2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

Centralized Regression Optimisation ToolKit
(CROT) for expediting Regression Closure With
Simulator Performance Optimisation

Harshal Kothari, Associate Staff Engineer, SSIR, Bengaluru, India (harshal.k1@samsung.com)
Pavan M, Senior Engineer, SSIR, Bengaluru, India (pavan2019.m@samsung.com)
Ajay Vamshi Krishna, Senior Engineer, SSIR, Bengaluru, India (a.krishnaka@samsung.com)
Eldin Ben Jacob, Associate Staff Engineer, SSIR, Bengaluru, India (eldin.jacob@samsung.com)

Sriram Kazhiyur Sounderrajan, Associate Director, SSIR, Bengaluru, India
(sriram.k.s@samsung.com)

Somasunder Kattepura Sreenath, Director, SSIR, Bengaluru, India (soma.ks@sasmung.com)

Abstract—Few of the main requirements for Design Verification closure are clean regression and coverage closure
with lesser turnaround time with every design label. Centralized Regression Optimization Toolkit (CROT) based on
Smart Centralized Regression(SCR) [1] is a utility where all the DV tests from each IP/subsystem/SoC are automated
to run centrally to ensure 100% pass rate qualifying a bug-free DUT with each design release label and gather requisite
coverage metrics.

Keywords—regression; verification; automation; coverage; simulation time

. INTRODUCTION

The simulation time depends on the size and complexity of the design, testbench and simulator performance
and Load Sharing Facility (LSF)/Compute availability. In addition to RTL simulations, with X-propagation, power
aware simulations and gate level simulations closure being mandatory for DV closure, the turnaround time for
regression closure has increased exponentially. With the increasing number of subsystems and IPs in an SoC, the
number of tests increase exponentially thereby causing a surge in net run times and license requirement if the overall
performance is not ameliorated to its most optimized state. The CROT addresses each of these concerns by
managing the regression process efficiently in an optimized manner without compromising on the quality of
verification and prudently saving up to 60% time and resources and eventually the cost saved up per project.

The CROT employs 3 key aspects to expedite the CR process:

e Live tracking via HTML dashboard =» Improved status reporting, failure analysis, rerun, and
automated incremental coverage merging.

e Simulation speed optimization =» Profile, Analyze, Perf Knobs, Save and Restore (SnR).

e LSF and compute optimization =» Tracking and projecting the LSF scheduling and license acquisition
mechanism.

2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

Il. LIVE TRACKING VIA HTML DASHBOARD

Logistical challenges while running a centralized regression are automated initiation, live report presentation,
easy tracking & debug of failures and coverage analysis. The HTML user interface is intuitive, user-friendly and
simple. The main aim is to reduce the regression time, & iterations and ease of tracking & first-cut failure analysis.
All the features are designed keeping this in mind. When the regression iterations are reduced, the number of
licenses required for closing the regression activity comes down which in turn brings down the cost of license
involved.

Once the design release is available, CROT analyses the test-plan spreadsheet and handles the comprehensive
list of compiles, elaborations, boot snapshot and smoke test which need to be run to ensure sanity. If smoke tests of
particular IPs or BLKSs fail, full regression is not launched till smoke suite is clean. This directly results in preventing
the usage of LSF and License by filtering tests which we know is anyways going to fail and these tests are directly
marked fail even without firing the simulation. Regressions are run on Cadence vManager tool with Xcelium
simulator and report is generated via batch mode. The CSV report are custom generated for each iteration. To
enable history and track the progress of both test and project development, a repository of each CR is created for
the different flavours of the runs like RTL, low-power enabled, XPROP enabled etc. The real time regression report
and merged coverage report is generated in HTML format with a customisable refresh rate. The HTML has the
capability of triggering the coverage merging based on the list of tests/suites selected by the user as well. Email
alerts are also automatically sent with a list of first failures and unique run ID of the test for quick analysis and to
alleviate the need to sift through bulky log files and dump. The user can check the status of the tests on the live
HTML webpage dashboard (Figure 1) and provide fixes resulting in saving the precious GUI licenses by at least
77%. We were also able to save the need for manual intervention and engineer bandwidth by 25% with these
enhancements across projects.

Coverage summary
Last updated 16:25

[ToTaL|[PASS [[FAIL | RUN || WaIT || OTHER

[25641 [2541 | o | [[[[[

[[2%PASS |[2eFAIL|[2RUNNING [%WAITING|[%0THERS |

[100.00[0.00| ©0.00 | o0.00

BLOCK| PASS [[FAIL| RUN || WAIT | OTH [BLOCK TOTAL|| Pass% |[COMPILATION ISSUES|TEST INCOMPLETE

[A J[as3 [o | 0 [o [o [163 [100.00]| [s] [5]

[B 208 [o | 0 [0 [8] [205 [100.00]| 5] [8]
[« 381 0 0 o 0 381 100.00 [§] 0
D 182 0 0 0 0 182 100.00 [5) 0
E 245 0 0 o 0 245 100.00 [5] 0

[E [382 [o | 0 [o [o [369 [100.00]| [s] [0

[& [427][o | 0 [] [0 [427 [100.00]| 5] [0
H 230 0 0 o 0 230 100.00 5] 0
1 322 0 0 o 0 322 100.00 [s] 0
1 27 0 0 0 0 27 100.00 [5) 0

Owner summary

Jobs summary

Figure 1. Live HTML Regression Dashboard

A. Pre-processing

Before the start of regression all the test-vectors which are obtained from the testplan excel sheet are analyzed
for correctness. Wrong test-vectors naming will take unnecessary licenses and failures will be reported. Such
incorrect commands will require individual edits which results in slowing down the turnaround time. The
preprocessing does the quality check of the content filled by the user. By pre-processing we can avoid manual errors
and hence few iterations of regression in order to get 100% pass rate. Few important test cases for each IPs are
identified as smoke tests. We can choose to run the full regression or only the smoke suite. Smoke tests are run

2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

when a major RTL change has been incorporated or when the testbench has got an overhaul we check the
environment changes with the smoke test suite to see if the important datapath tests are passing cleanly. This will
save a lot of resources being used up front. Let’s say for a suite of 300 tests, we have 1 smoke test, if the smoke
fails, we save on running 299 tests and they are marked as fail even without using LSF slot/License. This has
resulted in close to 58% of tests marked as fail on the recent project.

B. HTML Dashboard web-page

Once the tests are launched, the complete regression can be tracked by this automated HTML. This HTML
gives a hierarchical summary of the whole SoC regression. It gives a complete block wise report and inside each
block IP wise report. For each IP, it shows all the test cases and its status. All the information needed about the test
case- its run path, job-id, failure reason, how much time the test ran, start time, end time and how much time it
waited to acquire license will be summarized. It captures all the warnings, errors and dumps to a separate file which
can be accessed from the HTML itself.

One step higher in the hierarchy, owner can find the details about the block. It shows all the IPs in that block
and its individual pass, fail, running, waiting status and owner name who’s verifying the IP. The average run time
of each IP along with long running test cases (which can be set based on project), maximum and minimum run
times are a part of the dashboard. Abnormalities can be identified and looked into. It summarizes how many failures
due to compilation issues and tool issues separately. So too many failures in these two categories need immediate
attention.

BLOCK A

—_—

| TOTAL | PASS FAL| RUN | WA | OTHER
(188 18 0 0 0 | 0

| %PASS XFAIL XRUNNING SWAITING 0THERS
| 40000000| 000 | 000 | 0.0

[P NAME| PASS |FALL| RUN WA | OTH BLOCKTOTAL|Passh COMPILATION ISSUES TEST INCOMPLETE AVG TINE(hrs) MIN TIWE[br) MAX TIME{f) OWNER

|

(et 9 0] 0 L0 | o | 79 ool 0 | 0 | 23t | 18 | 303 ownerd
lp2 o] o oo o |7 oo 0 0 2% | 18 320 ower2
'pa 2 0 0o 0o | o | 2 how 0o | 0o | 2% | 113 | a1 owe3
(P4 B 0] 0 L0 o | B oo 0 0 a6 | 18 33 owerd
lps 2 0 0 | 0 | o | =2 how 0o | 0o | 260 | 111 | 32 owers
p6 2 0] 0 L0 | o | 2 oo 0o 0 | am | 186 | 306 ownerd

Figure 2. HTML BLOCK Summary

One more step higher in the hierarchy will give a detailed summary (Figure 1) about all the blocks’ status and
average runtime. One can get to know by how much percentage a block’s regression is completed, compilation
issues and tool issues. These details will give help in identifying on which block to prioritize.

C. Smart Coverage Merging

As the tests with coverage enabled complete, its coverage is merged and published in the HTML. This saves a
lot of time for the engineers to run individual test at their end and merge coverage. They can directly analyze un-
merged coverage on Cadence IMC tool with the regression coverage database. IPs of interest can be set for which
the coverage will be enabled resulting in simulation speed improvement compared to a full SoC coverage enabling.
Incremental coverage merging happens once a test completes i.e. the new test is merged to the previous database

2021

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

hence saving resources. This is flexible to consider coverage waivers also and will be showed as waived coverage
in the HTML.

Generally, 20-30% of the tests run contribute to 75-85% coverage. After the first regression completion, the
tests were ranked to extract the list of tests resulting in 80-85% coverage. Subsequent regressions harnessed this
coverage to skip running significant amount of tests with coverage enabled. Furthermore, the coverage is
dynamically merged on the fly with every fixed % of incremental completion of passed tests in CR via automation,
thus avoiding repetition of coverage database merging. With these advancements leading to reduction in the overall
number of tests runs with coverage enabled, the net regression TAT over multiple iterations reduced by about 25%.
This feature also reduces the need to use another tool to view the merged coverage which requires a separate license
to be acquired. This saves tremendous licensing costs and issues which can arise when multiple people work on the

coverage analysis at the same time creating license crunch and reduced efficiency in analysis.

Sheet 1: Summary

Title: top Dut Toggle Coverage Summary
Author: owner2
IP BLOCK Total Signals Sim Coverage Unchecked Items Waived Coverage

LBLK AIP 2 228 83.63% El 83.63%
2.BLK B.IP 4 226 83.63% 37 83.63%
3BLK CIP 3 447 85.46% 65 85.46%
4.BLK DJP 1 203 B4.73% 3 B4.73%
5.BLK FIP 2 299 78.93% 63 78.93%
G.BLK FIP 4 11 B4.36%] 84.36%
I.BLK GJIP 2 242 85.12% 36 85.12%
G.BLK G.P 3 242 85.12% 36 85.12%
9.BLK LIP 4 209 79.90% 42 79.90%

D. Owner Summary

A separate owner wise summary is available. It allows project managers to track regression results with owner

Figure 3. HTML BLOCK Summary

wise progress and the IPs they are owning. Any discrepancy can be addressed.

OWNER SUMMARY

| ONWER NAME | IP NAME
| ownerl | P21
| | Ip2
| | Ip3
| | P4
| owner2 | IP.5
| | IP_6
| | Ip7
| owner3 | P8
| | X
| | PP_10
| [P11
| | IP_12

|

[PAss [FAIL[RUN|WAIT oTHER
[49 [o oo o
[a2 [o oo o
[25 [o oo o
[40 [o oo o
[20Jofofo o
[ofofo o
[[ofofo o
[0 ofofo o
[e3[ofofo o
[2 Jofofo o
[9 JoJofo o
[sTofofof o

Figure 4. HTML OWNER Summary

2021

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

E. Job summary

A detailed report on number of jobs submitted each day is recorded and reflected on the job summary HTML.
It encapsulates the number of passes, fails and running jobs on a given day. Most importantly, it shows average
wait time and resource acquisition time. This feature is helpful to understand if we are facing any license crunch or
loading of snapshot is taking more time than expected and can be addressed immediately which in turn will help
smooth and faster closure of regression. It also tracks disk space usage and sends email alerts so that we do not run
out of space which leads to simulation failures and rerunning of all those tests taking more licenses and time.

Date No ofjobs Submitted No ofjobs Completed Avg Wait Tmefs) Avg Resource collcted Time(s) Pass Ratio Fail Ratio| Running jobs Disk usage
w2343 R 1072095 [8068 [1032 | 190 | 40T 37 3,97 9% fuser/disd
upm 2% 315 31945 239,00 [9460 [540 | 108 | 4OT37T 30701 juser/iskd

\
11/22/20 20 5 [s 302378 [(o434 [566 | 70 [40T 3T 28T 91% fuser/disd
11/23/20 9 1 e 1054.00 [1570 8420 [50 | 40T 377 34T 93% fuser/disd
11/24/20 5 15) 2180.35 [10000 [000 | 36 [407317 3.27 93% juser/dis0
11/25/20 % 3 | 65 1299275 [8000 [2000 [77 40T 3T 3,07 93% fuser/disd
11/26/20 3 ! X 6607.12 [2041 [7059 [50 | 407317 3.27 93% juser/ds0
1127720 54 5 [464305 7862.59 [852 [3148 | 47 [407 37 2.07 93% fuser/disd
11/28/20 o7 13 | 510159 181948 [(9231 [769 | 35 | 40T 31T 34T 9% fuser/disd
11/29/20 1 15 [sa 1533.03 [10000 [000 | 19 [40T 37 3.7 93% fuser/diskd
11/30/20 I 14 [116 22218 [8571 [1429 [36 | 40T 377 3.7 93% fuser/disd
12/1/20 68 7 [% 126423 [o173 [221 [33 | 407317 31793% juser/dsd
12/2/20 3 7 B 742100 [(9630 [370 [2 407 38T 2.07 93% fuser/disd

Figure 5. HTML JOB Summary

F. POST-PROCESSING

We can update the filters for the failure categorization at any stage of regression. Comprehensive checkers and
filter files are developed in order to have zero fake passes which can lead to a potential bug in silicon. There are
known fake failures as well for which filters are added. This results in saving engineer’s precious time by not
looking into known fake failures.

I1l. SIMULATION SPEED OPTIMIZATION

A. PROFILING

Cadence Xcelium simulator memory profiling [3] (xmprof) was used to analyse the major contributors utilizing
simulation resources, identify avenues for optimization like always on clocks and assertions, poorly written HDL
code and design logic consuming high memory to execute. For instance, simulator dependent $xm_mirror was
being used in multiple places which is an expensive method especially if it crosses over primary snapshot and
incremental snapshot boundaries with high frequency clocks. There were multiple clocks being used across various
checkers which caused additional overhead. We have changed the usage from $xm_mirror to assign statements to
reduce this and we were able to improve the run times by 1-2%. With overall profiling, average run times were
alleviated by 5-7%.

Without Profiling | With Profiling|% improve
Average Elab Time (h) 0.5 0.47 6.0
Average 5im Time (h) 7.2 6.75 6.3

Table 1. Comparative Analysis of Profiling Results

2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

B. Auto-analysis and perf knobs

Sim speed auto-analysis utility was used to perform an in-depth audit of the options used during elaboration
and simulation stages and identify the switches causing bottlenecks and eating simulator efficiency. The debug
access authority was provided only to requisite instances and modules. The performance switches along with latest
tool versions resulted in improving the elaboration and simulation run times by 15-17%.

Without Auto Analysis | With Auto Analysis | % improve
Average Elab Time (h) 047 0.39 17.0
Average Sim Time {h) 6.75 5.7 156

Table 2. Comparative Analysis of 100 CR jobs with auto-perf-analysis

C. “SNR” (SAVE AND RESTORE)

By making each Verification Entity (VE) compatible to Cadence Save and Restart flow [2], we could bring
down the average sim time by an additional 49%. In SoC simulations the basic boot, clock, power and memory
controller initialization are required to bring up the design for further testing for each IP/Blocks. Making a snapshot
of this boot sequence as a base for other tests resulted in saving 4-6ms of sim time for each test. Furthermore,
common initialization of PHY, link, controller etc. which are required across multiple tests for IPs like PCle, CSI,
DSl can also be saved in this snapshot. With ~2500 tests in regression the regression TAT reduced by 47-54%
(Table 3)

2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

Average Test run time (hours) i
BLK [Mo. of Tests % improve
Non-SNR SNR

A 153 4.9 2.5 49.0
B 205 6.3 3.1 50.8
C 381 7.2 3.5 314
D 182 4.8 2.3 52.1
E 245 5.8 2.7 53.4
F 369 7.9 3.8 51.5
G 427 4.1 1.5 53.7
H 230 3.6 1.5 47.2
| 322 7.9 3.9 50.6
J 27 4 3.2 20.0
TOTAL 2541 5.7 2.9 45.0

Table 3. Comparative Analysis for each Block with SNR

D. MISCELLANEOUS OPTIMIZATION

Includes smart coverage merging, running with limited debug access capabilities, auto generated access file for
debug access permissions, no waveform dumping, disk usage tracker and cleaner to avoid crashes and rerun et al.
The Smoke test column in attribute sheet, fixes common VE issues before even starting the full regression. A script
is being used to search and collate all active forces and warnings during each and every test run in an excel sheet.
IP owner audits it and removes unnecessary forces and resolves warnings through which we decreased the
possibility of getting bugs on Silicon. The CHECK_ATTRIBUTE script, identifies the issues with test vectors and
makes sure that improper test vectors won’t be a part of CR. The summary of issues is collated in a log which is
shared with test owners so that fix happens at the test owner’s end. Through the use of filters on various kinds of
errors, we make sure that there no fake passes/failures.

As a result of above upgrades, we were able to complete first iteration of CR in 2-3 days which saved over 60%
time and resources for 25+ custom lib compiles, DUT elaboration, snapshot and test runs. An Al based mechanism
to detect unchanged design between subsequent releases to reduce the tests required to qualify the DUT is under
development.

IV. LOAD SHARING FACILITY AND COMPUTE OPTIMIZATION

Total run time of the regression (Estimated run time) was calculated from the regression log files based on LSF
utilization and the actual run time from regression start to end (Actual run time) collected for IPs and SoCs. Ideally,
estimated run time should be very close to actual run time. However, various factors involved in LSF job scheduling
and license(s) acquisition mechanism result in variation of actual run time. An LSF profiler & analyser script was
developed to aid in tracking and projecting the LSF scheduling and license acquisition mechanism. The profiler
monitors the status of the running jobs periodically and dumps out log report for analysis. With regression profiler,
the turnaround time improved between 15— 25%, LSF utilization improved significantly from 84% to 97% and
license usage improved between 25-40% resulting in huge cost savings and effective utilization of resources.

LSF/License Utilization Normal Flow | CROTflow (% improve
Mo. of hours License Utilized/iteration 14000 10500 25.0
LSF utilization B4% 97% 13%

Table 4. LSF and license acquisition optimization

Table 5 below shows the improvement of about 57% after incorporating all above enhancements in our CROT
environment which is project agnostic and can be extended to any IP/SoC DV. The pilot has been successfully

2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

implemented for our current SoC DV project and it shows tremendous improvement over traditional regression
approach with real-time HTML tracking and reporting, sim speed enhancement with profiling, auto-perf-analysis,
SNR and targeted incremental coverage merging & LSF and license usage optimization.

u No. of Tests| Mean original run Net Test run time (hours) with no. of iterations = 15 MeanCROTrun | Netf%

(n) | timepersim (T) |Base (n*T*15)| Profiling | Prof+autoanalysis | Prof+autoanalysis+SNR | time persim (T') | improve

A 153 53 12164 11256 %20 573 25 328
B 205 6.9 pivit] 0104 17659 9533 il 51
C i 82 46863 478 315200 20003 35 313
D 182 58 15834 1474 11934 6279 23 60.3
3 U5 b7 U623 20985 19901 95 Ll 87
f 369 89 49262 | 46178 350 0% 38 33
G a7 51 12666 31092 137 n 19 L1
H A 42 14430 13601 11574 6333 19 M3
| EP)) & 3640 36087 8338 18837 19 313
l 7 47 194 1787 1450 1% 32 EIE]
TOTAL | 254 12 L7661 | 41577 199373 111365 29 368

Table 5. CROT consolidated results

V. RUNTIME TO COST COVERSION

The improvements done raised the curiosity to document and quantify the savings done per project. Typically,
we come across SoCs with average 6000 test cases each running with an average of 24hrs. Over the whole cycle of
verification, typically around 14 iterations of centralized regression are run. We need around 10-12 different
licenses for different IPs in a SoC to complete the regression with an average cost $25 each. Table 6 projects the
cost estimate for the licenses with and without optimization. From table 5 we have got net% improvement on run
time more than 50%. This brings down the average run time of SoCs to 12 hrs. Now we can see average estimation
of cost (in USD) coming down by almost 50%. This is the case for 1 project. When we consider it across entire
Samsung where typically around 100s of DV projects are being executed parallel, the amount saved will be
humongous if the flow is incorporated. The tool as a package will have a huge impact (~50%) on saving ASIC
project licensing/LSF costs across the organization.

Avg no of tests = 6000
Avg Runtime | Avg tests * Runtime [No of Iteration |Run time(hrs) |Run time(weeks) |Lic Cost(USD) |Total Cost{USD)
i 144000 1 2016000 12000 2551 3012000
12 72000 14 1008000 6000 250 1500000

Table 6. Runtime-Cost comparison

VI. CENTRAL REGRESSION IN GATE LEVEL SIMULATIONS

PRE Gate Level Simulations (unit delay simulations with DC netlists) runs take high times to complete and
Timing GLS would take even more time because of SDF compilation and back-annotation. Using the above
Optimization techniques in GLS showed efficiency in bringing run times down by around 25-35% which saved
around 10 days of time. Below table shows the reduction of total run time when using the Profiling, auto analysis
and SNR techniques. Although the number of tests are less compared to RTL simulations, CROT deployment for
GLS is very crucial as the turnaround time for same test is considerably higher. For example, if we have a test that
runs for around 1 hr in RTL simulations and the DUT compile and TB elaboration time is ¥z hr, the post PNR netlist

2021

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

based DUT takes 6 hours to compile and elaborate and around 8 hours to complete the simulation, which is
depending on the resource available. Thus the improvements introduced via CROT regarding total time taken for
the simulations makes it very important to achieve 100% passing gate level regression before tape-out.

Mean original

Bk No. of Tests Net test run time(hours) with no. of iterations=10 Mean CROT run | Net %
run
(n) time per sim{7) | Base(n'T*10] | Profiing | Prof+autoanalyss | Prof+autoanalysis+SR time per sim(T" | improve

A 13 T 3510 3408 3015 1587 199 263
B 18 32 5760 5575 4970 4199 33 211
C pil 3 4830 4680 4182 3410 162 294
D 1 3 4760 4588 4014 922 2039 386
£ 6 30 1800 1749 1544 1130 188 312
F 12 82 9840 9495 8323 6632 55.2 326
G 19 49 9310 8956 7843 5605 295 398
H 8 32 2560 2485 2208 1751 219 316
| 12 64 7680 7434 6819 5399 15 29.7
J 2 43 860 833 798 701 351 185

TOTAL 117 435 5090 1920 4231 3433 293 326

Table 7. GLS CROT consolidated results

VIl. CROT FLow

Compilation
and
elaboration

MNext iteration
of regression after
optimizing

End of regression

Profiling and
LSF

Optimisation

Test vectors are taken directly from the exhaustive test plan which has the DV attribute sheets per subsystem/IP.
These test vectors are run through the preprocessing scripts to check initial errors. A complete list containing what
builds needs to be run is generated. In this step we need to enable coverage and hierarchies we are interested in. We
also choose which blocks to run and prioritize whether to run the full regression or smoke test. In the next step that
build list is launched by the CROT tool. Once the compilation and elaboration step is completed the tests are

2021

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

launched in vManager. As the tests progress in parallel to it the live HTML shows the progress of the regression
along with merging coverage, and other summaries as mentioned above. Once the regression is complete, Profiling
and LSF optimization is done to analyze if the regression time can be reduced further. After taking the changes into
consideration and fixing the test plan errors next iteration is started in the required release.

VIIl. CONCLUSION

Typically, during SoC DV lifecycle, CR is run for 50~75 iterations traversing RTL development, PARTL, RTL
freeze stages to unit delay and timing GLS. The current SoC taken up for the regression had a total of 6000+ tests
and the individual sims had a mean run time of about 4hours with RTL. With 100 licenses in parallel, it would take
around 6-7 days to get initial results. The bug fixes and their reruns would make the regression turnaround time
exceed 10 days in RTL to about 30 days in GLS. All above activities are time and bandwidth consuming manual
processes. With time to market and first pass silicon becoming a key differentiator, it is imperative to strategically
reduce this cycle-time which often consumes a lot of engineering bandwidth resulting in productivity loss. With
CROT deployment in our DV project, we were able to save around $1,500,000 in licensing cost and close to 200
net engineering hours per week per DV team with our enhanced interactive GUI.

IX. FUTURE SCOPE

Using Simulator Independent Verification Platform Development (SIVPD), we can remove many dependencies
on tool limitations as CROT is intended to be tool and project agnostic. We are planning for few enhancements
such as killing few SNR jobs that take huge time when there’s a problem with loading incremental snapshot
automatically, auto rerunning the tests which failed due to some known errors which can be ignored, checker audit
for elaboration/simulation options passed to simulator, audit on DUT hacks using forces and mirror etc.

REFERENCES

[1] Published Paper: Smart Centralized Regression (SCR): An Efficient Way of Managing Regression and Analyzing Failures — DVCON
2017: Authors: Sriram Kazhiyur ~ Sounderrajan, Somasunder Kattepura Sreenath. https://dvcon-india.org/content/event-
details?id=241—11

[2] Published Paper: Efficient Methodology for Design Verification Closure for Complex SoCs using Save and Restore — CDN Live 2019:
Authors: Arushi Mittal, Vasundhara Gupta, Raghavendra Bidanagere R, Somasunder Kattepura Sreenath

[3] Xcelium Profiling User Documentation:
https://support.cadence.com/apex/techpubDocViewerPage?xmIName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%2
0and%_20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-

%20%20Product%20L evel%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-
ProductLevel2:PROFILER&c version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems
and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER

10

https://dvcon-india.org/content/event-details?id=241—11
https://dvcon-india.org/content/event-details?id=241—11
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%20and%20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-%20%20Product%20Level%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER&c_version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems_and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%20and%20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-%20%20Product%20Level%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER&c_version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems_and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%20and%20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-%20%20Product%20Level%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER&c_version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems_and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%20and%20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-%20%20Product%20Level%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER&c_version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems_and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%20and%20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-%20%20Product%20Level%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER&c_version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems_and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER

