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Abstract— Growing SoC designs are pushing the limits of massive system-level scenarios in simulation platforms. 

Its need of the hour, that verification experts port their complex testbench and DUT to Emulation platforms. This could 

be the way going forward in augmenting the overall performance, faster verification closure and exercising system level 

scenarios that might require longer simulation runtime and huge disk consumption at run time.  

Today’s traditional verification flow involves verification at multiple abstraction levels; accordingly, the testbench 

needs to be adjusted/modified from RTL simulation to hardware acceleration/emulation. Simulation offers a great 

springiness in debugging and the emulation offers mammoth performance gain, an ideal solution is to make use of these 

offerings to develop a single, unified testbench that can be used for both simulation and emulation platforms, which 

helps in enhancing the overall performance, productivity and faster verification closure. In this paper, we will discuss 

a case study based on one of our native UVM testbench, we partitioned the testbench into two top architecture that can 

be used not only for software simulation, but also for hardware acceleration/emulation without compromising on 

simulation competences such as coverage-driven, constraint-random and assertion-based verification techniques.  

The key for the future projects is to plan the emulation portable as soon as we start the testbench development to 

avoid creating extra work. Creating emulation-ready testbench needs careful architectural consideration, but the 

performance benefits can be substantial. We will also touch upon on the performance improvements, coding guidelines 

in developing the accelerated testbench and the efforts required for porting it from the native simulation UVM 

testbench.  
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I.  INTRODUCTION  

 

 In this paper, the authors have used Mentor’s Veloce TBX solution to develop the emulation ready testbench. 

To create a unified testbench for both simulation and emulation we need to adhere to the below steps. 

 

1. Employing two separate domains (two top architecture [2]): an untimed hardware verification language 

(HVL-TOP) domain and a synthesizable hardware description language (HDL-TOP) domain. 

 

2. Modeling all the timed testbench code for emulator synthesis in the HDL domain (BFM), leaving the HVL 

domain untimed (proxy). 

 

3. A transaction-level, probably an interface task/function or a pipe based approach (which approach to be 

used depends on the testbench implementation i.e. streaming or reactive based on the protocol) to be used 

as a communication API between the HVL and HDL domains, Only packed data type is allowed to be 

passed via communication API’s. 

a. Two-Top Architecture: 

The primary requirement for the two top architecture is to have the HVL and HDL top-level module hierarchies 

as shown in Figure 1. The HDL domain must be synthesizable i.e. logic present in Driver BFM, Monitor BFM, 

DUT, clock and reset generators. The HVL domain contains non-synthesizable code such as logic present in 

transactions, scoreboards, coverage collectors etc.  
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The communication from either way i.e. from HDL to HVL or HVL to HDL establishes through a communication 

API such as an interface task/function or a pipe based approach. The classes on the HVL side, which acts as a 

proxy to the BFM interfaces, will call appropriate tasks and functions declared inside the BFMs via virtual 

interface handles to drive and sample DUT signals. 

 

The key challenge in porting to an emulation ready testbench needs a careful architectural consideration and also 

needs proper communication API channel from HDL to HVL or HVL to HDL. 

 

 
 

Figure 1:  Two- Top Architecture  

 

 

II. A CASE STUDY 

This paper is a collective case study of PolarFire project executed by the authors in the organization. PolarFire 

is an FPGA with an ARM Cortex M3 Processor and programmable analog, offering full customization, IP 

protection and ease-of-use. 

The following architecture details the functional partition of the PolarFire, This is a logical diagram and doesn’t 

reflect actual physical floorplan (neither positioning nor sizing of blocks), as the diagram is mainly intended to 

explain the main architectural features. 

 

The PolarFire Architecture is mainly categorized into 3 blocks namely Fabric, contoller and analog. The FPGA 

fabric is a non-volatile block, which facilitates the implementation of programmable user logic. The subsystem as 

an ARM cortex M3 processor which is used for initialization and programing besides other functionalities such as 

power management and security etc. 
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Reference: https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga 

 

The verification of PolarFire involves thorough testing of all the functional data paths in addition to basic 

connectivity checks at the top level to ensure that the design works correctly. The authors have used the best of 

UVM  to implement the reusable verification environment achieving the overall  productivity and faster verification 

closure.  

 

a. Simulation Challenges: 

Adopting the UVM does not address the other verification needs such as the ability to run, debug, and collect 

metrics for a large number of tests in a short amount of time. The speed of the simulation is the primary bottleneck 

as modern SOC/ASICs are getting bigger and bigger in terms of gate counts and supported features. Limiting the 

number of simulation tests to meet requirements of tight schedules is alarming and raises doubt about the 

completeness of verification. The remedy for ever increasing simulation times is using emulation techniques. 

 

b. Adopting Emulation: 

As discussed in the above section to overcome the simulation limits, the authors have decided to have a 

emulation ready verification environment for their PolarFire derivate projects, they have analyzed their current 

verification architecture and decided to restructure it to the Two-Top Architecture as discussed in figure 1. 

c. Behavioral Models:  

 In our verification environment we used behavioral models for analog programming and for fabric blocks; we 

have ported 78 models to emulation platform which was a huge effort i.e. it took us around 3 months to completely 

port to synthesizable models. 

 

Figure 2:  PolarFire Architecture  

 

https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
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Few changes in the HDL models are mentioned below which came across while converting it to synthesizable 

models. 

1. #delays are not supported in Veloce; replaced with @ posedge clk or @ negedge clk, by using the internal 

clock generators. 

2. Converted real datatype to integer datatype. 

3. Removed tranif0 and tranif1 as is not supported in Veloce.  

4. .vams files are recoded to .v files. 

 

                Fabric simulation model                                                             Fabric emulation model          

 

 

 

 

 

 

 

 

 As tranif0 and tranif1 is not supported in Veloce, the logic has been replicated using assign statement in the 

emulation model. 

                       simulation model                                                                          emulation model          

 

 

 

 

 

 

 

 In Veloce we need to pass seed as $random (my_seed), seed value can be assigned in the module declarations 

or else can be passed through command line using $value$plusargs as shown below.                                          

Usage: make all +RANDOM_SEED=200 

 

 

 

 

d. Verification IP’s: 

 The Microcontroller subsystem shown in figure 2 has 12 IP’s out of which 10 are native protocol  IP’s and 2 

are general protocol IP’s.so correspondingly  there are 10 native VIP’s in the current verification environment 

which are needed to be ported to emulation by using Mentor Graphics TBX Flow. 

For Generic Protocol VIP’s Mentor Graphics has provided Veloce Transactor Library (VTL). The Veloce 

Transactor Library is an accelerated Verification IP which is easy to use and reduces the overall testbench 

development time. 

 

module fabric_model(); 

 

//code not shown 

 

  for (i=0; i<80; i++) begin 

  tranif0 t0 (x_blnl[i],x_gbl[i], x_bln_gbl_sell_b);   

  end 

 

endmodule 

module fabric_model(); 

 

//code not shown 

 

  for (i=0; i<80; i++) begin 

 // tranif0 t0 (x_blnl[i],x_gbl[i], x_bln_gbl_sell_b);  

assign x_blnl[i] = (x_bln_gbl_sell_b  === 1'b0) ? 

x_gbl[i]  : 'bx;  

   

  end 

 

endmodule 

 

 

 
 

 

module c_model(); 

 

//code not shown 

 

always@(posedge clk)begin 

 addr=$random(); 

end 

 

endmodule 

module c_model(); 

 

//code not shown 

int myseed = 10; 

 

always@(posedge clk)begin 

 //addr=$random(); 

  addr=$random(my_seed); 

end 

 

endmodule 

 
 

 

initial begin 

 if($value$plusargs ("RANDOM_SEED=%d ", my_seed)) begin 

            my_seed=seed; 

  end 
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The main challenge here is to port all the existing Simulation VIP’s to emulation ready VIP’s in a specified time. 

Before actual porting, the authors have followed the below steps. 

1. Initially the authors went through the Veloce user guide, understood the emulation importance and Veloce 

architecture. 

2. Ported a native protocol simulation VIP to emulation Platform, went through numerous phases in understanding 

the two-top architecture in practical. It took us several debug cycles to bring up the initial version of emulation 

ready VIP, all the best practices which we found during the porting are mentioned in coding guidelines section. 

3. We have developed a two-top architecture UVM template generator script after our initial native VIP porting, 

which has generated all the files related to HDL and HVL domains, this made our work easier for other set of 

VIP porting. 

 
 

Figure 3:  Microcontroller subsystem - Simulation Verification Architecture  

 

As discussed the Microcontroller subsystem verification environment has 12 Verification IP’s, for simplicity we 

have shown only 3 VIP’s in the above figure i.e. Advance Peripheral Bus (APB) UVC, Native Configure Bus 

(NCB) UVC and External IP (EIP) UVC. 

 

During the course of porting we have faced many challenges such as remodeling the exact behavior in HDL 

BFM’s, using of correct pragma’s, pragma is placed in HDL side to intimate the Veloce that the piece of code 

should be synthesized etc. 

 

The below code snippets shows the major changes from simulation environment to the two top architecture 

environment. 
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                   HVL Driver                                                                             HDL Driver           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the above code snippet, the apb4_master_driver has a virtual interface handle BFM from the corresponding 

apb4_master_driver_bfm BFM model which is synthesizable. The time consuming tasks are placed in the HDL 

driver and can be called by the HVL Driver as shown above. 

                    HVL Monitor                                                                               HDL Monitor           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

class apb4_master_driver extends uvm_driver 

#(apb4_transaction_c); 

    virtual apb4_master_driver_bfm BFM; 

 // constructor 

task run_phase(uvm_phase phase); 

        pkt_t req,rsp; 

        forever begin 

            apb4_master_seq_item_s req_s, rsp_s; 

            seq_item_port.get_next_item(req); 

             

apb4_master_seq_item_converter::from_class(req, 

req_s); 

            BFM.drive_data(req_s, rsp_s);  

 

apb4_master_seq_item_converter::to_class(rsp, 

rsp_s); 

             $cast(rsp, req.clone()); 

            rsp.set_id_info(req); 

            seq_item_port.item_done(rsp); 

        end// !forever begin 

    endtask : get_and_drive 

endclass : apb4_master_driver  

 

 

interface apb4_master_driver_bfm (apb4_interface 

APB); 

//pragma attribute apb4_master_driver_bfm 

partition_interface_xif 

    string tID; 

 

    import 

apb4_master_shared_pkg::apb4_master_seq_item_s; 

 

task drive_data(apb4_master_seq_item_s req, output 

apb4_master_seq_item_s rsp ); // pragma tbx xtf 

         

    @(posedge APB.PCLK); 

// code not shown here 

endtask: drive_data 

 

endinterface: apb4_master_driver_bfm 

 

 

 
 

 

class apb4_master_monitor extends uvm_monitor; 

 

    virtual apb4_master_monitor_bfm BFM; 

   // code not shown 

     uvm_analysis_port #(item_t) sb_post; 

 

     function void 

end_of_elaboration_phase(uvm_phase phase); 

        BFM.proxy = this; 

    endfunction: end_of_elaboration_phase 

 

    task run_phase(uvm_phase phase); 

        forever begin 

          BFM.collect_data(); 

        end 

    endtask : run_phase 

      

     function void write(apb4_master_seq_item_s 

item_s); 

        item_t item;             

apb4_master_seq_item_converter::to_class(item, 

item_s); 

        this.item.copy(item); 

        sb_post.write(this.item); 

    endfunction: write 

endclass : apb4_master_monitor 

 

interface apb4_master_monitor_bfm 

(apb4_interface APB); 

// pragma attribute apb4_master_monitor_bfm 

partition_interface_xif 

 

    import 

apb4_master_shared_pkg::apb4_master_seq_item_s; 

    import apb4_agent_pkg::apb4_master_monitor; 

     

    apb4_master_monitor proxy; // pragma tbx oneway 

proxy.write 

 

task collect_data(); // pragma tbx xtf 

         

        apb4_master_seq_item_s item;  

 

        @(posedge APB.PCLK); 

 

        //code not shown here 

 

       proxy.write(item); 

 

endtask : collect_data 

 

endinterface : apb4_master_monitor_bfm  
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For completeness of the transaction the response need to be sent back to HVL from HDL, this is happening 

through the proxy.write(item) method called in HDL and  is implemented in the HVL as shown above. 

            hvl_top                                                                                               hdl_top           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the hvl_top we have used only the run_test() and in the hdl_top the apb4_interface, apb4_master_monitor_bfm 

, apb4_master_driver_bfm are instantiated and are set using uvm_config_db. The hdl_top also has the dut instance, 

clock, and reset generators. 

 

 

 

 

 

 

module top_tb(); 

 

import uvm_pkg::*; 

`include "uvm_macros.svh" 

 

import apb4_agent_pkg::*; 

 

`include "apb4_master_demo_tb.sv" 

`include "apb4_master_test_lib.sv" 

 

initial 

begin 

    $timeformat( -9, 3, " ns", 12); 

    run_test(); 

end 

 

endmodule : top_tb 

 

module top_hdl(); 

`include "timescale.v" 

 

logic PCLK; 

logic PRESETn; 

 

apb4_interface APB(PCLK, PRESETn);  // APB interface 

 

// tbx vif_binding_block 

initial begin 

  import uvm_pkg::uvm_config_db; 

  uvm_config_db #(virtual apb4_interface)::set(null, 

"uvm_test_top", $psprintf("%m.APB") , APB); 

end 

 

apb4_master_monitor_bfm 

APB_MONITOR(APB.apb4_mon_mp); 

apb4_master_driver_bfm  APB_DRIVER (APB.apb4_mp); 

 

// tbx vif_binding_block 

initial begin 

  import uvm_pkg::uvm_config_db; 

  uvm_config_db#(virtual 

apb4_master_driver_bfm)::set(null, 

"uvm_test_top",$psprintf("%m.APB_DRIVER"),APB_DRIV

ER); 

  uvm_config_db#(virtual 

apb4_master_monitor_bfm)::set(null,"uvm_test_top",$pspri

ntf("%m.APB_MONITOR"),APB_MONITOR); 

end 

 

// DUT instance 

 

// Clock and reset initial blocks 

//tbx clkgen 

Initial  

forever #5 PCLK=~PCLK; 

 

endmodule: top_hdl 
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III. CODING GUIDELINES 

Few coding guidelines are mentioned below in-order to have a first cut emulation ready VIP. 

 

a. Guideline 1:   fork join  

To achieve parallel process in SystemVerilog we use fork join construct, but this fork join is not 

synthesizable in HDL i.e. in driver bfm and monitor bfm files, in order to achieve such logic in HDL the fork 

join is moved to HVL domain, and the calle task is in HDL as shown below. The parallel process can also be 

achieved in HDL by using multiple procedural. 

                       Emulation (HVL Part)                                       Emulation (HDL Part)       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Guideline 2:   configurations 

As discussed the communication between HVL to HDL happens through packed structure or through pipe 

based approach. Care should be taken while we are configuring the agent as UVM_PASSIVE, as HDL driver 

is an interface it will be compiled and potential errors such as multiple drivers driving the net may occur in the 

top level environment. The key element is to enable the HDL drive_data task logic only if the is_active 

configuration is UVM_ACTIVE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

task run_phase(uvm_phase phase); 

  box_transaction_c req; 

 box_transaction_c rsp; 

 BFM.idle_data();  

 forever begin 

    box_master_seq_item_s req_s, rsp_s; 

    seq_item_port.get_next_item(req); 

    // to class 

    if(req.fab_box_write == 1) begin 

         BFM.write_data(req_s, rsp_s);  

    end 

    else if(req.fab_box_read == 1) begin 

                 fork 

                     BFM.read_data(req_s);  

                     BFM.read_capture_data(req_s, rsp_s);  

                  join 

             end 

     else begin 

                `uvm_info(tID,$sformatf("Invalid 

Combination"),UVM_MEDIUM) 

                      end 

       // code not shown here 

        end// !forever begin 

    endtask : run_phase 

interface box_master_driver_bfm (box_interface BOX); 

  import 

box_master_shared_pkg::box_master_seq_item_s; 

 

task idle_data(); // pragma tbx xtf 

 // code not shown 

enstask: idle_data 

 

task write_data(box_master_seq_item_s req, output 

box_master_seq_item_s rsp); // pragma tbx xtf 

        @(posedge BOX.fab_box_clk) 

       // code not shown here 

endtask: write_data 

 

task read_capture_data(box_master_seq_item_s req, 

output box_master_seq_item_s rsp); 

    // code not shown 

endtask: read_capture 

 

task read_data(box_master_seq_item_s req); // pragma 

tbx xtf 

  // code not shown 

endtask:: read_data 

endinterface: box_master_driver_bfm 

interface box_master_driver_bfm (box_interface BOX); 

  import box_master_shared_pkg::box_master_seq_item_s; 

  import box_master_shared_pkg::box_master_config_item_s; 

 

 task  drive_data(box_master_seq_item_s req, box_master_config_item_s req_config,output 

box_master_seq_item_s rsp); // pragma tbx xtf 

        @(posedge BOX.fab_box_clk) 

       if(req_config.is_active == 1’b1) begin // UVM_ACTIVE  

        // code not shown here 

      end 

endtask: write_data 

 

endinterface: box_master_driver_bfm 
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c. Guideline 3:  $display control at runtime in HDL: 

 For runtime controllability,  use test_plusargs/value_plusargs as shown below, VEL_INFO define is 

declared for $display usage, a  set  of 5 different verbosities such as HDL_UVM_NONE, HDL_UVM_LOW 

and others are defined as shown below. 

 

For VEL_INFO define we are passing verbosity as 3rd argument and the global verbosity is passed through 

command line. If glbl_verbose is greater than the verbosity which passed through VEL_INFO define then the 

display will be written else it will be not written. Note that $display creates infrastructure i.e. in terms of area. 

defines.sv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Counter.sv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

module counterud (CLK, CLR, UP_DOWN, Q);  

input CLK, CLR, UP_DOWN;  

output [3:0] Q;  

reg    [3:0] tmp = 0;  

  

  always @(posedge CLK)  

    begin  

      if (CLR) begin  

        tmp = 4'b0000;  

        `VEL_INFO("counter", "Cleared", `HDL_UVM_MEDIUM); 

      end 

      else  

          if (UP_DOWN) begin  

            tmp = tmp + 1'b1; 

            `VEL_INFO("counter", "Incrementing", `HDL_UVM_LOW); 

          end  

          else begin  

                 tmp = tmp - 1'b1;  

                `VEL_INFO("counter", "Decrementing", `HDL_UVM_HIGH);  

               end 

           end  

  assign Q = tmp;  

endmodule 

`define HDL_UVM_NONE        0 

`define HDL_UVM_LOW          1 

`define HDL_UVM_MEDIUM  2 

`define HDL_UVM_HIGH        3 

`define HDL_UVM_DEBUG     4 

int glbl_verbose; 

// Display Define 

`define VEL_INFO(strID="", msg="",verbosity) \ 

if($test$plusargs("HDL_UVM_DEBUG")) \ 

    glbl_verbose = 4; \ 

if($test$plusargs("HDL_UVM_HIGH")) \ 

    glbl_verbose = 3; \ 

if($test$plusargs("HDL_UVM_MEDIUM")) \ 

    glbl_verbose = 2; \ 

if($test$plusargs("HDL_UVM_LOW")) \ 

    glbl_verbose = 1; \ 

if($test$plusargs("HDL_UVM_NONE")) \ 

    glbl_verbose = 0; \ 

if(glbl_verbose >= verbosity )  \ 

    $display("UVM_INFO @ %0t : %m[%s] %s", $time, strID, msg); 



 

10 

 

Usage: make all +HDL_UVM_MEDIUM 

 

As per the usage mentioned above only the `VEL_INFO, which has verbosity less than or equal to the global 

verbosity i.e. HDL_UVM_MEDIUM, will be printed. 

 

d. Guideline 4:  $urandom_range equivalent code in HDL: 

 Systemverilog $urandom_range(MIN,MAX) construct is not synthesizable in HDL domain, we have 

replicated this behavior as shown below with $random(seed) as it is synthesizable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSION  

In this paper, we have discussed on how to port a simulation environment to a emulation ready UVM framework 

by using Mentor Veloce TBX Flow. To summarize we have shared the challenges faced and coding guidelines. 

The key highlights in porting are to understand the two-top architecture and the communication API between HDL 

and HVL and vice versa. The key guideline in porting is to know the usage of appropriate pragma’s. It took us 30 

man days to port the simulation environment to emulation environment. In the future work, we will share more 

details on the performance, as in the current environment we have black boxed few models for ease of use, we will 

revisit and share the details accordingly. 

This ported emulation UVM testbench can also be used in simulation platform, thus achieving a unified 

testbench without conceding any of the UVM capabilities. 

FUTURE WORK  

The Behavioral models and VIP’s are ported to emulation platform and are tested at block level, currently the 

authors are working on integrating these models and VIP’s  in to the top level verification environment, once this 

is done they are planning to do a performance analysis between pure simulation and emulation environments. 

 

module random(); 

logic CLK; 

bit cnt=1; 

int unsigned seed, my_seed; 

bit [2:0] addr; 

int unsigned MAX=6, MIN=2; 

 

initial begin 

 if($value$plusargs ("RANDOM_SEED=%d ", my_seed)) begin 

            my_seed=seed; 

  end 

end 

always@(posedge CLK) begin 

    addr=$random(my_seed); 

     addr= MIN+(addr %(MAX-MIN)); 

    $display("****************************"); 

    $display( "Random Range addr=%0d", addr   ); 

    $display("****************************"); 

end 

// tbx clkgen 

initial begin 

  CLK = 0; 

  forever begin 

    #5ns CLK = ~CLK; 

  end 

end 

endmodule 
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