Calling All Checkers:
Collaboratively Utilizing SVA
In UVM Based Simulation

Hui C. K. Zhang
Broadcom/Avago Tech



Abstract
Scoreboard and SVA are two commonly used self-checking

mechanisms in verification. However in common practice, they
are employed independently without any elaboration except in

the interface. This paper presents a new method and practical
solution to utilize SVA collaboratively in UVM based simulations.

By combining SVA and scoreboard in conjunction with

uvm_config_db, control event and informational parameters can

be shared and communicated bidirectional between SVA and

scoreboards to quicken and ease the debug.

Keyword
Scoreboard; SVA; UVM; uvm_config _db;



Introduction

* Common practice: * Our method:
»SVA in formal analysis »Combine Scoreboard &
»Scoreboard in simulation SVA In UVM based
»SVA in interface & module simulation

» Check forward &
Backward

> Separate » Collaborate



Scoreboard

Pro:

» Major checker in classed
based simulation

> Predicator : Reference
Model to expect RTL behavior

» Comparator: report
Pass/Fail information

Con:

» Only report high level
outline of the failure at
transaction level

» Maybe many clock cycles
later after the error source

» Usually get info from
monitor ( interface signal)

» Lack inside information of
RTL (internal protocol & FSM)



SVA

* Pro: e Con:

» Used in formal analysis » Concurrent SVA not
allowed in class

» Used in interface in Class
based simulation or » Simulation performance
binding in TB module penalty due to the
checking in every clock
ticks



uvm_config_db:
the Connecting Bridge

» Allows objects and variables been stored and retrieved across
various verification components within different hierarchical setup in
testbench.

» Use lookup strings and a pair of set/get functions
»uvm_config_db function syntax:

class uvm_config db#(type T=int) extends uvm_resource db#(T)
static function void uvm_config_db#(type T)::set(uvim_component cntxt,
string inst name, string field name, T value)

static function bit void uvm_config db#(type T)::get(uvm_component cntxt,

string inst name, string field name, ref T value)




Our Solution




Execution Flow

1. Run simulation. Record the interest point and
parameters reported by scoreboard.

2. Create property and Pass the control parameters to
SVA through uvm_config_db.

3. Run simulation with the same seed with SVA.
4. Debug the failure reported by SVA.

5. Adjust control parameters adaptively and repeat the
step 3-5 if required. (optional for backward case).

6. Feedback from SVA can be used to control
simulation (Optional).



Application

« Forward Method: * Backward method:
» Look forward in time »Backward in time
»Suit for error propagation and recovery > Back trace the sources of
» Check for low power state transition errors

» |dentify error sources



Application: Forward Flow

class sb_comparator extends uvm_component;
uvm_event sb_sva_event; bit sb_sva_chk_en;
function void build_phase (uvm_phase phase);
sb_sva_event = new (“sb_sva_event”);

uvm_config_db#(uvm_event)::set( null,
"uxn “sh sva_event”,sb_sva_event)

endf;unction
task run_phase(uvm_phase phase);
forever begin
fork
cmp_exp_fifo.get(exp_tran);
cmp_act_fifo.get(act_tran);
join
compare(exp_tran,act_tran);
if (comp_error) begin
sb_sva_event.trigger();
uvm_config_db#(bit)::set( null, “*”,“sb_sva_chk_en”,1);
end

endtask ... endclass

module top

import sva_pkg:¥;
uvin_event th_sva_event;
kit sb_sva_chk_en=0;
sva cfg  sva_cfgl:

dut dut 1{%):

initial begin
sva_cfzl = new();

end_of elaboration phwait for state{ VI PHASE DONE . UVMB_EQ):

void (wm_config_db Suvm_event):get(null, ™ "sb_sva_evenf th sva_ewvent);

th_sva_event wait_triggern();
void (wm_config_db S{bif) s get{null, ™ "sb_sva chk_en”.sb_sva_chk_en);

sva_cfz:sb sva_chk _en=sb sva chk_en:

end
a_sb forward: assert property
(p_sb_forward{sys_clkrst nsva cfz:sb sva_chk_en state))
‘wvm_info"th_sva” S formatf]“SVA PASEED 'n™);
else ‘wvmn_error“th_sva” Ssformatf“3VA FAILED'n™)

endmodule




Property Package

e Forward Method:

package sva pke:
property p sb forward(clk rst n,sb sva chk en.state);
(@ (posedge dk) disable 1ff('rst n|'sb sva chk en)
state==STATE ERR|=>##[1:5] (STATE=RECOVERY|| STATE==NORMAL);

endproperty : p sb_forward

property p_sb_forward Ip(clkrst nsb sva_chk enstate);
@ (posedge k) disable iff ('rst_n |!sb_sva_chk en)
state==STATE_PMLIF>##[1:10] (STATE==PML2):
endproperty : p_sb_forward

class sva_cfg extends uvm object;
staficinf sb sva chk en;
endclass

endpackage

e Backward Method:

package sva_pkg;
property p_sb_backward(clk,rst_n,sb_time0,state);
@ (posedge clk) disable iff (Irst_n)
($time> (sb_time0-
therhold_backforward)*peroid)&&(state==STATE_ERR)|=>

Spast(state,2)==STATE_PRE2||$past(state,1)==STATE_PRE1;
endproperty : p_sb_backward

class sva_cfg extends uvm_object;
static int sb_chk_en;
static int sb_time0;
endclass
endpackage




Conclusion

* A new method and practical solution to utilize SVA
collaboratively in UVM based simulations, as by
combining SVA with scoreboard in conjunction with
uvm_config_db which share & pass control event
and informational parameters .

* |t can facilitate the debugging process and localize
the root cause as well as analyze the preceding and
following protocol/sequences efficiently.

* |t can minimize the SVA simulation performance
penalty .



	Calling All Checkers:� Collaboratively Utilizing SVA�In UVM Based Simulation�
	Abstract�Scoreboard and SVA are two commonly used self-checking mechanisms in verification. However in common practice, they are employed independently without any elaboration except in the interface. This paper presents a new method and practical solution to utilize SVA collaboratively in UVM based simulations.  By combining SVA and scoreboard in conjunction with uvm_config_db, control event and informational parameters can be shared and communicated bidirectional between SVA and scoreboards to quicken and ease the debug.
	Introduction
	Scoreboard
	SVA 
	uvm_config_db: �the Connecting Bridge
	Our Solution
	Execution Flow
	Application
	Application: Forward Flow
	Property Package
	Conclusion

