
Checking Security Path with
Formal Verification Tool:

New Application Development
Julia Dushina, STMicroelectronics; Saumil Shah, Cadence;

Joerg Mueller, Cadence; Vincent Reynolds, Cadence

Security is a Major Concern
Diverse industries affected

• Credit cards, Set-top-boxes, ...

Security failure = Financial failure

• Or even loss of business

Set Top Box division of ST had security concerns

• Needed a solution

Security is a Major Concern
Diverse industries affected

• Credit cards, Set-top-boxes, ...

Security failure = Financial failure

• Or even loss of business

Set Top Box division of ST had security concerns

• Needed a solution

1

Simplified (Security!) Problem Description
Design manipulating keys

• To decrypt data stream provided to consumers’ cable and
satellite end point

Must check keys are not accidently accessible from
internal interfaces

• Security path is safe

Three major interfaces

• Only one interface can read keys back if rules allow that!

There are also System memory and RULES blocks

• Can be accessed by the design

2

8

Approach #2�

Miter Approach for the Interface C: PSL
Tie all inputs but from the Key Store together

Show the Key Store inputs can differ for two instances:
• assert -add -inter { (key_store_input_inst1 != key_store_input_inst2)) } -cover

-name cover_different_key_store_inputs

Prove returned data on the interface C are the same:
• assert -add -inter { (interface_c_return_data_inst1 ==

interface_c_return_data_inst2)) } -name same_data_on_c

5

Approach #1�

Symbolic Approach for the Interface C: PSL
Define a new signal symbol and constrain it to be rigid:
• constr -add -rigid symbol

Prohibit all other interface to have the data equal to the symbol:
• constr -add -inter { interface_a _data != symbol} -name const_data_on_a

• constr -add -inter { interface_b _data != symbol} -name const_data_on_b

• constr -add -inter { interface_sys_mem _data != symbol} -name
const_data_on_sys_mem

Show with cover the symbol can enter the design at the key store:
• assert -add -inter { keystore_r_data == symbol } –cover -name

cover_symbol_on_key_store

Prove the absence of the data on the interface C:
• assert -add -inter { (interface_c_return_data == symbol) } -cover -name

cover_no_symbol_on_c

• assert -add -inter { ! (interface_c_return_data == symbol) } -name
check_no_symbol_on_c

Cover must fail!

Assertion must pass!

10 11

Approach #3�

X-Prop Approach for the Interface C: Idea
• Uses IEV capacity to propagate “X”

• Similar to the Miter approach

• Instead of tracing unique different value between two
instances, an “X” value is traced!

9

Simplified Design (Key Table) Diagram

3

Only interface A can read keys back if allowed by the RULES!

• Interfaces B and C can NOT read keys

Interface A

Interface B

Interface C

DUT System
Memory

RULES

Sensitive Data
KEY STORE

Approach #1�

Symbolic Approach for the Interface C: Idea

4

Interface A

Interface B

Interface C

DUT System
Memory

RULES

Sensitive Data
KEY STORE

S

S

S

?

?

S

S

S

S

Symbol

Constraint: Input = Symbol

Constraing: Input ! = Symbol

Check: C = Symbol ?

S

6

Approach #1�

Symbolic Approach for the Interface A
Keys cannot be read by the interface A if prohibited by the
rules block

Define a new signal address_symbol:
• constr -add rigid address_symbol

Prohibit reading a key of the above symbol address:
• constr -add -inter { (interface_a_req == 1 and interface_a_address ==

address_symbol) |=> sys_memory_allowed_for_reading_signal == 0} -name
constr_no_reading_rules

Modify main properties for the interface A:
• assert -add -inter { (interface_a_return_data == symbol and

interface_a_address == address_symbol)) } -cover -name
cover_no_symbol_on_a

• assert -add -inter { ! (interface_a_return_data == symbol and
interface_a_address == address_symbol)) } -name check_no_symbol_on_a

Cover must fail!

Assertion must pass!

Conclusion
Three security paths are verified

• Symbolic approach used as the most “confident” and “investigated”

• Black boxing was used to conclude on assertions

• Proof real life time varying 5 mins – 30 mins

New IEV application is created

• Based on X propagation

• Automated set-up including covers, constraints and checks

• Provides witness waveform in case of security leakage

12

Approach #3�

X-Prop Approach for the Interface C: PSL
Inject “X” at the key store return data:
• constr -add -inter { (!keystore_csn && keystore_wen) |=> (keystore_r_data[7:0]

=== 8'hXX) || (keystore_r_data[7:0] !== 8'hXX) } -name
inject_x_at_keystore_r_data

Prove returned data on the interface C are never “X”:
• assert -add -inter { (interface_c_return_data !== 8’hXX)) } -name

check_no_x_on_c

10

Advantages of Each Approach
Symbolic approach

• interactive and learning process when creating constraints => increase
confidence in the design

Miter approach

• observed value is unique by construction; no need for constraints =>
more automatic

X-propagation

• Uses build-in IEV capacities => even more automatic

11

7

Approach #2�

Miter Approach for the Interface C: Idea

=

..
Return data
are equal!

DUT

Instance 1

DUT

Instance 2

Interface A

Rules block
interface

System memory
interface

Interface B

Interface C

Key Store input
for instance 1

Key Store input
for instance 2!=

