

1

Centralized Regression Optimisation Toolkit

(CROT) for expediting Regression Closure With

Simulator Performance Optimisation

Harshal Kothari, Associate Staff Engineer, SSIR, Bengaluru, India (harshal.k1@samsung.com)

Pavan M, Senior Engineer, SSIR, Bengaluru, India (pavan2019.m@samsung.com)

Ajay Vamshi Krishna, Senior Engineer, SSIR, Bengaluru, India (a.krishnaka@samsung.com)

Eldin Ben Jacob, Associate Staff Engineer, SSIR, Bengaluru, India (eldin.jacob@samsung.com)

Sriram Kazhiyur Sounderrajan, Associate Director, SSIR, Bengaluru, India

(sriram.k.s@samsung.com)

Somasunder Kattepura Sreenath, Director, SSIR, Bengaluru, India (soma.ks@sasmung.com)

Abstract—Few of the main requirements for Design Verification closure are clean regression and coverage closure

with lesser turnaround time with every design label. Centralized Regression Optimization Toolkit (CROT) based on

Smart Centralized Regression(SCR) [1] is a utility where all the DV tests from each IP/subsystem/SoC are automated

to run centrally to ensure 100% pass rate qualifying a bug-free DUT with each design release label and gather requisite

coverage metrics.

Keywords—regression; verification; automation; coverage; simulation time

I. INTRODUCTION

The simulation time depends on the size and complexity of the design, testbench and simulator performance

and Load Sharing Facility (LSF)/Compute availability. In addition to RTL simulations, with X-propagation, power

aware simulations and gate level simulations closure being mandatory for DV closure, the turnaround time for

regression closure has increased exponentially. With the increasing number of subsystems and IPs in an SoC, the

number of tests increase exponentially thereby causing a surge in net run times and license requirement if the overall

performance is not ameliorated to its most optimized state. The CROT addresses each of these concerns by

managing the regression process efficiently in an optimized manner without compromising on the quality of

verification and prudently saving up to 60% time and resources and eventually the cost saved up per project.

 The CROT employs 3 key aspects to expedite the CR process:

 Live tracking via HTML dashboard Improved status reporting, failure analysis, rerun, and

automated incremental coverage merging.

 Simulation speed optimization Profile, Analyze, Perf Knobs, Save and Restore (SnR).

 LSF and compute optimization Tracking and projecting the LSF scheduling and license acquisition

mechanism.

2

II. LIVE TRACKING VIA HTML DASHBOARD

Logistical challenges while running a centralized regression are automated initiation, live report presentation,

easy tracking & debug of failures and coverage analysis. The HTML user interface is intuitive, user-friendly and

simple. The main aim is to reduce the regression time, & iterations and ease of tracking & first-cut failure analysis.

All the features are designed keeping this in mind. When the regression iterations are reduced, the number of

licenses required for closing the regression activity comes down which in turn brings down the cost of license

involved.

Once the design release is available, CROT analyses the test-plan spreadsheet and handles the comprehensive

list of compiles, elaborations, boot snapshot and smoke test which need to be run to ensure sanity. If smoke tests of

particular IPs or BLKs fail, full regression is not launched till smoke suite is clean. This directly results in preventing

the usage of LSF and License by filtering tests which we know is anyways going to fail and these tests are directly

marked fail even without firing the simulation. Regressions are run on Cadence vManager tool with Xcelium

simulator and report is generated via batch mode. The CSV report are custom generated for each iteration. To

enable history and track the progress of both test and project development, a repository of each CR is created for

the different flavours of the runs like RTL, low-power enabled, XPROP enabled etc. The real time regression report

and merged coverage report is generated in HTML format with a customisable refresh rate. The HTML has the

capability of triggering the coverage merging based on the list of tests/suites selected by the user as well. Email

alerts are also automatically sent with a list of first failures and unique run ID of the test for quick analysis and to

alleviate the need to sift through bulky log files and dump. The user can check the status of the tests on the live

HTML webpage dashboard (Figure 1) and provide fixes resulting in saving the precious GUI licenses by at least

77%. We were also able to save the need for manual intervention and engineer bandwidth by 25% with these

enhancements across projects.

Figure 1. Live HTML Regression Dashboard

A. Pre-processing

Before the start of regression all the test-vectors which are obtained from the testplan excel sheet are analyzed

for correctness. Wrong test-vectors naming will take unnecessary licenses and failures will be reported. Such

incorrect commands will require individual edits which results in slowing down the turnaround time. The

preprocessing does the quality check of the content filled by the user. By pre-processing we can avoid manual errors

and hence few iterations of regression in order to get 100% pass rate. Few important test cases for each IPs are

identified as smoke tests. We can choose to run the full regression or only the smoke suite. Smoke tests are run

3

when a major RTL change has been incorporated or when the testbench has got an overhaul we check the

environment changes with the smoke test suite to see if the important datapath tests are passing cleanly. This will

save a lot of resources being used up front. Let’s say for a suite of 300 tests, we have 1 smoke test, if the smoke

fails, we save on running 299 tests and they are marked as fail even without using LSF slot/License. This has

resulted in close to 58% of tests marked as fail on the recent project.

B. HTML Dashboard web-page

Once the tests are launched, the complete regression can be tracked by this automated HTML. This HTML

gives a hierarchical summary of the whole SoC regression. It gives a complete block wise report and inside each

block IP wise report. For each IP, it shows all the test cases and its status. All the information needed about the test

case- its run path, job-id, failure reason, how much time the test ran, start time, end time and how much time it

waited to acquire license will be summarized. It captures all the warnings, errors and dumps to a separate file which

can be accessed from the HTML itself.

One step higher in the hierarchy, owner can find the details about the block. It shows all the IPs in that block

and its individual pass, fail, running, waiting status and owner name who’s verifying the IP. The average run time

of each IP along with long running test cases (which can be set based on project), maximum and minimum run

times are a part of the dashboard. Abnormalities can be identified and looked into. It summarizes how many failures

due to compilation issues and tool issues separately. So too many failures in these two categories need immediate

attention.

Figure 2. HTML BLOCK Summary

One more step higher in the hierarchy will give a detailed summary (Figure 1) about all the blocks’ status and

average runtime. One can get to know by how much percentage a block’s regression is completed, compilation

issues and tool issues. These details will give help in identifying on which block to prioritize.

C. Smart Coverage Merging

As the tests with coverage enabled complete, its coverage is merged and published in the HTML. This saves a

lot of time for the engineers to run individual test at their end and merge coverage. They can directly analyze un-

merged coverage on Cadence IMC tool with the regression coverage database. IPs of interest can be set for which

the coverage will be enabled resulting in simulation speed improvement compared to a full SoC coverage enabling.

Incremental coverage merging happens once a test completes i.e. the new test is merged to the previous database

4

hence saving resources. This is flexible to consider coverage waivers also and will be showed as waived coverage

in the HTML.

 Generally, 20-30% of the tests run contribute to 75-85% coverage. After the first regression completion, the

tests were ranked to extract the list of tests resulting in 80-85% coverage. Subsequent regressions harnessed this

coverage to skip running significant amount of tests with coverage enabled. Furthermore, the coverage is

dynamically merged on the fly with every fixed % of incremental completion of passed tests in CR via automation,

thus avoiding repetition of coverage database merging. With these advancements leading to reduction in the overall

number of tests runs with coverage enabled, the net regression TAT over multiple iterations reduced by about 25%.

This feature also reduces the need to use another tool to view the merged coverage which requires a separate license

to be acquired. This saves tremendous licensing costs and issues which can arise when multiple people work on the

coverage analysis at the same time creating license crunch and reduced efficiency in analysis.

Figure 3. HTML BLOCK Summary

D. Owner Summary

A separate owner wise summary is available. It allows project managers to track regression results with owner

wise progress and the IPs they are owning. Any discrepancy can be addressed.

Figure 4. HTML OWNER Summary

5

E. Job summary

A detailed report on number of jobs submitted each day is recorded and reflected on the job summary HTML.

It encapsulates the number of passes, fails and running jobs on a given day. Most importantly, it shows average

wait time and resource acquisition time. This feature is helpful to understand if we are facing any license crunch or

loading of snapshot is taking more time than expected and can be addressed immediately which in turn will help

smooth and faster closure of regression. It also tracks disk space usage and sends email alerts so that we do not run

out of space which leads to simulation failures and rerunning of all those tests taking more licenses and time.

Figure 5. HTML JOB Summary

F. POST-PROCESSING

We can update the filters for the failure categorization at any stage of regression. Comprehensive checkers and

filter files are developed in order to have zero fake passes which can lead to a potential bug in silicon. There are

known fake failures as well for which filters are added. This results in saving engineer’s precious time by not

looking into known fake failures.

III. SIMULATION SPEED OPTIMIZATION

A. PROFILING

Cadence Xcelium simulator memory profiling [3] (xmprof) was used to analyse the major contributors utilizing

simulation resources, identify avenues for optimization like always on clocks and assertions, poorly written HDL

code and design logic consuming high memory to execute. For instance, simulator dependent $xm_mirror was

being used in multiple places which is an expensive method especially if it crosses over primary snapshot and

incremental snapshot boundaries with high frequency clocks. There were multiple clocks being used across various

checkers which caused additional overhead. We have changed the usage from $xm_mirror to assign statements to

reduce this and we were able to improve the run times by 1-2%. With overall profiling, average run times were

alleviated by 5-7%.

Table 1. Comparative Analysis of Profiling Results

6

B. Auto-analysis and perf knobs

Sim speed auto-analysis utility was used to perform an in-depth audit of the options used during elaboration

and simulation stages and identify the switches causing bottlenecks and eating simulator efficiency. The debug

access authority was provided only to requisite instances and modules. The performance switches along with latest

tool versions resulted in improving the elaboration and simulation run times by 15-17%.

Table 2. Comparative Analysis of 100 CR jobs with auto-perf-analysis

 Figure 6. Snippet of Auto-perf-analysis Utility Report Output

C. “SNR” (SAVE AND RESTORE)

By making each Verification Entity (VE) compatible to Cadence Save and Restart flow [2], we could bring

down the average sim time by an additional 49%. In SoC simulations the basic boot, clock, power and memory

controller initialization are required to bring up the design for further testing for each IP/Blocks. Making a snapshot

of this boot sequence as a base for other tests resulted in saving 4-6ms of sim time for each test. Furthermore,

common initialization of PHY, link, controller etc. which are required across multiple tests for IPs like PCIe, CSI,

DSI can also be saved in this snapshot. With ~2500 tests in regression the regression TAT reduced by 47-54%

(Table 3)

7

Table 3. Comparative Analysis for each Block with SNR

D. MISCELLANEOUS OPTIMIZATION

Includes smart coverage merging, running with limited debug access capabilities, auto generated access file for

debug access permissions, no waveform dumping, disk usage tracker and cleaner to avoid crashes and rerun et al.

The Smoke test column in attribute sheet, fixes common VE issues before even starting the full regression. A script

is being used to search and collate all active forces and warnings during each and every test run in an excel sheet.

IP owner audits it and removes unnecessary forces and resolves warnings through which we decreased the

possibility of getting bugs on Silicon. The CHECK_ATTRIBUTE script, identifies the issues with test vectors and

makes sure that improper test vectors won’t be a part of CR. The summary of issues is collated in a log which is

shared with test owners so that fix happens at the test owner’s end. Through the use of filters on various kinds of

errors, we make sure that there no fake passes/failures.

As a result of above upgrades, we were able to complete first iteration of CR in 2-3 days which saved over 60%

time and resources for 25+ custom lib compiles, DUT elaboration, snapshot and test runs. An AI based mechanism

to detect unchanged design between subsequent releases to reduce the tests required to qualify the DUT is under

development.

IV. LOAD SHARING FACILITY AND COMPUTE OPTIMIZATION

Total run time of the regression (Estimated run time) was calculated from the regression log files based on LSF

utilization and the actual run time from regression start to end (Actual run time) collected for IPs and SoCs. Ideally,

estimated run time should be very close to actual run time. However, various factors involved in LSF job scheduling

and license(s) acquisition mechanism result in variation of actual run time. An LSF profiler & analyser script was

developed to aid in tracking and projecting the LSF scheduling and license acquisition mechanism. The profiler

monitors the status of the running jobs periodically and dumps out log report for analysis. With regression profiler,

the turnaround time improved between 15– 25%, LSF utilization improved significantly from 84% to 97% and

license usage improved between 25–40% resulting in huge cost savings and effective utilization of resources.

Table 4. LSF and license acquisition optimization

Table 5 below shows the improvement of about 57% after incorporating all above enhancements in our CROT

environment which is project agnostic and can be extended to any IP/SoC DV. The pilot has been successfully

8

implemented for our current SoC DV project and it shows tremendous improvement over traditional regression

approach with real-time HTML tracking and reporting, sim speed enhancement with profiling, auto-perf-analysis,

SNR and targeted incremental coverage merging & LSF and license usage optimization.

Table 5. CROT consolidated results

V. RUNTIME TO COST COVERSION

The improvements done raised the curiosity to document and quantify the savings done per project. Typically,

we come across SoCs with average 6000 test cases each running with an average of 24hrs. Over the whole cycle of

verification, typically around 14 iterations of centralized regression are run. We need around 10-12 different

licenses for different IPs in a SoC to complete the regression with an average cost $25 each. Table 6 projects the

cost estimate for the licenses with and without optimization. From table 5 we have got net% improvement on run

time more than 50%. This brings down the average run time of SoCs to 12 hrs. Now we can see average estimation

of cost (in USD) coming down by almost 50%. This is the case for 1 project. When we consider it across entire

Samsung where typically around 100s of DV projects are being executed parallel, the amount saved will be

humongous if the flow is incorporated. The tool as a package will have a huge impact (~50%) on saving ASIC

project licensing/LSF costs across the organization.

Table 6. Runtime-Cost comparison

VI. CENTRAL REGRESSION IN GATE LEVEL SIMULATIONS

PRE Gate Level Simulations (unit delay simulations with DC netlists) runs take high times to complete and

Timing GLS would take even more time because of SDF compilation and back-annotation. Using the above

Optimization techniques in GLS showed efficiency in bringing run times down by around 25-35% which saved

around 10 days of time. Below table shows the reduction of total run time when using the Profiling, auto analysis

and SNR techniques. Although the number of tests are less compared to RTL simulations, CROT deployment for

GLS is very crucial as the turnaround time for same test is considerably higher. For example, if we have a test that

runs for around 1 hr in RTL simulations and the DUT compile and TB elaboration time is ½ hr, the post PNR netlist

9

based DUT takes 6 hours to compile and elaborate and around 8 hours to complete the simulation, which is

depending on the resource available. Thus the improvements introduced via CROT regarding total time taken for

the simulations makes it very important to achieve 100% passing gate level regression before tape-out.

Table 7. GLS CROT consolidated results

VII. CROT FLOW

Test vectors are taken directly from the exhaustive test plan which has the DV attribute sheets per subsystem/IP.

These test vectors are run through the preprocessing scripts to check initial errors. A complete list containing what

builds needs to be run is generated. In this step we need to enable coverage and hierarchies we are interested in. We

also choose which blocks to run and prioritize whether to run the full regression or smoke test. In the next step that

build list is launched by the CROT tool. Once the compilation and elaboration step is completed the tests are

10

launched in vManager. As the tests progress in parallel to it the live HTML shows the progress of the regression

along with merging coverage, and other summaries as mentioned above. Once the regression is complete, Profiling

and LSF optimization is done to analyze if the regression time can be reduced further. After taking the changes into

consideration and fixing the test plan errors next iteration is started in the required release.

VIII. CONCLUSION

Typically, during SoC DV lifecycle, CR is run for 50~75 iterations traversing RTL development, PARTL, RTL

freeze stages to unit delay and timing GLS. The current SoC taken up for the regression had a total of 6000+ tests

and the individual sims had a mean run time of about 4hours with RTL. With 100 licenses in parallel, it would take

around 6-7 days to get initial results. The bug fixes and their reruns would make the regression turnaround time

exceed 10 days in RTL to about 30 days in GLS. All above activities are time and bandwidth consuming manual

processes. With time to market and first pass silicon becoming a key differentiator, it is imperative to strategically

reduce this cycle-time which often consumes a lot of engineering bandwidth resulting in productivity loss. With

CROT deployment in our DV project, we were able to save around $1,500,000 in licensing cost and close to 200

net engineering hours per week per DV team with our enhanced interactive GUI.

IX. FUTURE SCOPE

Using Simulator Independent Verification Platform Development (SIVPD), we can remove many dependencies

on tool limitations as CROT is intended to be tool and project agnostic. We are planning for few enhancements

such as killing few SNR jobs that take huge time when there’s a problem with loading incremental snapshot

automatically, auto rerunning the tests which failed due to some known errors which can be ignored, checker audit

for elaboration/simulation options passed to simulator, audit on DUT hacks using forces and mirror etc.

REFERENCES

[1] Published Paper: Smart Centralized Regression (SCR): An Efficient Way of Managing Regression and Analyzing Failures – DVCON

2017: Authors: Sriram Kazhiyur Sounderrajan, Somasunder Kattepura Sreenath. https://dvcon-india.org/content/event-

details?id=241—11

[2] Published Paper: Efficient Methodology for Design Verification Closure for Complex SoCs using Save and Restore – CDN Live 2019:

Authors: Arushi Mittal, Vasundhara Gupta, Raghavendra Bidanagere R, Somasunder Kattepura Sreenath

[3] Xcelium Profiling User Documentation:

https://support.cadence.com/apex/techpubDocViewerPage?xmlName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%2

0and%20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-

%20%20Product%20Level%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-

ProductLevel2:PROFILER&c_version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems

_and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER

https://dvcon-india.org/content/event-details?id=241—11
https://dvcon-india.org/content/event-details?id=241—11
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%20and%20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-%20%20Product%20Level%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER&c_version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems_and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%20and%20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-%20%20Product%20Level%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER&c_version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems_and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%20and%20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-%20%20Product%20Level%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER&c_version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems_and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%20and%20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-%20%20Product%20Level%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER&c_version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems_and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=xcelium_kpns.xml&title=Xcelium%20Known%20Problems%20and%20Solutions%20--%20Xcelium%20Profiler%20Known%20Problems%20and%20Solutions%20-%20%20Product%20Level%202:%20PROFILER%20&hash=XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER&c_version=21.03&path=XCELIUM_KPNS/XCELIUM_KPNS21.03/Xcelium_Profiler_Known_Problems_and_Solutions.html#XceliumProfilerKnownProblemsandSolutions-ProductLevel2:PROFILER

