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Abstract-  Scoreboard and SVA are two commonly used self-checking mechanisms in verification. However in 

common practice, they are employed independently without any elaboration except in the interface. This paper presents a 

new method and practical solution to utilize SVA collaboratively in UVM based simulations.  By combining SVA and 
scoreboard in conjunction with uvm_config_db, control event and informational parameters can be shared and 

communicated bidirectional between SVA and scoreboards to quicken and ease the debug. The paper also demonstrates 

the use cases, the execution flow and some sample codes.  
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I.   INTRODUCTION 

The goal of verification is to determine if design implementation meet the specification requirements. Verification 

employs two major methods, static formal verification and dynamic simulation. Self-checking is rapidly becoming 

a requirement, as the number of potential errors increases with the complexity of designs. Self-checking in UVM 

class based simulation is mainly achieved by various checkers residing in monitors and scoreboards, along with 

SVA. There are two kinds of SVA: immediate and concurrent assertion. Immediate assertion can be used directly 

inside class based UVM components like uvm_test, scoreboard and monitors. Since concurrent assertion is not 

allowed in a class, its usage is largely restrained in UVM based simulation except in the interface and modules. The 

common usage of SVA in interface is typically only checking the signal level protocols that are localized to 

interfaces. SVA assertion seldom utilizes the abundant information available in the complicated scoreboard.  On the 

other hand, scoreboard [1] is transaction based and it is hard to pinpoint the exact protocol violation location to get 

close enough to the root cause and the source of the violation. Another drawback of the usage of SVA is that the 

simulation has a performance penalty after turning on all concurrent assertions, since these concurrent assertions are 

temporal and checked every clock tick during the simulation. This paper proposes a new method to utilize SVA 

collaboratively in UVM based simulations and demonstrates how to combine them in symphony to reach their full 

potential. 

 

 

 

II.   SCOREBOARD: USAGE & LIMITATION 

Scoreboard plays an important role in the UVM based simulation due to its class based nature. The usage of 

scoreboard is to collect DUT actual inputs and outputs through analysis port. It calculates expected outputs and 

performs comparisons with the observed outputs. Pass or fail reports are based on the results of the comparisons.  

 

A scoreboard consists of two parts, the predictor which calculates expected outputs, and the co mparator which 

compares the actual and predicted outputs during the run_phase.  Figure 1 below shows a typical scoreboard 

implementation. 

  

Here we use two uvm_analysis_exports which connected to both the input and output monitors’ analysis_port to 

retrieve the observed input and output transactions. The input transaction is passed through to the predicator 

afterward and transformed into the expected output transaction.  Both the expected output transaction and observed 

output transaction are stored into two uvm_tlm_analysis_fifos.  

  



 

 

 

 

 

    class   tran    extends uvm_sequence_item;
           rand  bit [31:0]    data_in;
           bit [31:0]         data_out; …
      endclass

      class   my_sb   extends  uvm_scoreboard;
         `uvm_component_utils(my_sb)
          uvm_analysis_export  #(tran)   sb_analexp_in;    
          uvm_analysis_export  #(tran)   sb_analexp_out; 
          sb_predictor             sb_prd;  //extends from uvm_subscriber
          sb_compartor           sb_cmp; …
      endclass
    
     class sb_comparator extends uvm_component;
         `uvm_component_utils(sb_comparator)
          uvm_analysis_export  #(tran)   cmp_analexp_in;    
          uvm_analysis_export  #(tran)   cmp_analexp_out; 
          uvm_tlm_analysis_fifo  #(tran)   cmp_exp_fifo;    
          uvm_tlm_analysis_fifo  #(tran)   cmp_act_fifo; 
   ….
           function void connect_phase (uvm_phase phase);
               super.connect_phase(phase);
              cmp_analexp_in.connect(cmp_exp_fifo.analysis_export);
              cmp_analexp_out.connect(cmp_act_fifo.analysis_export);
          endfunction

     task run_phase(uvm_phase phase);
       tran exp_tran, act_tran;
      forever  begin
         fork
            cmp_exp_fifo.get(exp_tran);
            cmp_act_fifo.get(act_tran);
       join
      compare(exp_tran,act_tran); 
     `uvm_info(“sb_cmp”,$sformatf(“ActTran is %s vs ExpTran %s \n”,
             act_tran.print(),exp_tran.print());
    end
  endtask
endclass

 
 

Figure 1: Sample code of scoreboard 

 

Even though the scoreboard can compare and report the pass/fail result in the run_phase, it can only give out a high 

level outline of the failure which includes information such as the payload length, type, data, and status mismatch at 

the very end of the transaction. Usually this could be many clock cycles after the origin of the error. Since the 

scoreboard solely depends on monitors to receive the observed transactions, the scoreboard’s content is confined to 

the IO interface level. All other information like FSM and internal protocols, which are buried deeply down inside 

the design, is hidden from the scoreboard. Thus the scoreboard is incapable of checking and verifying more detailed 

protocol violations, down to the clock cycle level.  If an error happens in the simulation, this leads the debugging 

process to be lengthy and painful, as the debugger must then eyeball the waveform and trace back all related signals 

to their sources.  



                                                III.   SVA: USAGE & LIMITATION 

 

On the other hand, SVA provides a complementary solution for protocol checking at the cycle-accurate signal level. 

Specifically, concurrent assertion has the ability to define more accurate temporal design properties which can help 

to localize the error source and alleviate the debugging process. However, concurrent assertion is illegal within 

classes and this process cannot access random and dynamic variables either. 
 

Two common uses of concurrent assertions in UVM based simulation are inside of interface and in the modules 

bound to the DUT. Assertions inside the interface often only focus on the primary IO interface signals. For 

assertions binding with module or submodule signals, usually the property library has so many assertions that if they 

are all turned on in the simulation, the simulation performance will be greatly impacted since all the concurrent 

assertions will be checked in every clock tick in simulation. If a simulation run passes, usually the SVA check will 

be redundant. However, if a simulation run fails, the supplemental SVA check can be very helpful to facilitate the 

debug process. This being the case, an automatic mechanism to turn on and off the SVA checkers on demand during 

simulation will add a lot value in debug. SVA has a few system functions to turn on/off assertions dynamically like 

$asserton, $assertoff, $assertkill. However, they can only turn on/off all of the assertions if not given specific 

assertion names.  
A concurrent assertion has the following syntax per SystemVerilog LRM. [2] 

 

 [name:] assert property   (property_declaration)  pass_statment [else fail_statement]

Figure 2: SVA and property syntax

By manipulating expression_or_dist in disable iff clause and property_expr, we can control the trigger of the reset 

expression or antecedent to minimize the simulation performance penalty. Since concurrent assertion can access the 

static variables inside a class, some scoreboard information can be saved and passed into SVA for control purposes. 

Meanwhile, the Pass or Fail information from the SVA can also be fed back into UVM class environment like 

scoreboard. A detailed example will be provided later in this paper. 



IV.   CONFIGURATION DB: THE CONNECTING BRIDGE 

 

As we discussed above, both SVA and UVM simulation based checkers like scoreboards, each have their own 

advantages and limitation as well. In order to combine them to perform verification tasks more efficiently in 

harmony, we need to bridge them to complement each other to maximize  

their benefits while minimizing their limitations.  

 

 

UVM has a powerful configuration mechanism which together with the UVM Phase concept, can serve the above 

purpose very well. UVM configuration database is a versatile feature which allows objects and variables been stored 

and retrieved using lookup strings across various verification components within different hierarchical setup in 

testbench.  There is a pair of set/get functions in uvm_config_db with the below syntax:  

 

 
    

 

Figure 3: uvm_config_db syntax 

 

“cntxt “and “inst_name” are used to specify the hierarchical path of the location of the object handle.  

Uvm_config_db can provide not only a repository for parameters and objects but also uvm_event for 

synchronization.  

 

 

UVM simulation is phase based which includes 9 common phases and 12 run_time phases. When using the set/get  

functions of uvm_config_db, attention must be paid to the UVM phase. Normally the build_phase works in a 

top_down manner, which means that higher level components build_phase construct the lower components. But if 

the class or SVA is defined inside a module, it becomes the most top level. It can be extracted by uvm_root::get() or 

“null”. 

 

V. PUTTING IT ALL TOGETHER: A PRACTICAL SOLUTION 

 

Collaboratively utilizing SVA in conjunction with Scoreboard and uvm_config_db in UVM based simulation can 

solve some verification challenges and facilitate simulation debug. 

 

The verification of corner and error case in simulation is a typical task yet sometimes hard to fulfill. By putting these 

three powerful tools together and employing the concept of feedback and adaptive adjusting, we can bring up a 

practical solution. The basic idea is similar to search a wrecked ship in the open sea. Likewise, first we rely on 

scoreboard to give out a broad range for anchoring.  Then SVA is utilized to narrow down and zoom into the 

specific location. 

 

Given below is the diagram for the tb_top module and verification environment to show the relationship among 

these three utilities. 
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Figure 4: tb_top and env diagram 

 

The basic execution flow and common steps involved are: 

 

1. Run simulation. Record the interest point and parameters reported by scoreboard. 

2. Create property and Pass the control parameters to SVA through uvm_config_db. 

3. Run simulation with the same seed with SVA. 

4. Debug the failure reported by SVA. 

5. Adjust control parameters adaptively and repeat the step 3-5 if required. (optional for backward case). 

6. Feedback from SVA can be used to control simulation (Optional). 

 

VI. SAMPLE CODE & USAGE 

This method can be used to look forward in time for error propagation and recovery, and backward in time to trace 

the sources of errors and identify error sources. It can also be applied to other scenarios including not limited to 

corner cases, stress tests, and low power state verifications. It is worth noting that this method can also be extended 

to any other verification environment components like monitors. 

 

When scoreboard encounters an interest point, an uvm event which has been registered in uvm_config_db can be 

triggered and informational parameters can be stored in uvm_config_db. All SystemVerilog properties can be 

encapsulated inside a SVA property package. Tb_top module import the SVA property package along with other 

uvm packages. Tb_top module consistently monitors and waits for the named event trigger in the procedural code. 

Once triggered, the information is retrieved from uvm_config_db. It then can be employed in the conditional disable 

iff() clause to control the turning on of the SVA assertion checking in the simulation.  For the forward way, SVA 

assertion can further check the following protocols and specific sequences until the simulation ends or the named 

event resets.  

 

Sample code of the forward flow is given below. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Modified scoreboard 

 

 

 

 

 

  class sb_comparator extends uvm_component; 

         `uvm_component_utils(sb_comparator) 

          …  

         uvm_event   sb_sva_event; 

         bit  sb_sva_chk_en; 

   …. 

           function void build_phase (uvm_phase phase); 

               … 

               sb_sva_event = new (“sb_sva_event”); 

               uvm_config_db#(uvm_event)::set(  null,        

"“*”,“sb_sva_event”,sb_sva_event); 

… 

          endfunction 

 

  task run_phase(uvm_phase phase); 

     tran exp_tran, act_tran; 

     forever  begin 

       fork 

            cmp_exp_fifo.get(exp_tran); 

            cmp_act_fifo.get(act_tran); 

       join 

      compare(exp_tran,act_tran); 

   if (comp_error)   begin 

    sb_sva_event.trigger();  

        uvm_config_db#(bit)::set(  null, “*”,“sb_sva_chk_en”,1); 

        …     end     

   endtask 

 

endclass 
 



package sva_pkg;

      property p_sb_forward(clk,rst_n,sb_sva_chk_en,state);

           @ (posedge   clk) disable iff (!rst_n ||!sb_sva_chk_en)

 state==STATE_ERR|=>##[1:5] (STATE==RECOVERY|| STATE==NORMAL);

  endproperty  : p_sb_forward

   

      property p_sb_forward_lp(clk,rst_n,sb_sva_chk_en,state);

          @ (posedge   clk) disable iff (!rst_n ||!sb_sva_chk_en)

 state==STATE_PML1|=>##[1:10] (STATE==PML2);

  endproperty  : p_sb_forward

…

  class sva_cfg extends uvm_object;

              static int  sb_sva_chk_en;

   endclass  

endpackage

   
  Figure 6: SVA property  package 

 

 



module top

  import sva_pkg::*;

  uvm_event  tb_sva_event;

   bit  sb_sva_chk_en=0;

   sva_cfg    sva_cfg1;

   dut  dut_1(.*);

…

 initial begin

 sva_cfg1 = new();

 end_of_elaboration_ph.wait_for_state(UVM_PHASE_DONE,UVM_EQ);

void’(uvm_config_db #(uvm_event)::get(null,””,”sb_sva_event”,tb_sva_event);

tb_sva_event.wait_trigger();

void’(uvm_config_db #(bit)::get(null,””,”sb_sva_chk_en”,sb_sva_chk_en);

sva_cfg::sb_sva_chk_en = sb_sva_chk_en;

…

end

 a_sb_forward: assert  property 

 (p_sb_forward(sys_clk,rst_n,sva_cfg::sb_sva_chk_en,state))

     `uvm_info(“tb_sva”,$sformatf(“SVA PASSED \n”));

       else  `uvm_error(“tb_sva”,$sformatf(“SVA  FAILED\n”) 

…

endmodule

 
     Figure 7: TB_top module 

 

The backward checking of the preceding cause of the named event is also feasible by recording the time stamp of 

the occurrence of the named event.  The other alternative approach is to use uvm_config_db::wait_modified.  

 

static task  uvm_config_db::wait_modified(uvm_component cntxt,  string inst_name, string field_name)  

The task blocks until a new configuration setting is applied that effects the specified field. 

The recorded time stamp is fed into the conditional antecedent of another property and asserted as a local time 

variable to decide how further back the SVA will check the leading conditions. By applying the second round of the 

simulation with the same seed, the SVA checking can be executed to quickly localize and pinpoint the source to 

facilitate the debug process greatly.  The time threshold can be adaptively adjusted to be fine-tuned to be much 

closer to the source location by looping through a few iterations of simulation. The result of SVA checking can also 

be fed backed into the UVM verification components through event based configuration to notify relevant UVM 

verification components to take some further action or even stop the simulation.  



 

Sample code of the backward flow is given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Scoreboard for backward flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: SVA property package for backward  

 

 

class sb_comparator extends uvm_component; 

         `uvm_component_utils(sb_comparator..    …  

          uvm_event   sb_sva_event; 

          int   sb_time0;  

         time  sb_time; 

   …. 

           function void build_phase (uvm_phase phase); 

               … 

               sb_sva_event = new (“sb_sva_event”); 

                uvm_config_db#(uvm_event)::set(  null, 

“*”,“sb_sva_event”,sb_sva_event); 

… 

          endfunction 

     task run_phase(uvm_phase phase); 

         tran exp_tran, act_tran; 

         forever  begin 

         fork 

            cmp_exp_fifo.get(exp_tran); 

            cmp_act_fifo.get(act_tran); 

         join 

        compare(exp_tran,act_tran); 

      if (comp_error)   begin 

         sb_sva_event.trigger();  

        sb_time0=$time/period;  

            uvm_config_db#(int)::set(  null, “*”,“sb_time0”,sb_time0); 

          end 

…  

  endtask 

…. 

endclass 

 

 

package sva_pkg; 

   property p_sb_backward(clk,rst_n,sb_time0,state); 

     @ (posedge   clk) disable iff (!rst_n) 

  ($time> (sb_time0-

therhold_backforward)*peroid)&&(state==STATE_ERR)|=> 

                    $past(state,2)==STATE_PRE2||$past(state,1)==STATE_PRE1; 

endproperty  : p_sb_backward 

… 

class sva_cfg extends uvm_object; 

              static int  sb_chk_en; 

     static int sb_time0; 

endclass   

endpackage 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: tb_top module for backward flow 

 

 

 

VII. CONCLUSION 

This paper presented a new method and practical solution to utilize SVA collaboratively in UVM based simulations, 

as by combining SVA with scoreboard in conjunction with uvm_config_db.  Control event and informational 

parameters can be shared and communicated bidirectional between SVA and scoreboards freely. It can facilitate the 

debugging process and localize the root cause of the interest point/event as well as analyze the preceding and 

following protocol/sequences efficiently.  It can also minimize the SVA simulation performance penalty. The use 

cases, execution flow and sample code examples were included in this article to further illustrate the usage of this 

method. 
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module top 

  import sva_pkg::*; 

  uvm_event  tb_sva_event; 

  int tb_time0; 

  sva_cfg    sva_cfg1; 

  dut  dut_1(.*); 

… 

 initial begin 

    sva_cfg1 = new(); 

    end_of_elaboration_ph.wait_for_state(UVM_PHASE_DONE,UVM_EQ);        

        void’(uvm_config_db #(uvm_event)::get(null,””,”sb_sva_event”,tb_sva_event); 

    tb_sva_event.wait_trigger(); 

    void’(uvm_config_db #(int)::get(null,””,”sb_time0”,tb_time0); 

   sva_cfg::sb_time0 = tb_time0; 

… 

end 

 

 a_sb_backward: assert  property  

 (p_sb_backward(sys_clk,rst_n,sva_cfg::sb_time0,state)) 

     `uvm_info(“tb_sva”,$sformatf(“SVA PASSED \n”)); 

       else   `uvm_error(“tb_sva”,$sformatf(“SVA  FAILED\n”)  

… 

endmodule 
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