
Checking security path with formal verification tool: new application

development

Julia Dushina (Julia.Dushina@st.com) STMicroelectronics, UK, Bristol
Saumil Shah (Saumil@cadence.com) Cadence, UK, Bracknell

Joerg Mueller (jmueller@cadence.com) Cadence, Germany, Munich
Vincent Reynolds (vincentr@cadence.com) Cadence, UK, Bracknell

Abstract: This paper describes how a new formal tools application was developed resulting from an

actual need of STMicroelectronics chip development. The new formal application is checking that

sensitive data can’t leak towards unwanted interfaces of design.

Introduction
In many industries such as credit card chips, set-top-box industries, etc. the data security is one of

the main concerns of manufactures as the failure to protect sensitive information results in huge

financial loss and sometime loss of the business altogether due to damaged reputation [1, 2].

In STMicroelectronics we were concerned about the security of sensitive data in a chip developed by

the Set-top-box division. The sensitive information in our case is the keys used to decrypt data

stream provided to consumers’ cable and satellite end point. Checking that sensitive data is not

accessible from external interface requires checking that the path from sensitive data (key store) to

external interface is secure, i.e. sensitive data can’t flow to the external interface. A path from

sensitive data store to external interface is further called a security path.

Following exploration of available on the market methodologies and techniques, our formal

verification tool supplier (Cadence) was asked to propose a solution, which was accepted by ST using

quality to price criterion. The proposed solution is described below.

Design description
Due to security reason all the details of the design can’t be revealed, so general functionality of a

simplified example is shown in Figure 1 below.

The design is manipulating keys which are used to encrypt/decrypt satellite or cable data stream.

Whereas all three design interface (denoted in Figure 1 as Interface A, B and C) can write keys, only

one interface A can read keys back. Moreover, this interface A can only read a key if allowed so by

an adjacent rules block. Rules block will take a key’s address as input and will return “allowed/not

allowed for reading” signal back to the DUT. In addition to the key store and rules block, the design is

also writing data to system memory and system memory can provide data back to the design.

So, the task was to prove that no accidental leakage of the keys occurs towards the interfaces B and

C and the keys are only permitted to appear on the interface A when approved by the rules block.

mailto:Julia.Dushina@st.com
mailto:Saumil@cadence.com
mailto:jmueller@cadence.com
mailto:vincentr@cadence.com

Figure 1: Block diagram of secure device

Explored solutions
When searching for an answer to the problem, three possible solutions were explored.

Symbolic approach
This approach uses an abstract constant data value called symbol that would travel from key store

towards external borders. A property is using the symbol for checking appearance on interface C. In

order for the symbol to be sourced only from the sensitive key storage, it was prohibited with the

help of constraints to enter on any other interface, especially on the system memory interface as it

directly provides data to the interfaces A, B and C.

The set of constraints and main property would look in this approach as outlined below. The PSL

flavour of interactive properties (a new Tcl runtime feature provided by the tool [6]) is used as

formal language in the following example to write security path property for the interface C. An

assumption in the example below is that every interface has forward (data) and returned data

(return_data) and that all data buses of the design have the same width:

 Define a new signal symbol and constrain it to be rigid during proof:

constr -add -rigid symbol

 Prohibit all other interface to have the data equal to symbol:

constr -add -inter { interface_a _data != symbol} -name const_data_on_a

constr -add -inter { interface_b _data != symbol} -name const_data_on_b

constr -add -inter { interface_sys_mem _data != symbol} -name const_data_on_sys_mem

 Add a cover showing the symbol can enter the design at the secure interface

assert -add -inter { keystore_r_data == symbol } –cover -name cover_symbol_on_key_store

 Write the main property that proves the absence of the data on the interface C:

Interface A

Interface B

Interface C

Sensitive data
KEY STORE

DUT

RULES

System
Memory

assert -add -inter { (interface_c_return_data == symbol) } -cover -name

cover_no_symbol_on_c

assert -add -inter { ! (interface_c_return_data == symbol) } -name check_no_symbol_on_c

Please notice that we can prove the absence of unwanted data on the interface C by writing either a

cover or an assertion. In first case we expect the cover to fail proving that there is no path (no

coverage can be found) between the key store and the interface C and therefore the interface C

return data can never be equal to the symbol. In the second case we are negating the expression

used in the cover statement. And in this case we expect the assertion to pass.

For the interface A more constraints are needed as keys can be read by the interface A if approved

by the rules block. So the task becomes to prove that keys can’t be read if the rules prohibit it. Thus,

the additional constraint stipulates that if a key is read by the interface A, the rules block returns

“not allowed for reading” signal for that key defined by the key address:

 Define a new signal address_symbol and constraint it to be rigid during proof:

constr -add rigid address_symbol

 Prohibit reading a key of the above address whereas all other keys may be read:

constr -add -inter { (interface_a_req == 1 and interface_a_address == address_symbol) |=>

sys_memory_allowed_for_reading_signal == 0} -name constr_no_reading_rules

A new symbol is introduced to represent key address when reading a key on the interface A. We

took advantage of the fact that there is no re-timing between the interface A request and request on

the rules block. The “allowed_for_reading” signal returns its value the next clock cycle. Thus, the

main properties for the interface A becomes as follows:

assert -add -inter { (interface_a_return_data == symbol and interface_a_address ==

address_symbol)) } -cover -name cover_no_symbol_on_a

assert -add -inter { ! (interface_a_return_data == symbol and interface_a_address ==

address_symbol)) } -name check_no_symbol_on_a

The provision of constraints to prevent the observed symbol from entering the system at other, legal

interfaces may seem as additional effort. However, it is this iterative process of analyzing and

eliminating one legal data flow in the IP after the other, that increased the confidence and trust in

the security solution when eventually no path is reported.

Miter approach

 Two instances of the same design are placed side by side and all corresponding inputs except for the

key store output are tied together forming a Miter [3]. The key store outputs are described in a

cover property to be different from each other, so we know that it can be the origination of a

discrepancy. An assertion then checks that corresponding outputs of external interfaces are always

equal. As the only variable between the two instances comes from the key store interface then the

only way a difference can be observed between two corresponding outputs is if a path exists

between the key store and the output being verified. If the assertion passes then the path is secure,

if it fails then a security violation is exposed.

The code of the approach applied to the interface C is as follows:

 In a testbench tie all inputs but from the key store together as shown in Figure 2

 Cover the inputs from the key store can be different for two instances:

assert -add -inter { (key_store_input_inst1 != key_store_input_inst2)) } -cover -name

cover_different_key_store_inputs

 Write the main property that proves returned data on the interface C are always the same:

assert -add -inter { (interface_c_return_data_inst1 == interface_c_return_data_inst2)) } -

name same_data_on_c

Figure 2: Miter construction

Please notice that in place of tying inputs of the two instances in testbench, they can be constraint

instead:

 Constraint all input of the DUT but inputs coming from the key store be the same for two

instances:

constr -add -inter { input1_inst1 == input1_inst2} –name const_input1

constr -add -inter { input2_inst1 == input2_inst2} –name const_input2

. . .

constr -add -inter { inputN_inst1 == inputN_inst2} –name const_inputN

We did not find a noticeable difference in the 2 ways to connect the inputs.

In contrast to the previous approach, using the Miter approach the origin of the observed value is

unique by construction – it can only come from the key store. Thus there is no need to create

constraints for preventing values originating from other inputs. While this approach is simpler to set

Interface A

Interface B

Interface C

DUT
instance 1

DUT
instance 2

System memory

Interface

Rules block

Interface

Key Store input

for instance 1

Key Store input

for instance 2 !=

up, it lacks the insights and learning during environment creation, resulting in reduced confidence in

the environment.

X-Propagation approach
This approach uses already available Cadence capacities to propagate “X”s in designs. In this

approach the output of the key store is explicitly assigned to “X” and a property is written that

proves that “X” would never appear on the external interface [4, 5].

Conceptually this is exactly the same approach as the Miter approach described before. Just instead

of tracing a unique value modelled as discrepancy we trace a unique value modelled as “X” in the

tool.

The code of this approach applied to the interface C is as follows:

 Inject “X” at the key store return data:

constr -add -inter { (!keystore_csn && keystore_wen) |=> (keystore_r_data[7:0] === 8'hXX)

|| (keystore_r_data[7:0] !== 8'hXX) } -name inject_x_at_keystore_r_data

 Write the main property that proves returned data on the interface C are never “X”:

assert -add -inter { (interface_c_return_data !== 8’hXX)) } -name check_no_x_on_c

Current solution to the problem
At the end of the exploration, the symbolic approach was used to prove that there is no path from

the key store towards three external interfaces. Three sets of environment and main assertions were

created, one for each interface.

Blackboxing
As the design is very complex irrelevant parts of the design are black boxed in order to conclude on

the assertions. Blackbox outputs become new primary inputs to the design. It must be decided

whether a black box output can be the new origin of a secret data (in case it would transport data

arriving at its inputs) or not in the same way as for primary design inputs. It was concluded not to

consider them as origins, because black boxing is applied selectively and dependency between black

boxed blocks and each interface is considered. For example for the interface A, only the modules

which affect the data flow from the interfaces B and C towards the key store are black boxed but not

the modules which affect the data flow from the interface A. Likewise appropriate blackboxing is

applied when checking interface B and C. Figure 3 shows the idea.

Results
The security path verification was successfully applied on three different paths, resulting in three

properties to be verified in total, guaranteeing security of secret keys on the chip.

At least one security hole was found while checking the security paths which are now all fixed. The

main problem was keeping keys written to the key store on the data bus which was then propagated

back to the requesting interface during protocol acknowledgment phase.

At the end we were able to conclude all properties and guarantee security on all paths with IEV. The

total runtime for the assertion was varying from 5 to 30 minutes using a 3 GHz Quad-core Xeon

machine with 24 GB of RAM.

Figure 3: Blackboxing applied on the device

New formal tools application
Following this experiment Cadence created a prototype of a new formal tool application called

“Security Leakage Verification Solution” incorporating the learning and experiences from our

collaboration. It is automating the setup by providing new Tcl commands, improving the productivity

by new debugging capabilities dedicated to this application and improving performance of the

engines specifically for these setups.

An example command sequence to setup the verification for a single path from the keystore to the

interface C is shown below.

check_no_path keystore_r_data interface_c_return_data

prove

It will take care about setting up the tool, creating the necessary constraints, covers and checks and

running the formal analysis. So the user is not required to write any property code directly, rather he

provides a high level description of the desired or undesired paths in his design.

In case of a security leakage the tool provides a formatted waveform (Figure 5) and a message

showing the root origin (Active X sources in Figure 4). That is also extremely useful while creating the

Interface A

Interface B

Interface C

Sensitive data
KEY STORE

DUT

RULES

System
Memory

environment for understanding the false paths that needed to be eliminated. The examples below

are taken from a demo design rather than the ST design.

Figure 4: Debugging a security leakage in IEV showing the root cause

Figure 5: Waveform showing a security leakage

Conclusion
From ST perspective it was provided with robust and affordable solution to the security path

problem which is otherwise very difficult to tackle. This solution fits nicely with other tools range

from the same supplier making its use familiar and therefore easier as all tools have similar interface

and features.

For Cadence this experience allowed to create a new formal tool general purpose security path

application thus easing the task of proving security path feature and providing crucial confidence in

the security hardware.

The resulting “Security Leakage Verification Solution” is automating the creation of the

environments by providing built-in capabilities for creating the models and properties required for

guaranteeing absence of data path between secure and non-secure interfaces.

References

[1] Paul Kocher, Joshua Jaffe, and Benjamin Jun, Differential power analysis”, Springer-Verlag, 1999,
pp 388-397

[2] Michael Tunstall, “Attacks on Smart Cards”,
http://www.cs.bris.ac.uk/home/tunstall/presentation/AttacksonSmartCards.pdf

[3] A. Jain, V. Bopanna, R. Mukerjee, J. Jain, M. Fujita, M. Hsiao, “Testing, Verification and Diagnosis
in the Presence of Unknowns”, 18th VLSI Test Symposium 2000, pp 263-269.

[4] D. Brand, R. A. Bergamaschi and L. Stok, “Be Careful with Don’t Cares,” DAC’95, pp.83-86.

[5] R. A. Bergamaschi, D. Brand, L. Stok, M. Berkelaar, and S. Prakash, “Efficient Use of Large Don’t
Cares in High-level and Logic Synthesis,” ICCAD’95, pp. 272-278.

[6] Incisive Enterprise verifier XL User Guide. http://support.cadence.com, 2013. Product Version
13.1.

http://www.cs.bris.ac.uk/home/tunstall/presentation/AttacksonSmartCards.pdf

