

Challenges in UVM + Python Random Verification Environment for Digital Signal Processing Datapath Design

Shabbar Vejlani

Ashok Chandran

High Speed Convertor Group

Analog Devices India

- DSP Datapath Verification
- Traditional Approach
- Proposed Approach
 - Constrained Random on DSP
 - UVM + Python Framework
- Results and Learnings

Software Defined Radio (SDR) Platforms are on the rise

- Digital Signal Processing
 - Various Interpolation/Decimation FIR Filters for Sample rate conversion
 - Numerically Controlled Oscillators for Frequency Up/Down Shifting
 - Digital Gain Control for Signal Amplitude Scaling
- Complexity in High Speed DSP Datapaths
 - More Parallel Paths => clocking complexity
 - Programmable Filter Combinations => More muxing and control complexity
 - and more …

DSP Datapath Verification

 Frequency Domain Approach

IED STATES

- Verification Goal
 - Ensure filter response to signal meets the frequency domain performance
- Data Inputs to DUT
 - Single tone, Multi-tone, Fat band signals
- Checks at output
 - SFDR, SNR, NSD, THD, DC, FFT bin

- Time Domain Approach
 - Verification Goal
 - Data checked against model
 - Data Inputs to DUT
 - Single tone, Multi-tone, Impulses, random, ramp signals
 - Checks at output
 - Data by data checking (with margins if needed)
 - FFT and analysis in Fdomain

- Past Approach
 - Frequency domain verification
 - Directed Verification Methodology
 - MATLAB/C scripts for data generation
 - MATLAB/C post-process scripts for checks

CONFERENCE AND EXHIBITION CONFERENCE AND EXHIBI

- Disadvantages
 - Directed verification is not scalable as complexity increases
 - Quality gaps due to various trade-offs needed to meet time
- Boils down to
 - Significant Gap between problem at hand and methodology used

• Need serious upgrade in methodology

- Key Highlights of new approach:
 - Apply Constrained Random Verification (CRV) on DSP Datapath
 - UVM + Python Framework

Constrained Random Verification (CRV) on DSP Datapath

- Frequency Domain Randomization
- Frequency Domain Scoreboard

- Constrained Random Verification (CRV)
 - Principle is to use Compute Power to overcome human capacity limits
 - Constraints applied to generate intelligent stimulus
- Extending CRV to Frequency Domain
- Key challenges in doing this are in:
 - Signal Generation
 - Integrity Check / Scoreboarding
- Restricting discussion to Tone generation aspects

CONFERENCE AND EXHIBITION UNITED STATES Random Signal Generation Variables

- First step is to identify the random variables
 - Signal Parameters

- FFT Parameters
 - Number of samples
 - FFT size

CONFERENCE AND EXHIBITION UNITED STATES Random Signal Generation Constraints

- What are the requirements from the signal ?
 - Should be generated for the filter specifications
 - Should be of excellent spectral quality to unmask design corner-case performance bugs
 - Should enable ease of performance measurement
- Need constraints to get a good signal generation

CONFERENCE AND EXHIBITION INITED STATES Random Signal Generation – CONFERENCE AND EXHIBITION CONFERENCE CONFEREN

- Spectral Leakage
 - FFT size limits the possible generated frequencies
 - Below are plots of FFT taken on a 1Mhz sine sampled at 100Mhz

CONFERENCE AND EXHIBITION UNITED STATES Random Signal Generation – CONFERENCE AND EXHIBITION CONFERENCE AND EXHIBITION CONSTRAINED STATES Constraints (contd ...)

- Noise Quantization
 - Quantization noise becomes periodic when sampling (fs) and tone frequency (freq) has integer relation
 - Solution Use prime number bins or FFT size

Random Signal Generation – CONFERENCE AND VERIFICATION CONFERENCE AND VE

- Digital has fixed point precision (say DAC input) Need to quantize real signals
 - Use rounding when doing real value to fixed precision conversion
 - More than 3dB improvement with rounding
- Based on design configuration, signal should fit inside bandwidth of the filters

- Design translates the frequency domain of the input
 - Changes sampling rate, performs filtering etc.
 - Need dynamic prediction for a random signal
- Input is random => Dynamic scorboarding is needed
 - Predict the output tone FFT bin based on design mode and input random tone bin

Frequency Domain CONFERENCE AND EXHIBITION UNITED STATES Frequency Domain Scoreboard (contd ...)

- Check SFDR (spurious free dynamic range), SNR, THD , NSD requirement is met
- Check o/p signal falls in expected bin predicted based on input random tone bin and design model

UVM + Python Framework

- UVM for Scalability and Block-to-System reuse
- Python for bringing signal processing power to UVM

- Python: Open source & powerful library support
 - Numpy Array processing
 - Scipy Signal processing operations
 - Matplotlib Data visualization / plots
 - Pandas Data analysis
 - All of these bundled under anaconda distribution

UNITED STATES UVM + Python Framework (conference and exhibition UNITED STATES

- Signal files generated by sequence
- Configurable monitors and drivers to manage clocking
- Frequency domain scoreboard

UNITED STATES UVM + Python Framework (contd ...)

Integration to UVM

- Verilog \$system call to pass data from UVM to Python
- Text based data handoff from Python to UVM
- Partitioned into separate library

DESIGN AND VERIFICATION CONFERENCE AND EXHIBITION UNITED STATES Data Path Bugs Caught -Examples

- Wrong DUT Masking Logic resulted in DC spur
 - Very few seeds failed

 Truncation instead of rounding inside DUT

Design and verification CONFERENCE AND EXHIBITION UNITED STATES Data Path Bugs Caught -Examples

 Wrong saturation logic

 I/Q path latency mismatch

DESIGN AND VERIFICATION CONFERENCE AND EXHIBITION UNITED STATES Data Path Bugs Caught -Examples

- Interface issues (clocking , retiming bugs) will result in severe SFDR failure
 - Data getting missed
 - Repeating data
 - Alternate zero data

- Novel constrained random approach has been deployed on datapath verification
 - Helped improve quality and reduced verification time significantly
 - Approach scales better for higher complexity
- UVM + Python Framework was presented
 - UVM features enables reuse from block to system
 - Python libraries bring signal processing capability to UVM

- ADI High Speed Convertor Design and Verification Team
 - Bangalore, Beijing , San Diego and Wilmington
- ADI CAD and IS Teams