
Challenges and Mitigations of Porting a UVM
Testbench from Simulation to Transaction-

Based Acceleration (Co-Emulation)

Vikas Billa, Sundar Haran
Microsemi India Pvt. Ltd, Hyderabad, India.

vikas.billa@microsemi.com, Sundararajan.Haran@microsemi.com

Agenda
• Problem Statement
• Simulation challenges & Proposed Solution
• Introduction to Emulation
• Two-Top TB Architecture
• A Case Study

– Adopting Emulation
– Behavioral Models
– Verification IP’s

• Coding Guidelines
• Conclusion

Increasing Verification Pressures

Run time Debug time

competitionComplexity

BugsTime to Market

Problem Statement
• Problem: Old methods are no longer adequate

– Growing SoC designs are pushing the limits of massive system level scenarios in simulation platform

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

Simulation Challenges
• Adopting the UVM does not address the other verification needs

– such as the ability to run, debug, and collect metrics for a large number of tests in a short amount of time

• The speed of the simulation is the primary bottleneck
• Limiting the number of simulation tests to meet requirements of tight schedules is alarming and

raises doubt about the completeness of verification
• How much Disk usage can we afford for longer runs with bigger complex designs?

Proposed Solution
• Solution: The remedy for ever increasing simulation times is using emulation techniques

– Its need of the hour, that verification experts port their complex testbench and DUT to Emulation platforms
– This could be the way going forward in exercising system level scenarios that might require longer simulation runtime and

huge disk consumption at run time

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

010011
111000
010101
100101

Emulation

010011
111000
010101
100101

Introduction to Emulation
• Today’s traditional verification flow involves verification at multiple abstraction levels
• Simulation offers a great springiness in debugging and the emulation offers mammoth performance

gains
• An ideal solution is to make use of these offerings

– develop a single, unified testbench which helps in enhancing the productivity and faster verification closure.

• In this paper, we will discuss a case study based on one of our native UVM testbench
• We partitioned the testbench into two top architecture that can be used not only for software

simulation, but also used for hardware acceleration/emulation

Choice of Tool – Mentor’s Veloce TBX
In this paper, we have used Mentor’s Veloce TBX solution to develop emulation ready testbench. To
create a unified testbench for both simulation and emulation we need to adhere to the below steps

1. Employing two separate domains (two top architecture): an untimed hardware verification language
(HVL-TOP) domain and a synthesizable hardware description language (HDL-TOP) domain

2. Modeling all the timed testbench code for emulator synthesis in the HDL domain (BFM), leaving the
HVL domain untimed (proxy)

3. A transaction-level, probably an interface task/function or a pipe based approach to be used as a
communication API between the HVL and HDL domains

Two-Top TB Architecture
• HVL and HDL top-level

module hierarchies

• The HDL domain must be
synthesizable

• The HVL domain contains
non-synthesizable code

• The communication should
be from either way i.e. from
HDL to HVL or HVL to HDL

A Case Study
• This paper is a collective case study of PolarFire project
• PolarFire Overview

– Microsemi's lowest power, cost-optimized mid-range PolarFire FPGA
– The PolarFire FPGA family spans from 100K logic elements (LEs) to 500K LEs, and offers up to 50% lower power than

competing mid-range FPGAs.
– Applications within wireline access networks and cellular infrastructure, defense and commercial aviation markets, as well

as industrial automation and IoT markets
– An FPGA with an ARM Cortex M3 Processor and programmable analog, offering full customization, IP protection and

ease-of-use

• Subsystems Identified for Porting highlighted in this case study

Microsemi PolarFire Architecture

Reference : https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga

https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga

Adopting Emulation
• To overcome the simulation limits as mentioned in simulation challenges section, we have decided to

have a emulation ready verification environment for our PolarFire project

Reference : https://indico.cern.ch/event/305730/contributions/703215/attachments/581425/800387/Veloce_Emulator.pdf

https://indico.cern.ch/event/305730/contributions/703215/attachments/581425/800387/Veloce_Emulator.pdf

Behavioral Models - Porting Challenges
• We have ported around 78 models to emulation platform which was a huge effort
• Few changes in the HDL models are mentioned below which came across while converting it to

synthesizable models
– #delays are not supported in Veloce; replaced with @ posedge clk or @ negedge clk by using the internal clock

generators
– Converted real datatype to integer datatype
– Removed tranif0 and tranif1 as is not supported in Veloce
– .vams files are recoded to .v files

Behavioral Models Porting – Guideline 1
• As tranif0 and tranif1 is not supported in Veloce, the logic has been replicated using assign

statement in the emulation model

module fabric_model();

//code not shown

for (i=0; i<80; i++) begin
tranif0 t0 (x_blnl[i],x_gbl[i],

x_bln_gbl_sell_b);
end

endmodule

module fabric_model();

//code not shown

for (i=0; i<80; i++) begin
assign x_blnl[i] =

(x_bln_gbl_sell_b === 1'b0) ?
x_gbl[i] : 'bx;

end

endmodule

Simulation Model Emulation Model

tranifx is not
synthesizable

Behavioral Models Porting – Guideline 2
• In Veloce we need to pass seed as $random (my_seed), seed value can be assigned in the

module declarations or else can be passed through command line using $value$plusargs as
shown below

module c_model();
//code not shown
always@(posedge

clk)begin
addr=$random();

end
endmodule

module c_model();
//code not shown
int myseed = 10;
always@(posedge
clk)begin
//addr=$random();
addr=$random(my_seed);

end

Simulation Model Emulation Model

if($value$plusargs ("RANDOM_SEED=%d ", my_seed))
begin

my_seed=seed;
end

make all +RANDOM_SEED=200

Pass seed
value

Verification IP’s
• The Microcontroller subsystem shown in figure 5 has 12 IP’s out of which 10 are native protocol IP’s

and 2 are general protocol
• For Generic Protocol VIP’s Mentor Graphics has provided Veloce Transactor Library (VTL)

Microcontroller Subsystem Simulation Verification Environment

Verification IP - Porting Challenges
• The main challenge here is to port all the existing Simulation VIP’s to emulation ready VIP’s in a

specified time
• Before actual porting the authors have few followed the below steps

1. Initially the authors went through the Veloce user guide
2. Ported a native protocol simulation VIP to emulation Platform

 Went through numerous phases in understanding the two-top architecture in practical
 It took us several debug cycles to bring up the initial version of emulation ready VIP
 All the best practices which we found during the porting are mentioned in coding guidelines section

• The time consuming tasks are placed in the HDL driver and can be called by the HVL Driver as
shown below

Major changes in Porting - Driver

class apb4_master_driver extends uvm_driver
#(apb4_transaction_c);

virtual apb4_master_driver_bfm BFM;
task run_phase(uvm_phase phase);

pkt_t req,rsp;
forever begin

apb4_master_seq_item_s req_s, rsp_s;
seq_item_port.get_next_item(req);

apb4_master_seq_item_converter::from_class(req,
req_s);

BFM.drive_data(req_s, rsp_s);
apb4_master_seq_item_converter::to_cla

ss(rsp, rsp_s);
$cast(rsp, req.clone());
rsp.set_id_info(req);
seq_item_port.item_done(rsp);

end// !forever begin
endtask : get_and_drive

endclass : apb4_master_driver

interface apb4_master_driver_bfm
(apb4_interface APB);
//pragma attribute apb4_master_driver_bfm
partition_interface_xif

string tID;

import
apb4_master_shared_pkg::apb4_master_seq_item_s;

task drive_data(apb4_master_seq_item_s req,
output apb4_master_seq_item_s rsp); // pragma
tbx xtf

@(posedge APB.PCLK);
// code not shown here
endtask: drive_data

endinterface: apb4_master_driver_bfm

HDL Driver

HVL Driver
Calling

drive_data task
from BFM

• completeness of the transaction the response need to be send back to HVL from HDL
– happening through the proxy.write(item) method called in HDL and it is implemented in the HVL

Major changes in Porting - Monitor

class apb4_master_monitor extends uvm_monitor;

virtual apb4_master_monitor_bfm BFM;
uvm_analysis_port #(item_t) sb_post;

task run_phase(uvm_phase phase);
forever begin

BFM.collect_data();
end

endtask : run_phase

function void write(apb4_master_seq_item_s
item_s);

item_t item;
apb4_master_seq_item_converter:: to_class(item,
item_s);

this.item.copy(item);
sb_post.write(this.item);

endfunction: write
endclass : apb4_master_monitor

interface apb4_master_monitor_bfm
(apb4_interface APB);
// pragma attribute apb4_master_monitor_bfm
partition_interface_xif

import
apb4_master_shared_pkg::apb4_master_seq_item_s;

import apb4_agent_pkg::apb4_master_monitor;
apb4_master_monitor proxy; // pragma

tbx oneway proxy.write
task collect_data(); // pragma tbx xtf

apb4_master_seq_item_s item;
@(posedge APB.PCLK);

//code not shown here

proxy.write(item);

endtask : collect_data
endinterface : apb4_master_monitor_bfm

HDL Monitor

HVL Monitor

Back Pointer

Proxy

• In the hvl_top we have used only the run_test() and in the hdl_top the interface, monitor_bfm,
driver_bfm are instantiated and are set using uvm_config_db

Major changes in Porting - Top

module top_tb();

import uvm_pkg::*;
`include "uvm_macros.svh"

import apb4_agent_pkg::*;

`include "apb4_master_demo_tb.sv"
`include "apb4_master_test_lib.sv"

initial
begin

$timeformat(-9, 3, " ns", 12);
run_test();

end

endmodule : top_tb

module top_hdl();
logic PCLK;
logic PRESETn;
apb4_interface APB(PCLK, PRESETn); // APB

interface
// tbx vif_binding_block

initial begin
import uvm_pkg::uvm_config_db;
uvm_config_db #(virtual

apb4_interface)::set(null, "uvm_test_top",
$psprintf("%m.APB") , APB);
end
apb4_master_monitor_bfm

APB_MONITOR(APB.apb4_mon_mp);
apb4_master_driver_bfm APB_DRIVER
(APB.apb4_mp);

endmodule: top_hdl

HDL top

HVL top

• To achieve parallel process in SystemVerilog we use fork join construct, but this fork join is not
synthesizable in HDL.

VIP Porting – Guideline 1: fork join

task run_phase(uvm_phase phase);
box_transaction_c req;
box_transaction_c rsp;
forever begin

box_master_seq_item_s req_s, rsp_s;
seq_item_port.get_next_item(req);
if(req.fab_box_read == 1) begin

fork
BFM.read_data(req_s);

BFM.read_capture_data(req_s, rsp_s);
join

end
else begin

`uvm_info(tID,$sformatf("Invalid
Combination"),UVM_MEDIUM)

end
// code not shown here
end// !forever begin

endtask : run_phase

interface box_master_driver_bfm (box_interface
BOX);
import

box_master_shared_pkg::box_master_seq_item_s;

task read_data(box_master_seq_item_s req); //
pragma tbx xtf
// code not shown

endtask:: read_data

task read_capture_data(box_master_seq_item_s
req, output box_master_seq_item_s rsp);

// code not shown
endtask: read_capture

endinterface: box_master_driver_bfm

read_data will send the
control signals and

read_capture_data will
wait for read_Status

signal to assert.

HVL Driver

HDL Driver

• Care should be taken in HDL while we are configuring the agent as UVM_PASSIVE
• The key element is to enable the HDL drive_data task logic only if the is_active configuration is

UVM_ACTIVE

VIP Porting – Guideline 2: Configuration

interface box_master_driver_bfm (box_interface BOX);
import box_master_shared_pkg::box_master_seq_item_s;
import box_master_shared_pkg::box_master_config_item_s;

task drive_data(box_master_seq_item_s req,
box_master_config_item_s req_config,output
box_master_seq_item_s rsp); // pragma tbx xtf

@(posedge BOX.fab_box_clk)
if(req_config.is_active == 1’b1) begin // UVM_ACTIVE
// code not shown here

end
endtask: write_data

endinterface: box_master_driver_bfm

Checking if is_active is
UVM_ACTIVE or
UVM_PASSIVE

• $urandom_range(MIN,MAX) construct is not synthesizable in HDL domain

VIP Porting – Guideline 3: $urandom_range

module random();
logic CLK;
bit cnt=1;
int unsigned seed, my_seed;
bit [2:0] addr;
int unsigned MAX=6, MIN=2;

initial begin
if($value$plusargs ("RANDOM_SEED=%d ", my_seed))
begin

my_seed=seed;
end

end
always@(posedge CLK) begin

addr=$random(my_seed);
addr= MIN+(addr %(MAX-MIN));
$display("Random Range addr=%0d", addr);

end
// clock generator
end
endmodule

make all +RANDOM_SEED=200

addr is randomized and
then MIN and MAX
selections are used

• For runtime controllability, use test_plusargs/value_plusargs as shown below

VIP Porting – Guideline 4: $display
;

module counterud (CLK, CLR, UP_DOWN, Q);
input CLK, CLR, UP_DOWN; output [3:0] Q; reg [3:0] tmp = 0;

always @(posedge CLK)
begin
if (CLR) begin
tmp = 4'b0000;

end
else

if (UP_DOWN) begin
tmp = tmp + 1'b1;
`VEL_INFO("counter", "Incrementing", `HDL_UVM_LOW);

end
else begin

tmp = tmp - 1'b1;
`VEL_INFO("counter", "Decrementing", `HDL_UVM_HIGH);
end

end
assign Q = tmp;

endmodule

;

`define HDL_UVM_NONE 0
`define HDL_UVM_LOW 1
`define HDL_UVM_MEDIUM 2
`define HDL_UVM_HIGH 3
`define HDL_UVM_DEBUG 4
int glbl_verbose;
`define VEL_INFO(strID="", msg="",verbosity) \
if($test$plusargs("HDL_UVM_DEBUG")) \

glbl_verbose = 4; \
if($test$plusargs("HDL_UVM_HIGH")) \

glbl_verbose = 3; \
if($test$plusargs("HDL_UVM_MEDIUM")) \

glbl_verbose = 2; \
if($test$plusargs("HDL_UVM_LOW")) \

glbl_verbose = 1; \
if($test$plusargs("HDL_UVM_NONE")) \

glbl_verbose = 0; \
if(glbl_verbose >= verbosity) \
$display("UVM_INFO @ %0t : %m[%s] %s", $time, strID, msg);

make all +HDL_UVM_MEDIUM

Declared a
VEL_INFO

define

Shown usage of
VEL_INFO

define

Conclusion
• In this paper, we have discussed on how to port a simulation environment to a emulation ready UVM

framework by using Mentor Veloce TBX Flow
• The key highlights in porting are:

– Two-Top TB architecture
– Communication API between HDL and HVL and vice versa

• To summarize we have discussed on
– Simulation Challenges
– Porting from Simulation VIP to Emulation VIP
– Coding Guidelines
– Finally developed a unified testbench without conceding any of the UVM capabilities

Future Work
• The ported behavioral models and VIP’s are tested at block level
• Currently working on integrating these models and VIP’s

– in to the top level verification environment
– once this is done we are planning to do a performance analysis between pure simulation and emulation environments

References
1. UVM User Manual, uvmworld.org
2. UVM Cookbook - Emulation, Mentor Verification Academy
3. Standard Co-emulation Modeling Interface (SCEMI) Version 2.2, Accellera, January 2014
4. Master.pdf – veloce user guide
5. How to Boost Verification Productivity with SystemVerilog/UVM and Emulation, Hans van der

Schoot, DVCon Europe 2015
6. STMicroelectronics: Simulation + Emulation = Verification Success
7. https://indico.cern.ch/event/305730/contributions/703215/attachments/581425/800387/Veloce_Em

ulator.pdf
8. https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
9. Microsemi Internal Specification Documents
10. Microsemi Internal Testbench Documents

Acknowledgement
• We profoundly thank colleagues and management team at Microsemi India Pvt. Ltd, Hyderabad for

their valuable support
• Special thanks to

– Rohit Malyan, Emulation Consultant, Mentor Graphics

Thanks to DVCON USA for giving us this opportunity

Questions

	Challenges and Mitigations of Porting a UVM Testbench from Simulation to Transaction-Based Acceleration (Co-Emulation)�
	Agenda
	Increasing Verification Pressures
	Problem Statement
	Simulation Challenges
	Proposed Solution
	Introduction to Emulation
	 Choice of Tool – Mentor’s Veloce TBX
	Two-Top TB Architecture
	A Case Study
	Microsemi PolarFire Architecture
	Adopting Emulation
	 Behavioral Models - Porting Challenges
	 Behavioral Models Porting – Guideline 1
	 Behavioral Models Porting – Guideline 2
	Verification IP’s
	Verification IP - Porting Challenges
	Major changes in Porting - Driver
	Major changes in Porting - Monitor
	Major changes in Porting - Top
	VIP Porting – Guideline 1: fork join
	 VIP Porting – Guideline 2: Configuration
	VIP Porting – Guideline 3: $urandom_range
	VIP Porting – Guideline 4: $display
	Conclusion
	Future Work
	References
	Acknowledgement
	Questions

