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Abstract—This paper presents an AMS regression methodology at chip level using a single testbench with Verilog-
AMS stimulus. All the simulation results are processed in the discrete domain using dedicated SystemVerilog module 
with SV assertions. An Asynchronous Finite-State-Machine (A-FSM) is used to align the Device-Under-Test (DUT), 
stimulus and assertions, it is fully configurable to cover 30+ test scenarios. The total regression run-time is less than 10 
hours, which enables regular sign-off check within a day. 
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I. INTRODUCTION 

The complexity of the power-management-unit (PMU) inside a System-on-Chip (SoC) is constantly increasing 
with market demands of performance and increased safety. Although using System Verilog User-Defined Nettype, 
it is possible to develop real-number models (RNM) accounting for loading effects and execute exhaustive Digital-
Mixed-Signal (DMS) simulations [1], the leakage path, non-linear behavior, process/temperature dependence and 
capacitive loading from top-level connections of analog circuit are usually not covered in RNM. These effects have 
been exclusively simulated in SPICE simulators. Using advanced analog simulators and effective partitioning of 
signals interacting with discrete and continuous domains, it is possible to simulate the PMU blocks in spice netlist 
at chip level within 1 hour, which makes AMS Simulation - a feasible complementary verification method in 
addition to DMS using RNM. 

Unlike digital verification with UVM methodology, analog verification mainly relies on manual inspection, 
usually comparing waveforms against requirements. Although there are self-checking methods in Verilog-A for 
analog signals with assertions[2]; the language itself is limited when compared to dedicated assertion languages like  
Property Specification Language (PSL) and System-Verilog Assertion (SVA). Additionally, implementing 
assertions in the continuous time domain using cross() function is computation intensive because the cross() 
function controls the time step of the analog solvers and can introduce additional simulation points especially when 
time and expression tolerance are absent[3]. The self-checking method presented in this paper is implemented using 
SVA modules which are tuned for analog behaviors. This method has the benefit of adopting mature assertion 
development from digital verification for inspecting the analog signal. It is faster since assertions are no longer 
executed by the analog simulator and provide opportunity for further data processing, therefore the overall 
simulation time of AMS is reduced. 

Traditionally analog testbench setups have the stimulus and loads implemented using discrete components such 
as voltage sources, current sources, resistors, capacitors, etc. These setups have the following disadvantages: 

• Hard to synchronize different sources and loads 

• Stimulus does not self-adapt to process/temperature variations 

• Hard to create complicated test patterns with DUT inside a closed loop 

• One testbench can only serve limited number of test scenarios, in other words, multiple testbenches are 
required to cover the verification plan.  

To mitigate these drawbacks, a single code-driven stimulus module implemented by Verilog-AMS is proposed 
in this paper. The stimulus module drives and loads the DUT. Inside the stimulus module, a built-in asynchronous 
finite-state-machine (A-FSM) controls stimulus based on the read-out from the DUT. Thus, a closed-loop is formed 
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which enables complicated test patterns and self-adaptation. Within Verilog-AMS stimulus code, the testbench 
configuration can be altered by compiler directives; and the selection of test patterns can be done via if-else or case-
statement coupled with the stimulus module’s parameters. Thus, using the proposed testbench it is possible to cover 
multiple test scenarios by varying variables from DUT/Stimlus/Simulator etc. The analog signals fed to and 
received from DUT are converted from/to discrete domain with customized drivers/probes, which are optimized 
for speed and accuracy. The converted analog signals are processed in the discrete domain based on the state of 
FSM from both DUT and Stimulus, thus the assertions are self-adaptive to the Process-Voltage-Temperature (PVT) 
variations. In the end, the pass/fail of the test scenario is determined by SVAs which monitor the complete 
waveform over the simulation. This makes it possible to put normal digital regression management tool on top of 
the presented flow. 

The example in the paper is illustrated with a GUI based EDA tool which is widely used by the analog design 
engineer, but setup can be also be run on the command-line. 

In section II, the testbench setup is explained starting from schematic till regression setup; an example of self-
checking mechanism is explained in section III; followed by the job policy and statistics of regression run time. 

II.  REGRESSIVE TESTBENCH SETUP 

A layered approach to testbench is used in this paper as demonstrated in Figure 1. At the bottom is the schematic 
which contains the DUT and stimulus module (ISTIMULUS). In the middle is the EDA GUI where the variables are 
defined and attached to the DUT and ISTIMULUS for selecting the test scenarios, and the outcomes of SVA are also 
readout here. Finally, at the top is the regression control, where all the test scenarios are defined, and variables are 
given with the corresponding value.  

 

A. Testbench Schematic 

The testbench schematic in Figure 2 (a) contains two modules: DUT and ISTIMULUS. The DUT in this paper is a 
SoC composed of a digital core with a CPU; an analog core with multiple LDOs, DC-DC convertors and ADCs; 
and a radio core for Bluetooth Low Energy (BLE). The AMS verification focuses on the analog core in spice netlist 
using multiple test scenarios namely cold-boot, power supply switching, working mode transition, current 
consumption, etc.  

 The structure of ISTIMULUS Verilog-AMS code is shown in Figure 2 (b). The electrical voltage/current sources 
for driving the DUT are provided by dedicated Verilog-AMS modules which reads the discrete real value as input. 
The resistive and capacitive loads can be altered by calling the task from the corresponding Verilog-AMS modules. 
With this setup, all the behavior of stimulus is described in the discrete domain which enables verification IP to be 
reused between AMS and DMS simulation. The built-in A-FSM (STI_FSM) controls the stimulus, when the 
specified test pattern is successfully executed, the stimulus terminates the simulation raising a pass flag. Otherwise, 
the simulation can be terminated either by time-out or unexpected reset setting a fail flag.  Each test pattern is 

 
Figure 1. Layered testbench 
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wrapped in if-statements. The if-statement compares a string parameter against the specified test scenario name. 
Thus, the test pattern is selected by assigning different value to such parameter. On top of this, the numerical 
parameters can always be introduced to the ISTIMULUS module for test environment, such as supply value, bias current 
value, load current, decoupling cap, etc... Figure 2 (c) is an example of ISTIMULUS’s parameters. 

 

B. Test Setup 

For configurating the test bench and running the simulation, there is a single test with transient analysis named 
as “tran” implemented in the EDA tool. The Figure 3 demonstrates 4 types of variables defined in the tran test, 
which are explained in Table I. This setup associates the testbench configuration, test pattern, simulation 
environment and software running inside CPU together, which forms the framework of a programmable testbench. 
By assigning different value for each individual design variable, the single testbench can be tuned for all the test 
scenarios.  

 

Table I. Design Variables in the Test 

Variable Name Type Target Purpose 
testcase string ISTIMULUS Verilog-AMS Select the test pattern via a if -statement 
source_code_name string TCL file Loads the corresponding compiled C code into CPU. HW+SW co-

verification 
sim_tag string xrun argument Control the compiler directives, which alter the net connection, 

components selection in the netlist. 
vdda_5v_a 
vddd_0v9_a 
ibp_gen_2m2_a_2 

real ISTIMULUS Verilog-AMS Set the internal variables which control the drivers for generating the 
bias voltage and current at the specific value 

 
Figure 2. (a) Testbench Schematic Diagram; (b) ISTIMULUS Verilog-AMS Code Structure; (c) ISTIMULUS’s parameters 

 
Figure 3. Design Variables in Associated among test pattern, DUT and Software 
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C. Regression Setup 

In the presented example, the regression setup is done via the corner sweep from the EDA tool. Each corner 
represents a test scenario as shown in Figure 4. Besides the variable described in Table I, process and temperate 
variables are also introduced in the corner setup, which increase the regression coverage of the analog core. With 
execution of all the corner simulations, one regression run for the chip is done. 

 

Figure 5 demonstrates two test cases: a) Cold-Boot and b) Sleep & Wake up, where the state of chip PMU_FSM 
and STI_FSM are shown together with one of the main output rails. The states of PMU_FSM and STI_FSM are 
described in Table II, the transition condition of the STI_FSM key states are mentioned in the Figure 5. The 
MEASURE state (E) of STI_FSM is used for signal processing, the expressions are automatically adjusted 
depending on the test cases, when in RUNNING state for Cold-Boot and Sleep Cycle for the Sleep & Wake up 
scenarios. This self-adaptation feature maximizes the re-usability of testbench setup, thus increasing the overall 
efficiency of the verification. 
 

 
Table II. PMU_FSM and STI_FSM States 

STI_FSM State Description  PMU_FSM State Description 
0 RESET 0 ~ 6 BOOTUP sequence 
1 INITIALIZATION: bring up supply 7 RUNNING 
D IDLE 8 SLEEP 
E MEASURE 9 ~ B REFRESH Sequence 
F END   

 

 
Figure 4. Corner Setup inside for Regression 

 
Figure 5. SVA results filtering per test scenario 
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III.  SELF-CHECKING 

To enable the regression, self-checking without manual inspection is essential. This is achieved by using SVA. 
For SVA, the analog signals are converted to discrete real signals by several methods from EDA tool support and 
product manual[4][5][6] . An example of the analog SVA modules is presented in this section. 

A. Analog-aimed SVA module: assert_signal_within_limit 

The presented SVA module is used to monitor the complete waveform against spec envelop with an auto-pause 
feature. Part of the source code of assert_signal_within_limit module in SystemVerilog is shown in Figure 6, which 
has 5 input signals (4 real + 1 logic) and a concurrent assertion. The description for ports and internal variables is 
shown in Table III. 

 

Table III. Ports and Internal Variable for assert_signal_within_limit SVA module 

Name Type Value Type Description 
signal Port Real Input signal which needs to be inspected against the specific range when assertion 

module is enabled 
minVal Port Real Define the lower boundary for the spec range 
maxVal Port Real Define the upper boundary for the spec range 
delay Port Real Enable the assertion after the specified time when enable_check is set 

Temporarily disable the assertion for the specified time when either minVal or 
maxVal changes 

enable_check Port Logic Control signal to enable / disable the assertion module 
aFlag Variable Integer Internal variable to hold the assertion results, which is read out in the stimulus code 

expressions. 1: Pass; 0: Not Triggered; -1: Faila 
a. Once the assertion fails, the -1 value cannot be changed anymore. 

B. Application of assert_signal_within_limit SVA module 

An application of the assert_signal_within_limit module for inspecting the charging current of the charger block 
is presented in this paper. Figure 7 presents the code of the current probing, SVA module instantiation and spec 
calculation. Figure 8 presents a transient simulation result, where the charging current setting value (charge_current 
in code) is swept from min to max over time, this is reflected by the stair-case shape of the minVal (yellow 
waveform) and maxVal value (red waveform). 

A typical analog behavior of current spike during setting transition is clearly visible for the input signal (green 
waveform) in Figure 8. Within the zoom-in window, it’s clear that the current spike is larger than the spec maxVal. 
But as the assertion is automatically paused for a given time when minVal or maxVal changes, which is indicated 
by the gray area, the assertion does not fail. Shortly after the charging current is settled within the specified delay 

 
Figure 6. assert_signal_within_limit SVA module code snippet 
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time, the assertion is resumed automatically. When assertion is triggered and passed, the internal variable aFlag is 
expected to be 1.  

 

 

C. SVA module selection 

Each key performance parameter of the chip, e.g. output rails, clock, reference voltage and current consumption 
etc, have dedicated SVA modules for monitoring. But not all the assertions are valid for specific test scenario. Such 
as the assertion for output rails monotonically ramping up during code-boot does not fit with power-down scenario. 
Thus, it’s necessary to build up a selection mechanism to pick up only relevant SVA based on the testcase. In the 
presented example, it is done via case-statement indexed by testcase variable inside the stimulus code as shown in 
Figure 9. Thus, the total_pass is the only outcome which needs to be checked for the regression results. As total_pass 
is calculated inside the discrete domain, it can be easily picked up by any digital regression tool. 

 

 

 
Figure 7. Application of SVA module to check charging current against all trim settings (code) 

 
Figure 8. Application of SVA module to check charging current against all trim settings (sim results) 

 
Figure 9. Example for fetching SVA results and Assertion Selection 
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Table IV. Brief of Regression Run for Job Policy and Run-Time 

Job Policy 

Distribution Method LBS 

Parallel Num. Processors 4 

Max. Jobs 16 

Run-Time 

Total Run Time 9 hours 30 minutes 

Num. Corner Runs 156 

Avg Corner Run Time 51 minutes 

 

IV.  JOB POLICY AND RUN-TIME 

Table IV provides a brief of job policy and run time for the regression, and Figure 10 shows the run time 
statistics. A regression suite with 156 runs can be finished in less than 10 hours (9.5 hours), and about 73% of runs 
are finished within 1 hour using 64 CPUs from the compute farm. 

V. CONCLUSION 

This paper presented a methodology to introduce digital verification methods into the analog domain to obtain 
regression capability for analog scenarios. Verilog-AMS is used as stimulus instead of discrete components to drive 
and load the DUT. It encapsulates a fully programmable testbench controlled by EDA tool for both testbench 
configuration and test pattern execution. The self-checking is implemented using analog-centric SVA module 
significantly reduces the workload for the verification engineer and enable more iterations for verifying the analog 
circuits at system-level. The test scenarios are defined in a corner sweep, and regression has been optimized to the 
point of “push of a button”, the regression summary report is updated automatically, which gives a clear picture of 
current status of the analog regression run. This flow can also be applied downstream to the AMS sub-systems such 
as an ADC or digitally-assisted power management unit comprising of digital-analog interaction. 
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Figure 10. Run-Time Statistics 

 


