
Calling All Checkers:
Collaboratively Utilizing SVA
In UVM Based Simulation

Hui C. K. Zhang
Broadcom/Avago Tech

Abstract
Scoreboard and SVA are two commonly used self-checking

mechanisms in verification. However in common practice, they
are employed independently without any elaboration except in
the interface. This paper presents a new method and practical

solution to utilize SVA collaboratively in UVM based simulations.
By combining SVA and scoreboard in conjunction with

uvm_config_db, control event and informational parameters can
be shared and communicated bidirectional between SVA and

scoreboards to quicken and ease the debug.

Keyword
Scoreboard; SVA; UVM; uvm_config_db;

Introduction

• Common practice: • Our method:

SVA in formal analysis
Scoreboard in simulation
SVA in interface & module

Separate

Combine Scoreboard &
SVA In UVM based
simulation
Check forward &
Backward

Collaborate

Scoreboard

• Pro:

Major checker in classed
based simulation

 Predicator : Reference
Model to expect RTL behavior
 Comparator: report

Pass/Fail information

• Con:

 Only report high level
outline of the failure at
transaction level

Maybe many clock cycles
later after the error source

 Usually get info from
monitor (interface signal)

 Lack inside information of
RTL (internal protocol & FSM)

SVA

• Pro:

Used in formal analysis

Used in interface in Class
based simulation or
binding in TB module

• Con:

 Concurrent SVA not
allowed in class

 Simulation performance
penalty due to the
checking in every clock
ticks

uvm_config_db:
the Connecting Bridge

Allows objects and variables been stored and retrieved across
various verification components within different hierarchical setup in
testbench.
Use lookup strings and a pair of set/get functions
uvm_config_db function syntax:

Our Solution

Execution Flow

• 1. Run simulation. Record the interest point and
parameters reported by scoreboard.

• 2. Create property and Pass the control parameters to
SVA through uvm_config_db.

• 3. Run simulation with the same seed with SVA.
• 4. Debug the failure reported by SVA.
• 5. Adjust control parameters adaptively and repeat the

step 3-5 if required. (optional for backward case).
• 6. Feedback from SVA can be used to control

simulation (Optional).

Application

• Forward Method: • Backward method:

Look forward in time
Suit for error propagation and recovery
Check for low power state transition

Backward in time
 Back trace the sources of
errors
 Identify error sources

Application: Forward Flow
class sb_comparator extends uvm_component;

uvm_event sb_sva_event; bit sb_sva_chk_en;

function void build_phase (uvm_phase phase);

sb_sva_event = new (“sb_sva_event”);

uvm_config_db#(uvm_event)::set(null,
"“*”,“sb_sva_event”,sb_sva_event)

endf;unction

task run_phase(uvm_phase phase);

forever begin

fork

cmp_exp_fifo.get(exp_tran);

cmp_act_fifo.get(act_tran);

join

compare(exp_tran,act_tran);

if (comp_error) begin

sb_sva_event.trigger();

uvm_config_db#(bit)::set(null, “*”,“sb_sva_chk_en”,1);

… end

endtask … endclass

• Forward Method: • Backward Method:
package sva_pkg;

property p_sb_backward(clk,rst_n,sb_time0,state);
@ (posedge clk) disable iff (!rst_n)

($time> (sb_time0-
therhold_backforward)*peroid)&&(state==STATE_ERR)|=>

$past(state,2)==STATE_PRE2||$past(state,1)==STATE_PRE1;
endproperty : p_sb_backward
…
class sva_cfg extends uvm_object;

static int sb_chk_en;
static int sb_time0;

endclass
endpackage

Property Package

Conclusion

• A new method and practical solution to utilize SVA
collaboratively in UVM based simulations, as by
combining SVA with scoreboard in conjunction with
uvm_config_db which share & pass control event
and informational parameters .

• It can facilitate the debugging process and localize
the root cause as well as analyze the preceding and
following protocol/sequences efficiently.

• It can minimize the SVA simulation performance
penalty .

	Calling All Checkers:� Collaboratively Utilizing SVA�In UVM Based Simulation�
	Abstract�Scoreboard and SVA are two commonly used self-checking mechanisms in verification. However in common practice, they are employed independently without any elaboration except in the interface. This paper presents a new method and practical solution to utilize SVA collaboratively in UVM based simulations. By combining SVA and scoreboard in conjunction with uvm_config_db, control event and informational parameters can be shared and communicated bidirectional between SVA and scoreboards to quicken and ease the debug.
	Introduction
	Scoreboard
	SVA
	uvm_config_db: �the Connecting Bridge
	Our Solution
	Execution Flow
	Application
	Application: Forward Flow
	Property Package
	Conclusion

