverage?

Figure 1. Verification flow for testing RTL generated by HLS

Table 1. Test combinations used to achieve stall coverage

When HLS unrolls loops or inlines functions, the C++
code is duplicated and optimized separately. The
RTL coverage tools can report missing coverage for
the duplicate code. The C++ coverage tools do not
see this duplication, and could report the code as
fully covered. Additional stimulus needs to be
added to achieve coverage.

Total
Bins Coverage Holes

Type Initial
Gray
box libs

Cover
Check

Stall and
Reset

Line 3801 75 10 2 0
Branch 473 48 8 2 0
FEC
Expression 693 148 131 99 25
FEC
Condition 21 8 4 4 0
Total
Coverage
Holes 4988 279 153 107 25

After replaying the C++ tests, there are 279 holes
and a total of 4988 coverage bins. Catapult
includes several HDL libraries for component like
FIFOs that cannot be fully covered by block level
tests. These libraries include their own coverage
tests, allowing them to be excluded from the overall
coverage and reducing the total coverage holes to
153. Next, Questa CoverCheck is run to find
unreachable holes and these are excluded, to
reach 107 holes. Finally, the stall and reset tests are
added to reach 25 holes. These 25 holes were
inspected manually to determine that they are
unreachable.

	Slide Number 1

