
Can You Even Debug a 200M+ Gate Design?

Horace Chan

PMC-Sierra

Brian Vandegriend

PMC-Sierra

Deepali Joshi

PMC-Sierra

Corey Goss

Cadence

Sponsored By:

 2 of 12

Overview:

• Debug techniques for a 200M+ gate design

• Testbench built in Specman UVMe

– Simulator: Cadence IES

• Speed up debug turnaround time for RTL

1. Saving and Loading Checkpoint Snapshots

2. Dynamic Load Additional Code at Saved Checkpoints

3. Waveform Verbosity

• Speed up debug turnaround time for Testbench/Software

4. Incremental compile of the Specman testbench

5. Software/Hardware co-verification

Sponsored By:

 3 of 12

Saving and Loading Checkpoint
Snapshots
• Problem:

– Long simulation time

– Need to wait a long time to reproduce the failure

– Probing waveform slow down the simulation even more

• Solution:

– Save a checkpoint snapshot every 30 minutes

– Save a checkpoint snapshot every 1ms of run time

– Save a checkpoint after each key testflow phase

– Rerun from the save checkpoint to reproduce the failure

Sponsored By:

 4 of 12

Saving and Loading Checkpoint
Snapshots (Implementation)
• Checkpoint period controlled by

– Environment variables

– Shell script arguments

– vManager VSIF attributes

– Specman constrains

• Optimal checkpoint period depends on the snapshot size
and the load of the network

– E.g. 30 seconds checkpoint saving overhead for a 4G
snapshot during work hours

Sponsored By:

 5 of 12

Dynamic Load Additional Code at
Saved Checkpoints
• Unique features in Specman e

• Load extra testbench code after loading a checkpoint

– Change the constraint of a sequence

– Modify the behavior of existing methods

– Add and launch new sequence

• The testbench is built with empty method hooks between
each key testflow phase for dynamic load extension

Sponsored By:

 6 of 12

Dynamic Load Additional Code at
Saved Checkpoints (use case)
• Add extra debug code to print more information

– Change the sequence stimulus generation around the
failure point to explore the bug

• Test different what-if scenarios without waiting for the
simulation to run from time zero

– Skip the 3 hours wait to configure the device and wait
for the traffic to stabilize

• Group regression runs that share a common initial period to
reduce CPU and license usage.

Sponsored By:

 7 of 12

Waveform Verbosity

• Same idea as message verbosity

– Less waveform probed, faster the simulation

– More waveform probed, more debug information

• Easy control to set the waveform verbosity at run time

• Suggested verbosity level

– NONE: No waveform is probed

– LOW: Probe all the ports of the module

– MEDIUM: Probe all the internal signals of the module

– HIGH: Probe the memories and variables of the module

– FULL: Probe delta cycle changes of the signals

Sponsored By:

 8 of 12

Checkpoint Usage Example

Sponsored By:

 9 of 12

Incremental compile of the
Specman testbench
• Compiled testbench run 3x faster

• Interpreted testbench has better debug support

– Reload the testbench without exit the simulator

• Keep the CPU and license

– Keep the current state of the simulation without
rewinding back time zero

• Loading initial snapshot takes a long time

• The best of both world

– Compile stable testbench code

– Interpret testbench code still under development

Sponsored By:

 10 of 12

Software/Hardware co-
verification
• Integrate software (C code) with the testbench (e code)

– The C code is running on the Linux host as a thread
inside the simulator

• 1000x faster than running inside the CPU RTL

• 100x faster than running with CPU model.

– Replay the software calls without the simulator

• Software debug turnaround time from 30 minutes to 30 seconds

– Simvision GUI has source debugger for all languages in
the testbench and DUT. (e, C, Verilog/VHDL/SV)

• Implementation details refer to:

– Hardware/Software Co-Verification Using Specman and
SystemC with TLM Ports, DVCON2011

Sponsored By:

 11 of 12

BENEFITS AND RESULTS

• Speed up the RTL debug turnaround time by 90%

– Average time to failure in simulation is 6 hours

– Reduce overall development time by 50%

• The compiled testbench is running 300% faster

– Specman CPU usage: 15% down to 5%

• Silicon bring up in the lab with already tested software

– From 2-3 weeks down to 1-2 days

Sponsored By:

 12 of 12

FUTURE DEVELOPMENT

• Port to SystemVerilog and other simulators

1. Saving and Loading Checkpoint Snapshots

• Easy to port. If the simulator supports saving checkpoint.

2. Dynamic Load Additional Code at Saved Checkpoints

• Impossible to port. Unique feature in Specman

3. Waveform Verbosity

• Easy to port. The code is implemented in tcl

4. Incremental compile of the Specman testbench

• Hard to port. Unless SV supports AOP

5. Software/Hardware co-verification

• Easy to port. SV supports DPI-C programming interface too.

