

1

Chiplevel Analog Regressions in Production
Analog-Mixed-Signal Simulation with Single Programmable Testbench, Code-

Driven Stimulus and Self-Checking with SVA

Yi Wang, Dialog Semiconductor B.V., Den Bosch, the Netherlands (yi.wang@diasemi.com)

Abstract—This paper presents an AMS regression methodology at chip level using a single testbench with Verilog-
AMS stimulus. All the simulation results are processed in the discrete domain using dedicated SystemVerilog module
with SV assertions. An Asynchronous Finite-State-Machine (A-FSM) is used to align the Device-Under-Test (DUT),
stimulus and assertions, it is fully configurable to cover 30+ test scenarios. The total regression run-time is less than 10
hours, which enables regular sign-off check within a day.

Keywords---Analog Regression; Analog-Mixed-Signal Verification; Single Programmable testbench; Verilog-AMS
Stimulus; System-Verilog-Assertion (SVA)

I. INTRODUCTION

The complexity of the power-management-unit (PMU) inside a System-on-Chip (SoC) is constantly increasing
with market demands of performance and increased safety. Although using System Verilog User-Defined Nettype,
it is possible to develop real-number models (RNM) accounting for loading effects and execute exhaustive Digital-
Mixed-Signal (DMS) simulations [1], the leakage path, non-linear behavior, process/temperature dependence and
capacitive loading from top-level connections of analog circuit are usually not covered in RNM. These effects have
been exclusively simulated in SPICE simulators. Using advanced analog simulators and effective partitioning of
signals interacting with discrete and continuous domains, it is possible to simulate the PMU blocks in spice netlist
at chip level within 1 hour, which makes AMS Simulation - a feasible complementary verification method in
addition to DMS using RNM.

Unlike digital verification with UVM methodology, analog verification mainly relies on manual inspection,
usually comparing waveforms against requirements. Although there are self-checking methods in Verilog-A for
analog signals with assertions[2]; the language itself is limited when compared to dedicated assertion languages like
Property Specification Language (PSL) and System-Verilog Assertion (SVA). Additionally, implementing
assertions in the continuous time domain using cross() function is computation intensive because the cross()
function controls the time step of the analog solvers and can introduce additional simulation points especially when
time and expression tolerance are absent[3]. The self-checking method presented in this paper is implemented using
SVA modules which are tuned for analog behaviors. This method has the benefit of adopting mature assertion
development from digital verification for inspecting the analog signal. It is faster since assertions are no longer
executed by the analog simulator and provide opportunity for further data processing, therefore the overall
simulation time of AMS is reduced.

Traditionally analog testbench setups have the stimulus and loads implemented using discrete components such
as voltage sources, current sources, resistors, capacitors, etc. These setups have the following disadvantages:

• Hard to synchronize different sources and loads

• Stimulus does not self-adapt to process/temperature variations

• Hard to create complicated test patterns with DUT inside a closed loop

• One testbench can only serve limited number of test scenarios, in other words, multiple testbenches are
required to cover the verification plan.

To mitigate these drawbacks, a single code-driven stimulus module implemented by Verilog-AMS is proposed
in this paper. The stimulus module drives and loads the DUT. Inside the stimulus module, a built-in asynchronous
finite-state-machine (A-FSM) controls stimulus based on the read-out from the DUT. Thus, a closed-loop is formed

2

which enables complicated test patterns and self-adaptation. Within Verilog-AMS stimulus code, the testbench
configuration can be altered by compiler directives; and the selection of test patterns can be done via if-else or case-
statement coupled with the stimulus module’s parameters. Thus, using the proposed testbench it is possible to cover
multiple test scenarios by varying variables from DUT/Stimlus/Simulator etc. The analog signals fed to and
received from DUT are converted from/to discrete domain with customized drivers/probes, which are optimized
for speed and accuracy. The converted analog signals are processed in the discrete domain based on the state of
FSM from both DUT and Stimulus, thus the assertions are self-adaptive to the Process-Voltage-Temperature (PVT)
variations. In the end, the pass/fail of the test scenario is determined by SVAs which monitor the complete
waveform over the simulation. This makes it possible to put normal digital regression management tool on top of
the presented flow.

The example in the paper is illustrated with a GUI based EDA tool which is widely used by the analog design
engineer, but setup can be also be run on the command-line.

In section II, the testbench setup is explained starting from schematic till regression setup; an example of self-
checking mechanism is explained in section III; followed by the job policy and statistics of regression run time.

II. REGRESSIVE TESTBENCH SETUP

A layered approach to testbench is used in this paper as demonstrated in Figure 1. At the bottom is the schematic
which contains the DUT and stimulus module (ISTIMULUS). In the middle is the EDA GUI where the variables are
defined and attached to the DUT and ISTIMULUS for selecting the test scenarios, and the outcomes of SVA are also
readout here. Finally, at the top is the regression control, where all the test scenarios are defined, and variables are
given with the corresponding value.

A. Testbench Schematic

The testbench schematic in Figure 2 (a) contains two modules: DUT and ISTIMULUS. The DUT in this paper is a
SoC composed of a digital core with a CPU; an analog core with multiple LDOs, DC-DC convertors and ADCs;
and a radio core for Bluetooth Low Energy (BLE). The AMS verification focuses on the analog core in spice netlist
using multiple test scenarios namely cold-boot, power supply switching, working mode transition, current
consumption, etc.

 The structure of ISTIMULUS Verilog-AMS code is shown in Figure 2 (b). The electrical voltage/current sources
for driving the DUT are provided by dedicated Verilog-AMS modules which reads the discrete real value as input.
The resistive and capacitive loads can be altered by calling the task from the corresponding Verilog-AMS modules.
With this setup, all the behavior of stimulus is described in the discrete domain which enables verification IP to be
reused between AMS and DMS simulation. The built-in A-FSM (STI_FSM) controls the stimulus, when the
specified test pattern is successfully executed, the stimulus terminates the simulation raising a pass flag. Otherwise,
the simulation can be terminated either by time-out or unexpected reset setting a fail flag. Each test pattern is

Figure 1. Layered testbench

3

wrapped in if-statements. The if-statement compares a string parameter against the specified test scenario name.
Thus, the test pattern is selected by assigning different value to such parameter. On top of this, the numerical
parameters can always be introduced to the ISTIMULUS module for test environment, such as supply value, bias current
value, load current, decoupling cap, etc... Figure 2 (c) is an example of ISTIMULUS’s parameters.

B. Test Setup

For configurating the test bench and running the simulation, there is a single test with transient analysis named
as “tran” implemented in the EDA tool. The Figure 3 demonstrates 4 types of variables defined in the tran test,
which are explained in Table I. This setup associates the testbench configuration, test pattern, simulation
environment and software running inside CPU together, which forms the framework of a programmable testbench.
By assigning different value for each individual design variable, the single testbench can be tuned for all the test
scenarios.

Table I. Design Variables in the Test

Variable Name Type Target Purpose
testcase string ISTIMULUS Verilog-AMS Select the test pattern via a if -statement
source_code_name string TCL file Loads the corresponding compiled C code into CPU. HW+SW co-

verification
sim_tag string xrun argument Control the compiler directives, which alter the net connection,

components selection in the netlist.
vdda_5v_a
vddd_0v9_a
ibp_gen_2m2_a_2

real ISTIMULUS Verilog-AMS Set the internal variables which control the drivers for generating the
bias voltage and current at the specific value

Figure 2. (a) Testbench Schematic Diagram; (b) ISTIMULUS Verilog-AMS Code Structure; (c) ISTIMULUS’s parameters

Figure 3. Design Variables in Associated among test pattern, DUT and Software

4

C. Regression Setup

In the presented example, the regression setup is done via the corner sweep from the EDA tool. Each corner
represents a test scenario as shown in Figure 4. Besides the variable described in Table I, process and temperate
variables are also introduced in the corner setup, which increase the regression coverage of the analog core. With
execution of all the corner simulations, one regression run for the chip is done.

Figure 5 demonstrates two test cases: a) Cold-Boot and b) Sleep & Wake up, where the state of chip PMU_FSM
and STI_FSM are shown together with one of the main output rails. The states of PMU_FSM and STI_FSM are
described in Table II, the transition condition of the STI_FSM key states are mentioned in the Figure 5. The
MEASURE state (E) of STI_FSM is used for signal processing, the expressions are automatically adjusted
depending on the test cases, when in RUNNING state for Cold-Boot and Sleep Cycle for the Sleep & Wake up
scenarios. This self-adaptation feature maximizes the re-usability of testbench setup, thus increasing the overall
efficiency of the verification.

Table II. PMU_FSM and STI_FSM States

STI_FSM State Description PMU_FSM State Description
0 RESET 0 ~ 6 BOOTUP sequence
1 INITIALIZATION: bring up supply 7 RUNNING
D IDLE 8 SLEEP
E MEASURE 9 ~ B REFRESH Sequence
F END

Figure 4. Corner Setup inside for Regression

Figure 5. SVA results filtering per test scenario

5

III. SELF-CHECKING

To enable the regression, self-checking without manual inspection is essential. This is achieved by using SVA.
For SVA, the analog signals are converted to discrete real signals by several methods from EDA tool support and
product manual[4][5][6] . An example of the analog SVA modules is presented in this section.

A. Analog-aimed SVA module: assert_signal_within_limit

The presented SVA module is used to monitor the complete waveform against spec envelop with an auto-pause
feature. Part of the source code of assert_signal_within_limit module in SystemVerilog is shown in Figure 6, which
has 5 input signals (4 real + 1 logic) and a concurrent assertion. The description for ports and internal variables is
shown in Table III.

Table III. Ports and Internal Variable for assert_signal_within_limit SVA module

Name Type Value Type Description
signal Port Real Input signal which needs to be inspected against the specific range when assertion

module is enabled
minVal Port Real Define the lower boundary for the spec range
maxVal Port Real Define the upper boundary for the spec range
delay Port Real Enable the assertion after the specified time when enable_check is set

Temporarily disable the assertion for the specified time when either minVal or
maxVal changes

enable_check Port Logic Control signal to enable / disable the assertion module
aFlag Variable Integer Internal variable to hold the assertion results, which is read out in the stimulus code

expressions. 1: Pass; 0: Not Triggered; -1: Faila
a. Once the assertion fails, the -1 value cannot be changed anymore.

B. Application of assert_signal_within_limit SVA module

An application of the assert_signal_within_limit module for inspecting the charging current of the charger block
is presented in this paper. Figure 7 presents the code of the current probing, SVA module instantiation and spec
calculation. Figure 8 presents a transient simulation result, where the charging current setting value (charge_current
in code) is swept from min to max over time, this is reflected by the stair-case shape of the minVal (yellow
waveform) and maxVal value (red waveform).

A typical analog behavior of current spike during setting transition is clearly visible for the input signal (green
waveform) in Figure 8. Within the zoom-in window, it’s clear that the current spike is larger than the spec maxVal.
But as the assertion is automatically paused for a given time when minVal or maxVal changes, which is indicated
by the gray area, the assertion does not fail. Shortly after the charging current is settled within the specified delay

Figure 6. assert_signal_within_limit SVA module code snippet

6

time, the assertion is resumed automatically. When assertion is triggered and passed, the internal variable aFlag is
expected to be 1.

C. SVA module selection

Each key performance parameter of the chip, e.g. output rails, clock, reference voltage and current consumption
etc, have dedicated SVA modules for monitoring. But not all the assertions are valid for specific test scenario. Such
as the assertion for output rails monotonically ramping up during code-boot does not fit with power-down scenario.
Thus, it’s necessary to build up a selection mechanism to pick up only relevant SVA based on the testcase. In the
presented example, it is done via case-statement indexed by testcase variable inside the stimulus code as shown in
Figure 9. Thus, the total_pass is the only outcome which needs to be checked for the regression results. As total_pass
is calculated inside the discrete domain, it can be easily picked up by any digital regression tool.

Figure 7. Application of SVA module to check charging current against all trim settings (code)

Figure 8. Application of SVA module to check charging current against all trim settings (sim results)

Figure 9. Example for fetching SVA results and Assertion Selection

7

Table IV. Brief of Regression Run for Job Policy and Run-Time

Job Policy

Distribution Method LBS

Parallel Num. Processors 4

Max. Jobs 16

Run-Time

Total Run Time 9 hours 30 minutes

Num. Corner Runs 156

Avg Corner Run Time 51 minutes

IV. JOB POLICY AND RUN-TIME

Table IV provides a brief of job policy and run time for the regression, and Figure 10 shows the run time
statistics. A regression suite with 156 runs can be finished in less than 10 hours (9.5 hours), and about 73% of runs
are finished within 1 hour using 64 CPUs from the compute farm.

V. CONCLUSION

This paper presented a methodology to introduce digital verification methods into the analog domain to obtain
regression capability for analog scenarios. Verilog-AMS is used as stimulus instead of discrete components to drive
and load the DUT. It encapsulates a fully programmable testbench controlled by EDA tool for both testbench
configuration and test pattern execution. The self-checking is implemented using analog-centric SVA module
significantly reduces the workload for the verification engineer and enable more iterations for verifying the analog
circuits at system-level. The test scenarios are defined in a corner sweep, and regression has been optimized to the
point of “push of a button”, the regression summary report is updated automatically, which gives a clear picture of
current status of the analog regression run. This flow can also be applied downstream to the AMS sub-systems such
as an ADC or digitally-assisted power management unit comprising of digital-analog interaction.

Reference

[1] A. Caicedo, and S. Fritz, “Enabling Digital Mixed Signal Verification of Loading Effects in Power Regulation using System Verilog
User-Defined Nettype,” DVCON EUROPE, Munich, October 2019

[2] L. Balasubramanian, P. Sundar, and T.W. Fischer, “Assertion Based Self-checking of Analog Circuit for Circuit Verification and Model
Validation in SPICE and Co-simulation Environments,” DVCON

[3] “Verilog-AMS Language Reference Manual v2.4”, Accellera System Initiative, USA, 2014.
[4] “Unified VerilogAMS monitor to probe electrical/real/wreal/logic signals in a test bench”, Cadence Support,

https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O0V000009ESqBUAW&pageName=ArticleContent
[5] “Smart VerilogAMS current monitor to handle change in design configuration during Design and Verification cycles”, Cadence

Support, https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O0V000009ESqQUAW&pageName=ArticleContent
[6] “Spectre AMS Designer and Xcelium Simulator Mixed-Signal User Guide 19.09”, Cadence, September 2019

Figure 10. Run-Time Statistics

