2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

Chiplevel Analog Regressions in Production

Analog-Mixed-Signal Simulation with Single Programoie Testbench, Code-
Driven Stimulus and Self-Checking with SVA

Yi Wang, Dialog Semiconductor B.V., Den Bosch, the Nd#mels (yi.wang@diasemi.com)

Abstract—This paper presents an AMS regression methodologat chip level using a single testbench with Verilog
AMS stimulus. All the simulation results are procesed in the discrete domain using dedicated SystemNleg module
with SV assertions. An Asynchronous Finite-State-Mehine (A-FSM) is used to align the Device-Under-TégDUT),
stimulus and assertions, it is fully configurable ® cover 30+ test scenarios. The total regressionmime is less than 10
hours, which enables regular sign-off check withira day.

Keywords---Analog Regression; Analog-Mixed-Signal Verification; Single Programmable testbench; Verilog-AMS
Stimulus; System-Verilog-Assertion (SVA)

I INTRODUCTION

The complexity of the power-management-unit (PMU)das System-on-Chip (SoC) is constantly increasing
with market demands of performance and increased safétpugh using System Verilog User-Defined Nettype,
it is possible to develop real-number models (RNM)paating for loading effects and execute exhaustive &ligit
Mixed-Signal (DMS) simulation8!, the leakage path, non-linear behavior, process/tetperdependence and
capacitive loading from top-level connections of analocuit are usually not covered in RNM. These efféetge
been exclusively simulated in SPICE simulators. Usiigaaced analog simulators and effective partitioning of
signals interacting with discrete and continuous domdiis ppssible to simulate the PMU blocks in spiceistetl
at chip level within 1 hour, which makes AMS Simulatioa feasible complementary verification method in
addition to DMS using RNM.

Unlike digital verification with UVM methodology, analogrification mainly relies on manual inspection,
usually comparing waveforms against requirements. Althobgtetare self-checking methods in Verilog-A for
analog signals with assertidfisthe language itself is limited when compared to dedicasertion languages like
Property Specification Language (PSL) and System-VerAsgertion (SVA). Additionally, implementing
assertions in the continuous time domain using cross() fundi computation intensive because the cross()
function controls the time step of the analog solvedscam introduce additional simulation points especialign
time and expression tolerance are ati8efihe self-checking method presented in this paper is inguitd using
SVA modules which are tuned for analog behaviors. Tlethod has the benefit of adopting mature assertion
development from digital verification for inspectirfgetanalog signal. It is faster since assertions arenget
executed by the analog simulator and provide opportuoityfurther data processing, therefore the overall
simulation time of AMS is reduced.

Traditionally analog testbench setups have the stimulukadd implemented using discrete components such
as voltage sources, current sources, resistors, tasaeitc. These setups have the following disadvantages

» Hard to synchronize different sources and loads
e Stimulus does not self-adapt to process/temperaturdigasa
» Hard to create complicated test patterns with DUT asidlosed loop

* One testbench can only serve limited number of testasioes, in other words, multiple testbenches are
required to cover the verification plan.

To mitigate these drawbacks, a single code-drivemustis module implemented by Verilog-AMS is proposed
in this paper. The stimulus module drives and loads the Digidd the stimulus module, a built-in asynchronous
finite-state-machine (A-FSM) controls stimulus basedhe read-out from the DUT. Thus, a closed-loop is éarm

2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

which enables complicated test patterns and self-adapt&tfibhin Verilog-AMS stimulus code, the testbench
configuration can be altered by compiler directives; aadéhection of test patterns can be done via if-elsasa-
statement coupled with the stimulus module’s parametbts, Tising the proposed testbench it is possible to cover
multiple test scenarios by varying variables from DUifd&is/Simulator etc. The analog signals fed to and
received from DUT are converted from/to discrete dionwith customized drivers/probes, which are optimized
for speed and accuracy. The converted analog signalsauesped in the discrete domain based on the state of
FSM from both DUT and Stimulus, thus the assertions #radaptive to the Process-Voltage-Temperature (PVT)
variations. In the end, the pass/fail of the test s@enardetermined by SVAs which monitor the complete
waveform over the simulation. This makes it possiblput normal digital regression management tool orofop
the presented flow.

The example in the paper is illustrated with a GUI dd8BA tool which is widely used by the analog design
engineer, but setup can be also be run on the command-line.

In section I, the testbench setup is explained staftorg schematic till regression setup; an exampleetit
checking mechanism is explained in section Ill; followedHgyjob policy and statistics of regression run time.

. REGRESSIVETESTBENCHSETUP

A layered approach to testbench is used in this paper asdeated in Figure 1. At the bottom is the schematic
which contains the DUT and stimulus modulenfluLus). In the middle is the EDA GUI where the variables ar
defined and attached to the DUT agéMuLus for selecting the test scenarios, and the outcom&¥/Afare also
readout here. Finally, at the top is the regressiorr@omthere all the test scenarios are defined, and vasak
given with the corresponding value.

N

Regression control

Test scenarios control

—7

Testbench in schematic

Figure 1. Layered testben:

A. Testbench Schematic

The testbench schematic in Figure 2 (a) contains two reedDUT anddrnmuLus. The DUT in this paper is a
SoC composed of a digital core with a CPU; an analog with multiple LDOs, DC-DC convertors and ADCs;
and a radio core for Bluetooth Low Energy (BLE). The AlSification focuses on the analog core in spice netlist
using multiple test scenarios namely cold-boot, poweplgupwitching, working mode transition, current
consumption, etc.

The structure ofshimuLus Verilog-AMS code is shown in Figure 2 (b). The elegttivoltage/current sources
for driving the DUT are provided by dedicated Verilog-8NWnhodules which reads the discrete real value as input.
The resistive and capacitive loads can be alteredltipg the task from the corresponding Verilog-AMSdules.
With this setup, all the behavior of stimulus is describatie discrete domain which enables verification IP to be
reused between AMS and DMS simulation. The built-in A-FSNII(ESM) controls the stimulus, when the
specified test pattern is successfully executed, thrukts terminates the simulation raising a pass flége@Wise,
the simulation can be terminated either by time-out or unésgeeset setting a fail flag. Each test pattern is

2021

DESIGN AND VERIFICATION ™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

wrapped in if-statements. The if-statement comparesra giarameter against the specified test scenario name.
Thus, the test pattern is selected by assigning differalue to such parameter. On top of this, the numerical
parameters can always be introduced todh@JLus module for test environment, such as supply value, hiasra
value, load current, decoupling cap, etc... Figure Z(ahiexample okhmuLus's parameters.

(a) Testbench Schematic Diagram

(b) Verilog-AMS Code Structure

Events

ISI' IMULUS
Verilog-AMS

Data

module PTB_<dut_chip> (pins...);
Drivers / Loads
(based on pinType)
FSM declaration
General state transition and reset statement

Probing

oF porn

(c) Example of lsruys Parameters
meterorvew etiogams
oo
e
e
e
e

Te-0s

Stmulation data processing vada_sua

Stimulus Code Body vada_ovs_a

| |
| |
| |
I I
I I
I I
| |
| |
| |
|| (=== | |
i I
i e I
il | * Fian cona swcdreset, initialization) | Te-06
| |
| |
| |
| |
I I
I I
I I
I I
I I
|
|
|

* Funwy wenelreset, initiakzation)

Testcase-based states.

Testcase: default

FSM

[T

Stimulus

Assertion

Asti_state: 3 ~f)

1 st
wiasti state: 3~ f)

Internal Variables
External Parameters

| lendmodie D e ry Deours | Preveus, Mex ey

Figure 2. (a) TestbencSchematic Diagrai; (b) IstimuLusVerilog-AMS Code Structure; (dstimuLuss parameter

B. Test Setup

For configurating the test bench and running the simulatii@mne is a single test with transient analysis mhme
as “tran” implemented in the EDA tool. The Figure 3 denratess 4 types of variables defined in the tran test,
which are explained in Table I. This setup associatestebibench configuration, test pattern, simulation
environment and software running inside CPU together, whiohs the framework of a programmable testbench.
By assigning different value for each individual designialde, the single testbench can be tuned for all the tes

scenarios.
Testbench Schematic + Compiled C [Test: Design Variables | Verilog-AMS STIMULUS Code
f(testcase == "default”) b
I tame | | SRS L v) e
MY ™M M | -] | i o) v v com e
case(sti_state
[1 e] [c][c] I 8 %Tests ' STATE_END : #16u TC_FINISH = 1'b1; //end the simulatio
v tran default : begin
CJ) U ' I/exanple for go through the sti_fsa
I % Simulator ams ' if(goto_next) sti_state_next = (sti_state_n:
% Analyses $display("No specified state %d is reached
STIMULUS — | B/ Design Variables | ey S
- T Lt f nd /st state
. | - @ sim_tag __ "ELEC_SIM" ' L
=55 | ! = 2 |
STATE_INITIALIZED : begin
| » [ibp_1u0_a - I Sdisplay(*Initialize the signal *);
L //SUPPLY Pins
Fag _:iz vdda_Sv_a_var = vdda_Sv_a_val ;
= x 9. — 4 vddd_8v9_a_var = vddd_8v9_a_val ;
DUT I ! ibn_2m1_a _21m ' vddd_1v2_a_var= vddd_1v2_a_val ;
- //CURRENT Bias Pins
LA I [ibp_gen_2m2 2.2 u22m ' ibp_gen_luA_var = ibp_gen. i
- [@ ibp_gen_2m2_a_3 _22m ibn_2m1_a_var = ibn_2m1_a_vi
i_bias_2m2_a_var[2] = 1i_bia: _val 2 ;
I - |8l vdda_Sv.a s | i_bies_2e2_a_var(3] = i_bias_2a: 13 ;
] - [@ vddd_ov9_a 0.9 ibp_gen_2n2_a_var(2] = ibp_gen_ a1
''''''' | vddd‘wz‘a s 12 ' ibp_gen_202_a_var(3] = ibp_gen_282_a_val3 :
T - " — 1 end

Figure 3. Design Variables in Associated among test patt®tsiT and Softwar

Table I. Design Variables in the Test

Variable Name Type Target Purpose

testcas string Istimuus Verilog-AMS Select the test pattern \aif-statemer

source_code_name string TCL file Loads the cornmedipg compiled C code into CPU. HW+SW cp-
verificatior

sim_tag string Xrun argument Control the compilerectives, which alter the net connectign,
components selection in the net

vdda_5v_a real kmmuLus Verilog-AMS Set the internal variables which catthe drivers for generating the

vddd_0v9_a bias voltage and current at the specific value

ibp_gen 2m2 &2

2021

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

C. Regression Setup

In the presented example, the regression setup is dartbevcorner sweep from the EDA tool. Each corner
represents a test scenario as shown in Figure 4dé&esie variable described in Table |, process angerate
variables are also introduced in the corner setup, whichase the regression coverage of the analog core. With
execution of all the corner simulations, one regressioriauthe chip is done.

I | | | l | |
Corners. ~ Nominal v cold_boot ~ sleep_wake_up v current_sleep ..rentactive o supply_unplug v overload v psrr
Temperature 40 25 85 25 40 25 85 40 25 85 25 25 25
Design Variables
sim_tag. "ELEC_SIM" “ELEC_SIM™ “ELEC_SIM™ "ELEC_SIM™ "ELEC_SIM" “ELEC_SIM™ "PSRR"
source_code_name “active" “sleep_fast_wake_up" "sleep” “active” “active” “active” “active”
[Id_boot sleep urrent_sleeg Jrrent_active 'supply_unplug wverloa old_boot
vdda_Sv_a 4555 50 4555 4555 50 so[ass0s5)
vddd_1v2_a 108132 12 108132 108132 12 12 12
Parameters
Model Files
toplevel.scs o ..tttop_ff top_sstop_fstop_sf top_tt & top_ff top_tt o top_tt & top_tt & top_tt & top_tt
Model Group(s)
Tests
v tran v v 4 4 4 4 4
...mber of Corners 1 60 1 24 12 1 1 3

Figure 4. Corner Setup inside for Regress

Figure 5 demonstrates two test cases: a) Cold-BoobaBteep & Wake up, where the state of chip PMU_FSM
and STI_FSM are shown together with one of the main ougjiist The states of PMU_FSM and STI_FSM are

described in Table I, the transition condition of the $BM key states are mentioned in the Figure 5. The
MEASURE state (E) of STI_FSM is used for signal procegsihe expressions are automatically adjusted
depending on the test cases, when in RUNNING state fio-Baot and Sleep Cycle for the Sleep & Wake up

scenarios. This self-adaptation feature maximizes thesability of testbench setup, thus increasing the overall
efficiency of the verification.

25 ™
2o a) Cold-Boot STI_FMS Transition Conditon
. - = DE :PMU_FSM ==7 (Running)
15 E>F :100uSec Time-out
2 j Sim End : 2uSec Time-out
Z 10 o
o
0.5
| Output Rail : |
0.0)
() (
I 3
\ ’l STI_FSM o ()
VT © G 0 6)
3.0 i Yo
259 |4 b) Sleep & Wake up STI_FMS Transition Conditon
20 = DE :PMU_FSM == 8 (Sleep)
215 ¥ E>F :PMU_FSM ==B (End of Refresh)
z =5 Sim End : PMU_FSM == 7 (Running, wakeup)
0.5
/\ Output Rail = X X 3
o S ——
| {IT'sTI_Fsm D :IDLE X E : MEASURE bé F END)\\
‘\ ‘/ PMU_FSMGX 1 7:RUNNIXG 8 :SLEEP RW« 8 :SLEEP \W/
0.”0 0{5 X.IO !.IS Z.IO ZTS 3.'0 3?5 4?0 4?5 STO STS 6?0 675 7?0 7?5 8?0 STS 9?0
time (ms)
Figure 5. SVA results filtering per test scene
Table Il. PMU FSM and STl _FSM States
STI_FSM State Description PMU_FSM State Description
0 RESE1 0~€ BOOTUP sequent
1 INITIALIZATION: bring up supply 7 RUNNING
D IDLE 8 SLEEF
E MEASURE 9~E REFRESH Sequen
F END

2021

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

lll. SELF-CHECKING

To enable the regression, self-checking without manual itispds essential. This is achieved by using SVA.
For SVA, the analog signals are converted to discestksignals by several methods from EDA tool support and
product manu#iIl, An example of the analog SVA modules is presenteisrsection.

A. Analog-aimed SVA module: assert_signal_within_limit

The presented SVA module is used to monitor the camplaveform against spec envelop with an auto-pause
feature. Part of the source code of assert_signal nwithiit module in SystemVerilog is shown in Figure 6, which
has 5 input signals (4 real + 1 logic) and a concurresgirisn. The description for ports and internal variaisles
shown in Table III.

“timescale 1s/1ps
module assert_signal_within_limit (signal, minval, maxVal, delay ,enable_check) ;
input signal, minval, maxVal, delay,enable_check;

logic enable_check;
real signal, minval, maxVal, delay;
[N]
property signal_within_limit;
@(event_trigger) disable iff(~enable_check)
enable_delayed |-> ((low_limit_ok &S up_limit_ok));
endproperty
signal_within_limit_assertion : assert property (signal_within_limit)
aFlag = (aFlag == -1)? -1 : 1;
else begin
aFlag = -1;
$error("Signal value is %4.2e, and it must stay within %4 .2e<x<%.2e", signal, minval, maxval);
end

endmodule

Figure 6. assert_signal_within_limit SVA modicode snipps

Table IlI. Ports and Internal Variable for assegnal_within_limit SVA module

Name Type Value Type Description
signal Port Real Input signal which needs to bpented against the specific range when asseftion
module is enable
minVal Por Rea Define the lower boundary for the spec re
maxVa Por Rea Define the upper boundary for the spec ri
delay Port Real Enable the assertion after theifgtime when enable_check is set

Temporarily disable the assertion for the specifiede when either minVval ol
maxVal change

enable_chec Por Logic Control signal to enable / disable the assertiodute

aFlag Variable Integer Internal variable to hold #ssertion results, which is read out in the dtimaode
expressions. 1: Pass; 0: Not Trigger-1: Fai®

a. Once the assertion fails, the -1 value cannot zghd anymore.

B. Application of assert_signal_within_limit SVA module

An application of the assert_signal_within_limit moduleif@pecting the charging current of the charger block
is presented in this paper. Figure 7 presents the datbe aurrent probing, SVA module instantiation and spec
calculation. Figure 8 presents a transient simulatisaltrevhere the charging current setting value (chargesmurr
in code) is swept from min to max over time, this ilerged by the stair-case shape of the minVall{
waveform) and maxVal valuegdwaveform).

A typical analog behavior of current spike during settinggition is clearly visible for the input signgt¢en
waveform) in Figure 8. Within the zoom-in window, it's atehat the current spike is larger than the spec maxVa
But as the assertion is automatically paused for andivee when minVal or maxVal changes, which is indicated
by the gray area, the assertion does not fail. Shaftidy the charging current is settled within the Bgetdelay

2021

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

time, the assertion is resumed automatically. Wherrrtamsés triggered and passed, the internal variable d@&lag
expected to be 1.

real vbat_a_flow
current_probe_00 #(.ppath("hierpin(*hierdutPath,vbat_a))) Iprobe_vbat_cur ("hierdutPath.vbat_a, vbat_a_flow)

//Adjust the spec margin based on the current magnitude. add the 50% extra margin for undefined spec.
always @(charge_current) begin

if (Icharge(charge_current) < -10e-3) Icharge_margin = 0.1; else Icharge_margin = 0.15
end

assert_signal_within_linit Icheck_vbat_flow_cc (vbat_a_flow, (1+Icharge_margin)*Icharge (charge_current), (1-Icharge_margin)‘Icharge(charge_current), 10e-6, (stage_d & charger_par_en_delay & cur_chk_en))

//function to calculate the Icharge, used for comparing the charging current during cc-mode
//It's negative as charge currnt running out of block.
function real Lcharge(input real trim_code

if(trin_code <= 15

trin_code + 1)
n

harg
(15 < trim in_code <= 31

Icharge 1+ (trim_code - 15))
f(31 < tris code <= 4

Icharge + (trin_code - 31))
£(47 < trim_cc

Icharge = 0

endfunction

Figure 7. Application of SVA module to checharging current against all trim settings (co

o S TMULUS ASSERT

o n JSTIMULUS ASSERT:
= prs_a_chy_in_[ERIISTIMULUS ASS

Input Signals
// (converted from A to D)

100,03
15003

20003

e Min and Max spec value
swo3 (calculated based on stimulus)

95003

45003 Assertionis
0003 disabled
003
s L
Assertion Flag: o -
1: PASS b LSy
= !
0: Not triggered 700,03 =4
-1:Fail 1
\ 5003
enable of assertion
A 75 chg i 2765_00 STIMULS A chck aa|) 1 BRARRRERRRRRRRRARRRE N RRR RN RRERRRRAN AR IIIRRRA
he_in_2763_00 STINULUS ASSERT. V= =
L D e e e e
€00 6850 €00 6950 7000 7050 7100 7150 7200 7250 7300 7950 7400 7450 7500

Figure 8. Application of SVA module to check c'i%‘é{;‘ging curiggainst all trim settings (sim resul

C. SVA module selection

Each key performance parameter of the chip, e.g. owjtitelock, reference voltage and current consumption
etc, have dedicated SVA modules for monitoring. But hdihe assertions are valid for specific test scen&imh
as the assertion for output rails monotonically ramgpip during code-boot does not fit with power-down scenario
Thus, it's necessary to build up a selection mechanigpickoup only relevant SVA based on the testcase. In the
presented example, it is done via case-statement indgxedtcase variable inside the stimulus code as shown in
Figure 9. Thus, the total_pass is the only outcome whietig® be checked for the regression results. As totd_pa
is calculated inside the discrete domain, it can bitygasked up by any digital regression tool.

wire clk wup 32k ok ;
assign clk wup 32k ok = ASSERT.Ichk f clk wup 32k.aFlag = 1 &
ASSERT.Ichk_dc_clk wup_32k.aFlag = 1;

always @(*) begin
case(testcase)

"supply_bounce" : total pass = sup _cur ok & testbus cur ok & rails _lvl ok & vref ok & clk wup 32k ok ;
"supply unplug vbat" : total pass = testbus _cur ok & rails vl ok & vref ok & clk wup 32k ok ;
"supply_unplug_vbus" : total_pass = testbus_cur_ok & rails_lvl ok & vref_ok & clk_wup_32k ok ;
"sleep_cycle" : total_pass = sup_cur_ok & testbus_cur ok & rails_lvl ok & vref ok & clk wup 32k ok ;
"rail_discharge" : total pass = sup _cur ok & testbus cur ok & rails_lvl ok & vref ok & clk wup 32k ok ;
"long_sleep" : total _pass = sup_cur_ok & testbus_cur_ok & rails_lvl ok & vref_ok & clk wup_32k ok ;
“battery drain during_sleep no reset" : total pass = testbus_cur ok & vref ok & clk_wup_32k ok ;

"battery drain during sleep reset" : total pass = testbus cur ok & vref ok & clk wup 32k ok ;

"hibernation" : total_pass = sup_cur_ok & testbus_cur ok & rails_lvl ok & vref_ok & clk wup_32k ok ;
default : total_pass = sup_cur_ok & testbus_cur ok & rails_lvl ok & vref ok & clk wup 32k ok & rails_mono_up_ok;

endcase

end

Figure 9. Example for fetching SVA results and Assertionceh

2021

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

Table IV. Brief of Regression Run for Job Policydd@un-Time

60
Job Policy 2 5 Total Sim Num: 156

Distribution Method LBS § 4

Parallel Num. Processors 4 E 0

Max. Jobs 16 g2
Run-Time 5 :Z

Total Run Time 9 hours 30 minutes

Num. Corner Runs 156

Avg Corner Run Time 51 minutes Figure 10. Run-Time Statistics

IV. JoBPoLICY AND RUN-TIME

Table IV provides a brief of job policy and run time foetregression, and Figure 10 shows the run time
statistics. A regression suite with 156 runs can behfadsn less than 10 hours (9.5 hours), and about 73% of runs
are finished within 1 hour using 64 CPUs from the comfarta.

V. CONCLUSION

This paper presented a methodology to introduceadligétrification methods into the analog domain to obtain
regression capability for analog scenarios. Verilog-AiM&sed as stimulus instead of discrete components/o dr
and load the DUT. It encapsulates a fully programmablbedrsh controlled by EDA tool for both testbench
configuration and test pattern execution. The self-checldrignplemented using analog-centric SVA module
significantly reduces the workload for the verificatemgineer and enable more iterations for verifyingaihalog
circuits at system-level. The test scenarios are deiinadorner sweep, and regression has been optimizee to
point of “push of a button”, the regression summary meipaipdated automatically, which gives a clear pictifire
current status of the analog regression run. Thisdmalso be applied downstream to the AMS sub-systaats
as an ADC or digitally-assisted power management unit dsingrof digital-analog interaction.

Reference
[1] A. Caicedo, and S. Fritz, “Enabling Digital MixedgBal Verification of Loading Effects in Power Réation using System Verilog
User-Defined Nettype,” DVCON EUROPE, Munich, OctoB819

[2] L. Balasubramanian, P. Sundar, and T.W. Fischeséftion Based Self-checking of Analog Circuit@rcuit Verification and Model
Validation in SPICE and Co-simulation EnvironmehBYCON

[3] “Verilog-AMS Language Reference Manual v2.4", Adegd System Initiative, USA, 2014.

[4] *“Unified VerilogAMS monitor to probe electrical/riéareal/logic signals in a test bench”, Cadencefsuf
https://support.cadence.com/apex/ArticleAttachmeri&f?id=a1 O0V000009ESgBUAW&pageName=ArticleContent

[5] “Smart VerilogAMS current monitor to handle chanigelesign configuration during Design and Verifioatcycles”, Cadence
Support https://support.cadence.com/apex/ArticleAttachmerig??id=a100V000009ESqQUAW&pageName=ArticleContent

[6] “Spectre AMS Designer and Xcelium Simulator Mixeidi&l User Guide 19.09”, Cadence, September 2019

