
Chef’s Special – an Efficient Verification Recipe for Maximizing
Productivity While Using a Third Party Verification IP

ABSTRACT
With the increasingly competitive time to market of a SOC, early

closure of verification has started to gain a lot of momentum in the

design and verification community. As a result, based on widely used

and emerging protocols, standards-compliant third-party Verification

IPs are rapidly being adopted to accelerate the development of a

complete verification environment. However, for the adoption of

Verification IPs, there are challenges pertaining to the integration,

the protocol specific intricacies, the underlying complexity of the

code, and the mechanism to create user-specific tests and

inefficiently debugging the stimulus and responses. Some of the

standard VIPs provide test suites to reduce the effort of the

verification engineer to code protocol specific tests. Typically, such a

test suite would be generic in nature and will not necessarily cater to

different flavors required by the user for DUT specific scenarios.

There have been efforts in the past from vendors and semiconductor

organizations alike to have an intuitive user interface for creating

tests but those have not been very successful for different reasons.

With the UVM Methodology, we will see how some of these

challenges are mitigated. UVM1.0, which brings together the best

practices and techniques across existing methodologies and the ones

proposed by verification engineers across semiconductor

organizations, now enables verification engineers and VIP providers

to create highly configurable and dynamic environments. Using the

example of the usage of a HDMI UVM VIP, this paper discusses

how the relevant features in the UVM methodology can be

leveraged to come up with a semi-automated mechanism of creating

user specific tests over a third party VIP without having to be very

well acquainted with the VIP infrastructure and the underlying

protocol.

Categories and Subject Descriptors
HDMI, UVM, Re-use philosophy, Automation

General Terms
Verification, Design, Standardization.

Keywords
HDMI, VIP, UVM, CEA-861-D

1. INTRODUCTION
Use of third-party Verification IP has become ubiquitous these days.

The ease of adoption of such IPs varies across different titles and

vendors. These IPs are also available in multiple different flavors

with respect to methodologies and the language of implementation.

Hence, from a user perspective, it becomes worthwhile to invest

some effort to come up with an efficient scheme to adopt them. If a

generic approach can be evolved, then the schemes can be deployed

across different titles and IPs from different vendors as well. The

Universal Verification Methodology (UVM) saw the three major

verification vendors along with multiple semiconductor

organizations aligning on a single IEEE1800-SystemVerilog base

class library implementation. Hence, it was decided to have a UVM

compliant VIP as a vehicle to understand what kind of guidelines we

can evolve to come up with a structured approach of efficiently

leveraging a third party Verification IP for a standard protocol. The

standard protocol picked up for this exercise was the High-Definition

Multimedia Interface (HDMI) VIP. The configurability in the VIP‟s

infrastructure which the underlying UVM methodology brings in

was fundamental for most of these guidelines. Hence, we will also

dwell on the capabilities that should be a part of VIP which enables

users to leverage UVM methodology.

Figure 1: The Concept

As we explore different ways to effectively leverage Third Party

VIPs, we come with a mechanism to create an automation layer on

top of the UVM based testbench to help out in our objective.

Why do we typically need a Verification IP? Primarily, it is to

generate appropriate stimulus which exercise all requirements from

verification and to be able to monitor the responses and ensure that

they are correct. In other words, earlier, we can come up with self

checking tests which exercise the right stimulus, the closer we are to

our objective. There is always a learning curve with the usage of

third party VIP which can be reduced by ensuring a structured way

of stimulus generation. The main focus of this paper is to reduce the

test generation cycle for verification of any complex protocol based

Varun S,

Amit Sharma,

 Abhisek Verma

Synopsys

svarun@synopsys.com

amits@synopsys.com

abhiv@synopsys.com

Bhavik Vyas

R2 Semi

bhavik@gmail.com

mailto:svarun@synopsys.com
mailto:amits@synopsys.com
mailto:abhiv@synopsys.com
mailto:bhavik@gmail.com

DUT as shown in Figure-2.

Figure 2: Objective: Reduce Time to Results With Third

Party VIP

To start with, we demonstrate how a UVM compliant VIP enables us

to create a highly configurable testbench template that can be

designed to incorporate place-holders for hooking the DUT with the

VIP to ease its integration with either a HDMI source or a sink RTL.

The next step is to abstract this layer and provide the user with an

automated way to create tests, application specific sequences and

VIP configuration classes as extensions of the base HDMI VIP

classes through a utility which reads the required information

provided by the user. To give an example, a typical use of the HDMI

VIP agent would be as a source in active mode or as a sink with

EDID enabled and a sequence would constrain certain HDMI frame

line parameters like values of R, G and B components during video

active period either independently or depending on a certain HDMI

VIP configuration parameter. A typical test would run different

numbers of standard HDMI frames from source to sink of a certain

format type and land the respective Video ID codes. Thus, based on

the test flows, a distinct set of the permutations can appropriately be

sequenced. The utility will map various HDMI VIP configurations or

frame line parameters, tweak the relevant constraints and then create

the logical order of atomic sequences as well as appropriate

extensions of the VIP configuration classes.

2. HDMI PROTOCOL OVERVIEW
HDMI is a de-facto standard for digital connection for consumer

electronics and PC products. It delivers highest quality audio/video

signal over a single cable. HDMI system architecture is defined as

consisting of Sources, Sinks, Repeaters, and Cable Assemblies. A

given device may have one or more HDMI inputs, and one or more

HDMI outputs. The HDMI cables and connectors carry four

differential pairs that make up the TMDS data and clock channels as

shown in Figure-3. These channels are used to carry video, audio and

auxiliary data. Note that this paper doesn‟t talk about the Consumer

Electronics Control (CEC) protocol associated with a typical HDMI

device.

The HDMI source is responsible to send frames onto the TMDS

interface, while a HDMI sink is responsible to receive them. The

sink never responds back to the data from source. As shown in

Figure-3, the HDMI link includes three TMDS data channels and a

single TMDS clock channel. Each frame consists of a set of lines as

per the HDMI specification. Each line is further segmented into

video data, audio data and control periods. The complete feature list

can be referred from [2].

Figure 3: HDMI Source(Tx) and Sink(Rx) Block Diagram

Since the HDMI protocol supports a wide variety of audio and video

formats, one of the major challenges in verifying all the different

frames across all the different configurations.

3. HDMI UVM VIP ARCHITECTURE
Figure-4 shows the architecture of Synopsys SVT (SystemVerilog

Technology) UVM based HDMI VIP.
In VIP, UVM compliant classes and attributes (members) are

provided to represent the protocol activity and the characteristics of

that activity. For example, a transaction object has members that

define the type of audio and video information transmitted. A set of

base classes provide common functionality and structure to form the

foundation for the entire HDMI VIP system. We list down some of

the features of UVM VIP which we would leverage later on to come

with our VIP adoption guidelines.

Configuration: A protocol like HDMI gives the flexibility of

working with different parameters. As an example, the device can

take a varying number of frames to stabilize the video signal. Hence,

to address all such requirements, we would need to bring in UVM

Resource mechanism to provide the configurability required. The

UVM VIP has a configuration class which is shared across all the

components. This class is randomized in the build_phase and then

propagated down to different individual components using UVM

resource mechanism[6]. Thus, the individual components would

reconfigure themselves dynamically at different points in time. If a

user needs to change the configuration properties for specific tests, it

requires setting constraints on a derived configuration class and

overriding the configuration class in the environment using factories

or through a uvm_config_db#(T)::set mechanism.

Stimulus generation: To stay consistent with the architecture of the

HDMI and Consumer Electronic Control (CEC) protocols, a layered

approach has been adopted by the UVM VIP with respect to stimulus

generation. There are transaction classes corresponding to each of

these layers (HDMI and CEC). These are typical UVM data

descriptors, which translates to protocol specified frames.

Transaction Level Interfaces: UVM Analysis Ports to broadcast the

required parameters to the coverage and the scoreboard models.

Extension Points: A rich set of UVM based callbacks have been

provided across different layers enabling the user to add in project or

test specific extension.

Data Exceptions: The extension points can additionally be used for

changing the default stimulus and generate appropriate conditions for

negative tests. A number of exception data classes have been defined

within the VIP library for this purpose.

Factory Infrastructure: The VIP provides the user with the benefit of

overriding the default behavior of VIP components by providing user

specified extensions. This allows the user to meet the unpredictable

needs of different tests.

Event Synchronization: A number of UVM events have also been

provided which users can use for the purpose of decision making to

synchronize their testbench with transition of data or states within

VIP. Most events are tied to the HDMI standard but there are a few

that are generic notifications from the data class.

Sequence Library: A rich set of sequences are available with HDMI

VIP. These can be readily leveraged in user tests by setting them as

the default_sequence of the HDMI source sequencer or by explicitly

starting them on the HDMI source sequencer. These sequences help

generate various types of HDMI compliant frames. These are the

building blocks for the user to stitch together a complicated scenario

if required.

Figure 4: Synopsys HDMI VIP Block Diagram

3.1 VIP USAGE AND CONFIGURABILITY
The HDMI VIP can be configured to have either or both of the

following two environments:

Source Environment - The Source Environment encapsulates the

Source Agent and the CEC Agent (if CEC is enabled). It also

contains the source configuration object and a virtual sequencer to

orchestrate the HDMI and CEC sequencers.

Sink Environment - The Sink Environment encapsulates the Sink

Agent and the CEC agent (if CEC is enabled). It also contains the

Sink Configuration object and the CEC sequencer.

The typical use-model of the HDMI VIP is to be configured either as

source or sink. This would require either of the Source/Sink

Environment to be instantiated and hooked onto the TMDS interface.

The Environment should be configured with the corresponding

configuration object descriptor.

Both Source and Sink configuration objects encapsulates audio and

video configuration objects to support various types of audio and

video attributes such as ASP audio or 24 bit color video etc. The

complete list of attributes can be referred from [3]. Additionally,

these objects have parameters to control a host of features: the

number of frames to be sent; enabling/disabling coverage etc.

These configuration objects are created in the UVM testbench. Their

attributes are then set or randomized and then propagated to either

the Source or Sink Environments using UVM Resource mechanism

to get the individual VIP component configured. The various modes

of operation and the complete feature list can be referred from [3].

4. FRAMEWORK FOR EFFECTIVE VIP

ADOPTION

Figure 5: UVM Testbench Using the HDMI VIP

Figure 5 represents a typical UVM testbench. We will use this

framework going forward to lay down our guidelines and create

possible automation flows. The testbench comprises a HDMI VIP

Source Environment and a Sink Environment connected back to back

through an interconnect. The interconnect serves as a place-holder

for the user to hook up either a Source DUT or a Sink DUT. Once

the DUT is hooked up, the respective Sink Environment or the

Source Environment (VIP) would be shunted out of the testbench.

The Virtual Interfaces representing the Source and the Sink

interfaces are propagated through the UVM configuration

mechanism as well.

A collection of tests which derive from a common base test are a part

of this framework. The base test essentially sets up the VIP hierarchy

by instantiating the top level environment class. User tests extend

from the base test to create scenarios based on the user requirements.

4.1 MAPPING TESTS TO TESTBENCH

ATTRIBUTES

The following steps can be followed to create a structured approach

for deciding the testcase creation or generation schemes:

Step 1: Enumerating mechanism and testbench attributes for tests

creation

For each VIP, we need to understand the attributes which are

available for the user to modify to create testcases. In a typical UVM

testbench catering to the architecture described above, creating tests

can be done in one of the following ways as described below.

Though these are not exhaustive in terms of the different ways by

which a test can be created:

1. Adding appropriate constraints on a derived configuration class

and overriding the configuration class in the environment using

factories of the UVM Configuration Mechanism

2. Adding appropriate constraints on a derived transaction class

and overriding the transaction class in the sequencer using the

factory infrastructure.

3. Creating new sequences by stitching together the sequences

available in HDMI VIP sequence library. The sequence

extensions can also be created with a slightly modified

behavior. Once created, they are exercised by running them by

setting the default_sequence property of the sequencer class or

by explicitly starting it on a specified sequencer using the start()

method of the sequence class.

Step 2: Mapping Verification Requirements to Testbench attributes

This step involves the mapping of the list of verification

requirements in terms of a matrix of configuration attributes of the

testbench. In a UVM testbench, these are typically the configuration

and transaction descriptors.

For HDMI VIP, the following figure provides the matrix for three

tests. For this VIP, most other tests would fit into this matrix and we

need to add additional rows.

Figure 6: HDMI Test Specification in Terms of the HDMI

UVM VIP Configuration and Transaction Descriptors

Each row in the above matrix (Figure-6) corresponds to a user test to

be created, while each column provides various attributes in terms of

either configuration or transaction descriptors that needs to be

manipulated on the HDMI VIP.

The first column specifies the name of the test as extracted from the

verification planner or specification, the second column provides the

information about the HDMI protocol specific audio configuration

attributes in the VIP, the third column provides the information about

the HDMI protocol specific video configuration attributes to be

supported by the VIP and the fourth column provides the other

configurable properties of the VIP (Enabling Extended Display

Identification data (EDID) or enabling High-bandwidth Digital

Content Protection (HDCP) etc). The fifth and the final column

provide the attributes for the transaction descriptor of the HDMI

UVM VIP which defines the audio, video or control data to be

transmitted by each frame. For more complicated protocols, more

columns would be required to map to the additional testbench

attributes and the verification requirements.

Step 3: Manual Test Creation and Formulating Test Templates:

Based on the above matrix, the objective is to create a few minimal

representative tests. This is used to serve as templates for the creation

or generation of additional tests. For example, the test “CEA-861-D-

1” from the third row of the matrix in Figure-6. This requires

creating an extension of the configuration class to override the

specific values of the Audio and Video configurations.

Step 3a: Creating the custom system configuration class

Figure 7: Custom Configuration Class For CEA-861-D-1

Testcase

As seen above, the values are assigned in the extended class. In

specific cases, it might be possible to avoid the extension and use the

Resource mechanism if the values have to be overridden for a small

number of parameters.

The custom configuration class

(cust_svt_hdmi_system_configuration) as shown in Figure-7 extends

from the base system configuration class provided by the VIP. The

base system configuration class is the container for the Source and

the Sink configuration objects, which are used to configure either a

Source or a Sink VIP.

Each of them encapsulates lower level configuration objects such as

audio and video configuration objects to define various audio/video

attributes supported by the VIP in a particular configuration.

The Audio config column in the matrix shown in Figure-6 maps to

the attributes of the attributes of audio_cfg object handle. Similarly

the Video config column maps to the attributes of video_cfg object

handle available inside Source or Sink configuration handle. The

mapping is performed as a constraint on a particular attribute of the

configuration handle with the values provided in the matrix.

Additionally, the fourth column of the matrix in Figure-6 provides an

additional constraint to restrict the number of total frames to be sent

by the source and enables the default coverage model of the source.

Step 3b: Creating custom sequence

Figure-8 shows a custom sequence class created from the frame line

column information provided by the matrix in Figure-6. The custom

sequence extends from the base sequence available in the sequence

library as a part of the HDMI UVM VIP.

All the user sequences are extended from the HDMI VIP specific

base sequence. This ensures that the sequences reuse the code for

raising and dropping of objections in the appropriate methods. This

custom sequence adds constraints to the request before sending it to

the sequencer. These constraints are primarily governed by the

information provided in the frame line column of the above matrix in

Figure-6. For the CEA-861-D-1 test, the frame line column expects

the data island packets (audio period) to be distributed over ASP or

NULL types in the probability of 0.96 and 0.04 respectively. The

constraint for the same is not shown below (hidden inside the macro

call in the code snippet below), but can be easily realized as a

distribution constraint. Another key aspect as shown in Figure-8 is

that the sequences are made „configuration aware‟ through the parent

sequencer handle on which they are executed. The parent sequencer

retrieves the VIP configuration from the UVM configuration

database. This helps in creating highly configurable sequences which

can be reused much more easily.

Figure 8: Custom Sequence

Step 3c: Custom testcase:

Given that the custom configuration class and user defined sequence

were created, they are now applied to the test environment. The

custom test class (random_test here) extends the base test. During

the build_phase of the test, it sets the custom configuration onto VIP

by using uvm_config_db::set(). Similarly, it sets the

default_sequence property of the source sequencer using

uvm_config_db::set() which causes the sequencer to execute the user

defined sequence in the appropriate phase. The code for the same can

be referred from Figure-9.

Figure 9: Custom Testcase

This test can be invoked by passing the testname to the

+UVM_TESTNAME runtime argument. Thus, in the context of the

HDMI VIP, we have created a specific test by creating three new

classes, and ensuring that they are picked up by the simulation. After

executing Step 3, we essentially have a template for creating further

tests. The template is basically a collection of these three classes

extended appropriately. This template can now be used as the vehicle

to quickly generate the required code to be inserted depending on the

parameters specified in the matrix created earlier to map to the

complete set of verification requirements.

4.2 ENABLING AUTOMATION
Once a structured approach or template has been identified to create

new tests, the next logical step to accelerate verification closure is to

provide an automation layer. For a protocol like HDMI, simple

parsing and pattern matching utilities can be used to fill up the

templates that serve as a framework for new tests. For this exercise,

we created a „test-gen‟ utility written in PERL that reads the „matrix‟

which can be captured in a spreadsheet. As mentioned earlier, each

column in the spreadsheet represents certain configuration descriptor

or transaction descriptor. To make it easier for the end user to be

aware of the attributes to select, each column has a drop-down list

with the valid configuration or transaction attributes. Once the

selection is made, the corresponding tests can be generated.

Figure 10: HDMI Test Gen Utility

The set of steps governing the automation are restated as follows:

1. The custom configuration, sequence and the test template

classes are created and registered in the test generation utility.

This is done once for each VIP.

2. The spreadsheet is parsed by the „test-gen‟ utility to identify the

attributes that are members of the VIP configuration classes.

The spreadsheet is customized for each VIP so that it only lists a

set of valid attributes for different configuration and transaction

descriptors. This ensures that the selection is always valid.

3. In case of HDMI VIP, once the attribute and its value has been

identified, a suitable constraint is created for it and dumped

inside the custom configuration class for attributes in column

2,3 and 4, while it is dumped inside the sequence class for

attributes in column 5. These constraints define the type of

audio and video information transmitted by that frame. (This

completes the custom configuration and the sequence classes

and they look like the ones shown in figures 7, 8 and 9.)

Note that mostly the constraints are regular assignments. But

any SV constraint blocks would be mapped to the appropriate

configuration or transaction descriptor.

4. For specific VIPs, the generator can also switch on/off different

checks and coverage bins based on the chosen configuration..

The steps described above are generic steps and the generation

infrastructure can suitable be enhanced for more complex protocols.

5. GUIDELINES FOR A GENERIC VIP

ARCHITECTURE TO ENABLE TEST

AUTOMATION
We can see that a testcase generation infrastructure can be extended

to any VIP given that it adheres to a certain set of guidelines as

outlined below:

1. One of the most important guideline is to have the VIP code

strictly adhere to the UVM guidelines and best practices. Each

component inside VIP should enable UVM features such as

configurations, factory infrastructure and callback. These are

the cornerstones of reusable and configurable testbenches.

2. The VIP configuration and transaction descriptors must have the

right set of constraints which are closely tied to the

specification. They should govern the valid ranges of all the

parameters inside the configuration or the transaction data

classes.

3. For more complicated scenarios, VIPs should provide a rich set

of sequences to enable user to use them as building blocks.

4. Most of the VIP components should be made aware of the

configuration. This ensures that the VIP configuration can be

made available to data objects as well. For example, once the

sequencer is made configuration aware, the sequences running

on the same can request the same through the handle of the

parent sequencer and use them accordingly as shown in Figure-

8.

5. One of the interesting features of the HDMI UVM VIP which

helped us debug while using the test generation infrastructure

was the is_valid check done by the VIP on the transaction and

the configuration data object before using it.

Primarily, these checks are available inside the configuration

and the transaction classes to ensure that these objects do not

assume invalid values, either not supported by the VIP or illegal

as per the protocol.

6. Use of strongly typed „set‟ and „get‟ while using uvm_config_db

by the VIP ensured correct assignments especially if such

testbench codes is automatically generated. Whenever the VIP

retrieves a value through uvm_config_db::get, it is provided a

check to ensure that the „get’ was correctly executed.

7. The default coverage model should have the coverage

parameters initialized through uvm_config_db::get(). Also, the

covergroups should be enabled/disabled through configuration

parameters. This helps to ensure that only the relevant

covergroups are enabled for different simulations and the

covergroups are also made configurable given that the

SystemVerilog language does not provide coverage extensions.

8. As a general guideline to VIP architecture, a consistent

language and methodology gives the best testbench

methodology support and performance. Mixed language VIP

can often do the job but results in unwieldy language

translations that hamper methodology support and limit

performance. This will have a continual drag on productivity.

With SystemVerilog having gained acceptance as an industry

standard, a pure SystemVerilog based VIP would produce the

best results.

6. RESULTS & CONCLUSION

We introduced Figure-2 earlier as our objective of creating a set of

guidelines and infrastructure for a more efficient adoption of third

Party VIPs. By following a set of steps and leveraging the UVM

Compliant HDMI VIP, we were able to put down specific guidelines

which helped us to create a test generation infrastructure. This helped

to generate tests targeting a big percentage of tests aimed at verifying

DUT interfaces compliant to the protocol. A structured approach

towards planning the verification requirements and mapping them to

the capabilities of a VIP upfront would help us create the appropriate

framework for accelerating the process of adding incremental tests.

Such an approach reduces the time to use a third party VIP and the

overall effort spent on VIP specific code development. Thus, with

minimal user involvement, the user is able to create and control the

required testcases that are desired and thus concentrate on

converging and completing the verification tasks efficiently. Though,

the UVM based HDMI VIP was defined to demonstrate this flow,

the various approaches, guidelines and techniques described above

can be well leveraged with other VIPs and methodologies across

various constrained random verification environments to increase the

verification productivity of the end users.

7. REFERENCES
[1] UVM user guide

[2] HDMI-1.4 Specifications

[3] Synopsys HDMI UVM VIP user guide

[4] CEA-861-D Specifications.

[5] UVM Reference Guide

[6] Advanced Testbench Configuration with Resources, Mark

Glasser, Mohamed Elmalaki

