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Abstract—Verification debug consumes a large portion of the 

overall project schedule, and performing efficient debug is a key 

concern in ensuring projects tape out on time and with high 

quality.   In this paper, we outline a number of key verification 

debug challenges we were faced with and how we addressed 

them using a combination of tools, technology and methodology.  

The root cause of failures can be traced, most often, to either an 

issue in the RTL, an issue in the testbench or, in our case, the 

software interacting with the hardware. Speeding the debug 

turnaround time (the time to re-run a failing sim to replicate the 

issue for debug) is critical for efficient debug.  Periodic saving 

of the simulation state was utilized extensively to narrow the 

debug turnaround time to a very small window.  Once a re-run 

was launched, waveform verbosity levels could be set by users to 

dump the appropriate amounts of information for debug of the 

re-run scenario.  For additional performance on the testbench 

side, coding methodology was introduced that allowed for 

maximum performance of stable sections of code.  To speed SW 

debug, a software driver was implemented into the testbench to 

allow for debug of SW related issues very early on in the project. 
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I.  INTRODUCTION 

Verification of a two hundred million gate design, which is 
four times the size of our previous design, presents numerous 
challenges.  In addition to the many other challenges that 
came with a design this size we knew that debug would be a 
significant issue that needed to be addressed from the project 
outset.  In particular, the debug turnaround time (TAT), the 
time taken to re-run a failing test to get to the point of debug, 
would need to be reduced.  From experience, we knew 
simulations would typically run for several hours each and we 
could not afford to spend an entire engineer’s day re-running a 
failing test just to start debug.  What we needed was method 
to reproduce a failing scenario using significantly less 
simulation cycles,.  Since our design size was very large, 
performance was a key concern.  We realized early on that 
we needed more than just raw simulation speed. We needed to 
examine the way we planned, developed and managed our 
code base throughout the project to optimize performance.  
Methodology, as well as technology would play a key role in 
enabling us to debug more efficiently.  As OOP testbenches 
today more closely resemble complex software systems, 
interactive debug would play a key role in speeding our overall 
debug turnaround time.  Rather than sifting through post 

process log and wave information, interactive debug features 
such as single stepping, usage of watch windows and 
breakpoint setting would allow us to get close to the point of 
failure more quickly, and visualize all needed debug 
information at the point of failure. Interactive debug also 
allowed us to reduce the amount of information we needed to 
save for each simulation debug run since when running 
interactively, all variables are available through the simulator.  
On the coding side we needed to implement an environment 
from the ground up that was crafted with debug TAT in mind.  
Since we were e users, this meant examining ways to partition 
the code base into compiled versus interpreted code early on in 
our project.  

Before beginning our project, we surveyed existing papers 
and articles on a variety of debug topics.  In [1], the idea of 
utilizing save and restore technology paired with a testflow 
infrastructure is discussed however; the example utilizes 
SystemVerilog as the implementation language.  As we were 
using an in-house developed testflow, this reference was quite 
relevant and we can adapt the idea in the paper in e.  In [2] 
,[3] and [4] further details on the specifics of how to pair the 
save and restore functionality, together with reseeding and, for 
e users such as ourselves, the dynamic loading of additional 
files after a restore point is addressed. These papers helped us 
to understand some of the specifics around the save/restore 
flows supported and the benefits/limitations we might 
encounter.  The save/restore scheme we implemented was 
based around previous successes we had using basic 
save/restore on previous projects, supplemented with the latest 
features (dynamic loading and reseeding) available.  While 
we found a number of papers related to debug for review, we 
found that we had enough experience in-house to understand 
the path we needed to take to achieve our goals in terms of 
code infrastructure changes and integration of our SW driver 
into the overall testbench infrastructure.     

This paper is structured in two major sections: 1)  
speeding the debug TAT of RTL and, 2) speeding the debug 
TAT of testbench and software.  We will discuss what 
worked well and also identify a few items that did not work 
out. 

II. SPEEDING THE DEBUG TURNAROUND TIME FOR RTL  

A. Saving and loading checkpoint snapshots 



Since our design was datapath oriented and we would be 
working with very large OTN frames, we knew from 
experience that simulations were going to be lengthy. Sending 
a single frame of data could take up to 10 minutes of wall 
clock time.  Due to this, simulations would typically run for 
several hours and some simulations would even take several 
days to complete.  In the event of a failure, re-running the 
complete simulation from time 0 for debug could consume an 
entire engineer’s day. As failures typically take several 
iterations to isolate and correctly identify the bug, re-running 
simulations from time 0 would be unacceptable and extremely 
inefficient. We needed to replicate failure scenarios in much 
shorter timeframes. We set as goal that we wanted to be able to 
re-run any failing simulation and return to the point of failure 
in no more than thirty minutes. Thirty minutes would allow 
many re-runs in a single day.  To achieve this, we made 
extensive use of the save/restore functionality common in 
today’s simulators. We introduced a methodology within our 
simulation run environment that, by default, saved a 
checkpoint every 30 minutes or 10,000ns of simulation time, 
whichever is more frequent.  The continuous checkpoint 
saving was implemented behind the scenes such that users did 
not need to set anything specific within their simulation in 
order to benefit.  To save on disk space, the same checkpoint 
file was continuously overwritten throughout the simulation in 
a directory location unique for each test run. Whenever a 
failure occurred, users could quickly restore the last saved 
checkpoint knowing that it would take, at most, 30 minutes to 
replicate their failing scenario.   

Our implementation of checkpoint saving allowed users to 
have flexible controls over how often a checkpoint was saved.  
Users should avoid saving checkpoints too often since too 
much disk operation in the simulator may cause performance 
bottlenecks depending on the network infrastructure.  For 
example, it takes on average 30 seconds to save a 4G snapshot 
with average network load.  The time required to save a 
snapshot increase as the size of the snapshot and load of the 
network.  We implemented five different mechanisms: 

1) Envrionment variables. The user can set environment 

variables to be picked up by the simulation run scripts 

automatically.  This allowed users to set their own 

checkpoint timing parameters in their testbench that would be 

used every time a simulation was run.  Users could set it 

once and the environment setup would consider these for all 

cases. 
 

%> set CP_SIMTIME = 100000; # in ns 

%> set CP_REALTIME = 1800;  # in seconds 

 
2) Run script command line inputs. This allowed users to 

override the default values set in the environment variables 

for a single simulation run when debugging the testcase.  

The run script is a shell script that wraps around the ncsim 

command and allow us to easily modify any ncsim argument.  

The run script will overwrite the environment variable with 

the input arguments before launching ncsim.  
 

%> do_sim.cmd –cp_simtime 100000 

 
3) Manually saving the checkpoint from the simulator 

command line.  When the user is running the simulator in 

interactive mode, they could create an instantaneous 

checkpoint right from the ncsim command line.  This was 

very helpful in reducing the debug turnaround time even 

further since if a user was able to get to a point in the 

simulation that was only a few cycles before a failure, they 

could create an instantaneous snapshot at that point, reducing 

the debug turnaround time from 30 minutes down to several 

minutes and, in some cases, seconds.  For example: 
 

ncsim> save_checkpoint [checkpoint_name]  

 
4) Constraints embedded within the testcase.  This 

allowed users to set constraints within the testcase code itself 

that would always be adhered to, no matter how the test was 

launched or what environment variables were set. Below is an 

example of the code required to be included in the testcase to 

control the timing parameters.   

 
extend checkpoint_utils { 

    keep cp_simtime == 100000; // in ns 

    keep cp_realtime == 1800;  // in seconds 

}; 

 

5) Hardcoded function call in the testcase.  If the user 

knows ahead of time where in the testcase they would like to 

save a checkpoint, for example after the testbench sent in the 

10th frame, they can hardcode the testcase to call an e 

 

 
Figure 1. Testflow phases and predefined checkpoints  



method to save the checkpoint.  Doing so, the user does not 

have to guess how long the simulation has to run before the 

checkpoint is saved.  Below is an example of the code: 

 
for i from 0 to 20 { 

    do send_frame_seq;  // send frame sequence 

    if (i == 10) { 

        sys.checkpoint_util.save_checkpoint( 

        “sending_10th_frame”);  // checkpoint name 

    }; 

} ; 

 
We also needed to consider the location of where 

checkpoint files would be saved.  While a natural place to do 
this would be within the snapshot directory of the simulator 
(this is the default location for the simulator), this was not 
optimal for our purposes.  The reason being, when running 
regressions, we shared simulation snapshots across 100’s (even 
1000’s) of simulation runs.  Since each checkpoint could take  
several gigabytes of disk space depending on the size of the 
elaborated snapshot, a single snapshot directory could 
potentially become unmanageable in size.  Instead, 
checkpoints were saved to test-specific directories outside of 
the snapshot.  The directory name was made unique through a 
combination of the testcase name, the seed value and the times 
stamp of when the simulation was launched.   

  Once snapshots were saved, users could quickly load 
any of the saved snapshots through a custom implemented 
command, which is essentially a wrapper of the standard ncsim 
restart command with additional code to resolve the 
checkpoint snapshot directory from the testcase name, the seed 
value, etc.  The command could be executed on either the 
ncsim simulator command line interactively or executed from 
the tcl script input to ncsim.  The command is as follows:   

 

ncsim> load_checkpoint [checkpoint_name]  
 

Loading a saved checkpoint snapshot allowed users to 
quickly replicate failures through restoring the last checkpoint 
and re-running, reducing our debug TAT to, at most, a 30 
minute window.  As you can see from the above control 
mechanisms, the TAT could be reduced to as small a window 
as the user desired.  This methodology was also extended to 
our regression re-run strategy where, if ever a failure occurred, 
VManager (a verification management tool) would 
automatically re-run the last saved checkpoint, with additional 
waveform dumping and increased verbosity in the log file. 
Since our average top level simulations typically took 6 hours 
before a failure, implementing this methodology resulted in a 
90% reduction in simulation time required to replicate bugs. 
As a result, we were able to run more debug iterations in a 
shorter amount of time.  

B. Dynamic Load Additional Code at Saved Checkpoints 

One of the unique features in Specman/e is the ability to 
load additional testcase code after restoring from a checkpoint 
snapshot.  The paper [3] outlined a framework of saving 
predefined checkpoints after each key phase in the testflow. 
This allowed us to launch new tests at key points in the 
simulation, bypassing uninteresting or redundant start up 

conditions.  Figure 1 displays some of the key phases in the 
testflow, as well as the predefined checkpoints. 

After loading any of the checkpoints, we could 
dynamically load additional testcase code and/or reseed the 
simulation so as to change the results of all future 
randomization actions.  Loading additional code allowed us 
to test bug fixes and try various “what if” scenarios by layering 
additional constraints, injecting error packets and configuring 
the DUT slightly differently to better identify and isolate bugs. 
Furthermore, dynamic load allowed us to code, load and test 
sequences that replicated the specific traffic that led to the bug. 
These sequences were then added to the regular regression to 
increase the robustness of the test suite. 

For example, if it takes 3 hours of simulation time to 
configure the device and wait for the device to stabilize before 
we start to inject interesting traffic scenarios to stress test 
corner cases.  If we have to inject 10 different traffic 
scenarios using 10 different traffic sequences, all using 
identical configurations, in the past we would have to run the 
simulation 10 times from the time zero.  With the help of 
dynamic load, we can save a checkpoint after the device is 
stabilized, then use dynamic load to augment the testcase with 
new sequence code that change traffic scenarios.  It saved us 
9x3 or 27 hours in simulation time assuming there is no bug in 
the traffic sequences.  If we have to debug the traffic 
sequences, we don’t have to wait for 3 hours before knowing 
whether or not the sequence works.  Using dynamic load 
capabilities, we can restore a checkpoint and run with new 
loaded code, seeing the effects of our new additions 
immediately. 

C. Waveform Verbosity 

Implementing various messaging verbosity levels within 
testbenches is a fairly common practice and one that we were 
familiar with from previous projects.  When re-running a 
failing simulation for debug, it is common to increase the 
verbosity of the messages so as to provide more information to 
the log file.  We extended the verbosity concept into 
waveform probing, allowing us to set various levels of 
waveform verbosity in the testbench and in the testcase.  
Probing a large number of signals not only takes up lots of disk 
space, but also slows down the simulation.  From our 
experience, probing the full hierarchy of the device could 
make the simulation run up to 10 times slower.  We defined 
the waveform verbosity level guidelines following the message 
verbosity level guidelines.  The amount of signals probed at 
each level is was as follows: 

1) NONE: No waveform is probed 

2) LOW: Probe all the ports of the module  

3) MEDIUM: Probe all the internal signals of the module 

4) HIGH: Probe the memories and variables of the 

module 

5) FULL: Probe delta cycle changes of the signals 
 

The waveform verbosity was implemented using a tcl 
procedure wrapped around the standard ncsim probe command 
to filter out the probe command with the verbosity level.  
Users could set the verbosity level in run script argument, for 
example: 



%> do_sim.cmd –wave_verbosity low 

 

The run script saved the verbosity level for the simulation 
run in a shell variable.  Then in the testcase, the user must call 
the wrapper procedure instead of calling the ncsim probe 
command directory, for example: 

add_probe –verbosity medium top.dut –depth all 

 

  The following is the code fragments of an example tcl 
wrapper implementation.  Due to the limit of space in the 
paper, we are omitting the part that parses the arguments to 
determine the verbosity value. 

proc add_probe args { 

   set verbosity_list “none low medium high full” 

 

   # parse the argument list and remove  

   # –verbosity from $args 

 

   if {[lsearch $verbosity_list $env(SIM_VERBOSITY)] >= 

        [learch $verbosity_list $verbosity]} { 

 

       eval probe $args 

   } 

} 

 

Figure 2 illustrates how the auto-save chekpointing, 
built-in checkpoints and waveform verbosity capabilities work 
together to allow for rapid debug TAT.  When a DUT error 
occurs, the user needs only reload the last auto saved 
checkpoint to quickly get to the point of failure.  The 
messaging and waveform verbosity can be increased when the 
simulation is restored so as to provide additional waves and 

messages for debug.  If the user would like to reseed and/or 
dynamically load additional files, they can select one of the 
predefined checkpoints to restore from.   

III. SPEEDING THE DEBUG TURNAROUND TIME FOR 

TESTBENCH AND SOFTWARE 

A. Incremental Compile of the Specman Testbench 

Many languages such as SystemVerilog, VHDL and 
Verilog operate in compiled mode only.  The e language is 

able to be run in either compiled mode or interpreted mode, 
and each mode has benefits and tradeoffs.   Interpreted e 
code has all of the capabilities needed for full debug, but the 
runtime performance is typically 3X slower than compiled 
code.  Compiled e code runs much faster than interpreted e 
code, due to the optimizations that remove some of the debug 
capabilities.  To improve on simulation performance while 
still allowing debug control, we incorporated a strategy of 
partitioning our testbench such that the stable pieces of e code 
were added to a list of compiled files (to maximize speed) 
while the more unstable code remained loaded interpretively 
(to maximize debug). This required careful up front planning 
as there would be considerable interaction between compiled 
code (limited debug) and interpreted code (full debug) and we 
needed the right level of debug available to us.   To facilitate 
this strategy from the very beginning of our project, we arrived 
at 3 key rules to implement our testbench code:  

1) Header files were used for struct/unit definitions and 

instantiation of the testbench only: This allows for clear 

separation of the object declaration from the definition.  The 

declaration of the objects (fields, method signatures, etc.) can 

be compiled for optimal performance almost as soon as they 

are written.  The definition of the object (additional field 

declarations and method extensions) can be loaded 

interpretively while the code was being developed and then 

compiled once stable.  This rule also helps to remove any 

cyclic imports.  

  

2) A sequence is something special and there should be no 

more than one per file: In our environment, sequences were 

loaded into each test on an as needed basis.  This allowed us 

to cut down on the amount of code we needed to load and to 

save time when running tests as we did not need to load entire 

sequence libraries unnecessarily.  It also simplified revision 

control.  

    

3) Do not mix hard constraints together with header files: 

As constraints can vary, we made sure not to include any hard 

constraints within the header files.  All constraints within the 

header files should have the ability to be overwritten, which 

means they should either be soft constraints or named 

constraints.   

 
Header files formed the bulk of our compiled code list.  

New sequences were created and debugged as interpreted files 
and then, once they became stable, they were migrated to the 
compiled code list.  Constraints resided mainly in test files, 
which are typically loaded interpretively throughout the 
project.  Using the above coding guidelines, we were able to 
maximize our debug turnaround time for testbench code by 
running the maximum amount of e code in compiled mode.  
Since compiled e code typically runs three times faster than 
interpreted code, the speedup was significant.  On average the 
testbench code running in interpreted mode uses about 15% of 
CPU cycles in the simulation.  Switching over to compiled e 
code cut the CPU usage of the testbench down to 5%, which 
translates to almost a 10% speed up in the total simulation 
time. 

 
 

Figure 2. Checkpoint usage examples 

 



As an experiment to further speed up the simulation, we 
considered compiling all constraints and sequences once they 
became stable.  However since the bulk of the loaded code 
contained only constraints, we did not achieve much speed up 
and, in the end decided to leave the constraint (mainly tests) as 
interpreted files.   

The following example demonstrates the import structure 
of our testbench that support incremental compile in Specman. 

testcase.e : 

     import testbench_top.e; 

     import <sequences required by the testcase>; 

     // set constraint to fine tune the sequences; 

 

testbench_top.e; 

     import testbench_compile_full.e; 

     // import unstable testbench code 

 

testbench_compile_full.e: 

     import testbench_compile_base.e; 

     // import stable testbench code 

 

testbench_compile_base.e: 

    // import VIP UVCs 

 // import testbench header files 

 

B. Software/hardware Co-verification 

When our design is used within a real system, software 
controls and configures the device.  In the past, integration of 
the software and hardware typically did not take place until the 
device was returned back to the lab.  Once in the lab, it would 
then take at least a week for the software driver to be 
debugged, the configuration sequence to be created and 
communication to be established.  Given the large gate count 
of our device and the amount of software code required to 
configure it , we wanted to enable an even faster bring up time 
in the lab for our software team and, even better, to allow the 
software team to run a limited set of tests on the HDL itself.  
To enable this, our top level system simulations involved 
interaction with a newly developed software driver written in 
C code.  In order to facilitate HW/SW co-debug, we needed 
the ability to interactively debug hardware (Verilog and 
VHDL), testbench (e) and software (C) together in a single 
tool.   We utilized the C capabilities built into the e language 
to call C functions in the exact manner that the system would 
using the methodology outlined in [5]. This allowed us to 
verify that the initial software configuration sequences were 
functioning correctly well in advance.   

Using the interactive debug capabilities of SimVision, we 
were able to set breakpoints in any language (e, HDL, C), and 
then move seamlessly between languages using a single source 
debugger. Using this approach, we were able to catch several 
key software issues early in the project, speeding up the overall 
software development.  Also, we were able to reduce device 
bring up time in the lab from a week to 1-2 days.  Interactive 
debug, in general, formed a critical part of our overall debug 
strategy as it allowed for maximum visibility into the entire 
dynamic testbench (as opposed to post process debug where 
one must decide up front what to dump to a database.) We 
utilized many of the tools only available during interactive 
debug such as stepping, breakpoints, watch windows, thread 
debug, call stack debug, simulator cycle debug and 
introspective command line debug.   

Another debug feature implemented was the ability to run 
the SW driver code on its own to isolate SW driver issues.  
When running simulations, anytime a C function was called 
from e code, the function call, as well as all of its arguments, 
was saved to a file becoming, essentially, one large C main 
function that could be compiled along with the SW itself.   
Through re-playing the calls made from the testbench to the C 
code, we could quickly debug issues such as stack overflow, 
null pointers and memory leaks through running tools such as 
Valgrind on the code.  On average when the SW driver code 
is running with the testbench, it takes 15-30 minutes to 
reproduce the failure due to the overhead of the RTL and the 
testbench code running in the simulator.    Using this debug 
technique to replay the C function calls in a standalone C main 
function, it takes less than a minute to reproduce the failure.  
This was a very useful debug technique that allowed us to 
debug SW driver code issues quickly.  The downside of this 
feature was that it required highly specialized skills that were 
require deep understanding both of the C language and the 
verification language, making it difficult to deploy to the 
broader verification team on our project. 

IV. BENEFITS AND RESULTS 

Through proper up front planning, we implemented a 
debug-friendly verification environment on a very large 
project.  Using checkpoint save/restore and dynamic load 
technologies, we were able to reduce our debug turnaround by 
90% for a typical simulation failure. This translated into an 
estimated reduction in our overall debug time by 50%. 
Through partitioning our e code into compiled and interpreted 
file lists and moving as much code to the compiled list as 
possible, we were able to realize approximately 300% speed 
up for a significant portion of our overall testbench code.  
Interactive hardware/software co-debug using SimVision 
allowed us to debug software related issues much earlier in the 
schedule than on previous projects.  As a result, we reduced 
the time taken to bring up the software in the lab to only 1-2 
days.    

V. FUTURE DEVELOPMENT 

We implemented our testbench environment using 
Specman e language and running the simulation using the 
Cadence IES simulator. Some of the debugging techniques that 
speed up debug turnaround time outlined in this paper are 
portable to a SystemVerilog testbench and simulator from 
other EDA venders.  Saving and reloading checkpoint 
snapshots is a feature supported by all three major simulators.  
The syntax of the command may be different but the concept 
applies to all simulators.  The implementation of waveform 
verbosity is under a tcl wrapper procedure, which is can be 
ported to other simulators easily.  Some simulators already 
support incremental compile and elaboration of SystemVerilog 
code.  Using these capabilities, a similar testbench 
partitioning scheme can also be applied to a SystemVerilog 
testbench.  Our hardware/software co-verification 
methodology is implemented using Specman, but the similar 
concepts can also apply to SystemVerilog testbench through 
utilization of the DPI-C feature however, debugging C and 
HDL in a single tool is something that is unique to the 
SimVision debug solution through the patented integration 
with GDB  In addition, the testbench can implement a 



software bridge that save all the software function calls in 
simulation to a log file and replay saved function calls to the 
software later, invoking neither the testbench nor the 
simulator.  The dynamic loading of additional testbench code 
is a unique feature of Specman and the IES simulator; we don’t 
think it is portable to other verification environments. 

VI. CONCLUSION 

In this paper, the authors implemented several key debug 
features that resulted in the successful debug of a 200M gate 
device.  Debug turnaround time was a key concern that was 
addressed successfully through the utilization of technologies 
including save and restore, compiled and interpreted code, 
interactive debug features.  We also 
implementedmethodologies such as the auto saving of 
checkpoints, predefined checkpoint locations, coding 
guidelines and early integration of SW into the top level 
testbench.  Overall our needs were addressed and we are able 
to identify bugs and verify the fixes much faster. 
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